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An experimental and theoretical study of nonlinear acoustic propagation in a typical
glass, fused silica, is presented, at frequencies near 1 GHz and temperatures below 1 K.
The data are interpreted within a general framework of pulse propagation in an inhomo-
geneously broadened two-level absorber. Numerical solutions are compared with the tem-
perature and pulse-width dependence of the critical saturation intensity, as well as with sa-
turation recovery experiments. The data are described by a linewidth T3 of the intrinsic
tunneling states that agrees with lifetimes obtained from phonon echo experiments. The
distribution of relaxation times T'; which emerges from the analysis of saturation recovery
experiments is also understandable within the tunneling model. An improved estimate for
the longitudinal deformation potential is ¥, =2.0 eV. For T <0.1 K, the behavior of the
pulse velocity is indicative of a coherent propagating mode, i.e., self-induced transparency.

I. INTRODUCTION

The two-level tunneling model of a glass was
developed'? to explain the nearly universal proper-
ties of disordered materials®* at temperatures below
approximately 1 K, namely, the large specific heat
varying roughly as T and the small thermal conduc-
tivity ~T2. Both properties are explained by as-
suming the existence of many intrinsic two-level
configurational states which consist of unspecified
atoms or groups of atoms. The roughly constant
density of states as a function of energy splitting
that is expected in a glass accounts for the quasilin-
ear specific heat, while a strong coupling to phonons
through a resonant scattering process explains the
small thermal conductivity.

The first prediction® of the tunneling model to be
verified experimentally was the phenomenon of
acoustic saturation. This observation®® confirmed
the idea that only the two lowest energy levels are
needed to describe the dynamics of these systems.
The formal equivalence of the quantum mechanics
of all two-level systems has been exploited by bor-
rowing analytical techniques from the fields of mag-
netic resonance’ and coherent optics.>® Acoustic
propagation in a glass at low temperatures is closely
related to optical pulse propagation in a medium
containing two-level atoms with an extremely broad
inhomogeneous line shape.

A variety of acoustic phenomena!®!! has been in-
vestigated: the unsaturated (low-intensity) attenua-
tion, the critical intensity needed for saturation, the
saturated linewidth, the recovery of the states from
saturation, and the coherent acoustic phenomenon
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known as phonon echoes, analogous to photon
echoes. The present work is an extension of a previ-
ous investigation'>!? of the saturation threshold and
of the recovery of equilibrium after saturation. The
interpretation of saturation data is sensitive to
which regime one is in (e.g., steady-state or pulse), a
fact which has not always been taken into account
properly in several recent investigations. Therefore,
our purpose is twofold: (1) to describe, in rather
general terms, acoustic propagation under a wide
variety of experimental conditions, and (2) to apply
these results to our data in a glass at low tempera-
tures in order to extract relaxation times and cou-
pling strengths.

A brief outline of the two-level tunneling model is
presented in Sec. II, followed by an analysis of the
interaction of the two-level systems and an acoustic
wave. Section III describes the numerical pro-
cedures used to simulate pulse propagation. The
data are presented and analyzed in Sec. IV.

II. THEORY
A. Two-level tunneling model

Each two-level tunneling system in a glass is
described by a double-well potential of asymmetry
A and overlap energy Ag=7#Qe %, where Q is a typ-
ical zero-point energy in either well and
A=(d/#)2mV)'/2. V is the barrier height, d is a
generalized tunneling coordinate, and m is an effec-
tive mass of the two-level system. Tunneling
through the potential barrier mixes the eigenstates
of the two independent wells, resulting in an energy
splitting
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E =(A24+A})'2. (1)

The Hamiltonian for the system coupled to a long-
wavelength strain e is

H=H,+H,
=(E/2)0,— (Mo, +3Da,)e(z,1) . )

M and D are the off-diagonal and diagonal coupling
parameters and are related to the deformation poten-
tial y=0A/3e by

Ao A
M—Ey, D—E'y. (3)
v is averaged over the orientations of the two-level
systems with respect to the strain tensor. The densi-
ty of states p(A) is usually taken to be a constant,
which leads to a roughly constant density of states
no per unit energy. In the language of optical or
magnetic resonance, the roughly constant density of
states in the vicinity of the pulse spectrum can be
described as the center of an inhomogeneously
broadened line of line shape given by the normalized
function g (), with {=wo—w=(E/f)—ow. g(£)d§
is then the fraction, of the total number N of states
per cm’, that lies between ¢ and {+d¢, with the

normalization f g(&)dé=1. It is convenient to
write g (&) as a Lorentzian
T‘
gO=1 2 @

T 14H(T5E?

which acts as a 8 function when integrated over &.
The appropriate definition for T3 is 7#iny/N.

Equations (1) and (3) imply a distribution of cou-
pling parameters M and D for different states with
the same energy splitting. This, in turn, leads to a
disltll'i4bution of the one-phonon relaxation rate given
by”

2 3
TTHE A= —@wﬁ E4
cr cr | 2mhi'py

X exp[ —2(A —Amin)]

Xcoth(E /2kgT) , (5)

where subscripts L and T refer to longitudinal and
transverse phonon polarizations, respectively, c¢ is
the acoustic velocity, py is the mass density, and A,
is the minimum value of A for a given E, corre-
sponding to the symmetric levels (A=0). Under the
assumption p(A)=const, one can calculate the dis-
tribution of relaxation rates for any given value of
E. Jickle' finds, for instance,

p(n=> L ©)

(1—r)%
where
r=T7 (EA)/TT (EAmn) -

In the analysis which follows, we assume a single-
valued T'| =T (min) and defer until Sec. IV a discus-
sion of the possible effects of a distribution of T';’s.

B. Basic equations of motion

Acoustic pulse propagation in this saturable medi-
um is governed by the acoustic wave equation cou-
pled with the acoustic equivalent of the Bloch equa-
tions which describe the local dynamics of the two-
level systems. The general procedure has been out-
lined by Shiren'® for the case of acoustic paramag-
netic resonance, following an approach for the
analogous optical case developed by McCall and
Hahn'® for self-induced transparency. A number of
related calculations have been made.!”!®

One can identify two contributions to the propa-
gating stress: the usual term due to the restoring
forces of the elastic medium, and a contribution R
due to the motion induced in the configurational
states. If we restrict ourselves to a plane wave of
strain e and suppress tensor indices, the stress T is

T= -:—e(czpoez/Z-}-H):czpoe +R, @]

where H is given by Eq. (2) and p; is the mass densi-
ty. Differentiation with respect to z of the basic
force equation leads to a wave equation of the form
1 3% % 1 d°R
o 2l ool ol ®
c® 9t° 9z° pc’ Oz
for a plane strain wave traveling along the z direc-
tion, which we take to be

e(z,t)=eq(z,t)cos[wt —kz —¢(2)] . 9)

The envelope function egy(z,¢) is a real quantity,
k =w/c, and ¢ is a phase angle. The response of the
system can be calculated from the quantum-
mechanical equations governing the two-level tun-
neling states using a density-matrix approach. In
terms of the density matrix p, the expectation value
for R is

oH

2P| (10)

(R)=NTr

The elements p,, and p,, are, respectively, the
fractional populations of the upper and lower states,
while p,, and p,, =pj, are related to the complex
elastic dipole moment. Only one of the two
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counter-rotating strain components represented by
(9) is effective in causing transitions. The matrix
element (H;),,, for example, in the rotating-wave
approximation is

(H1)pa = — (oM /2)expli (0t —kz — )] .

Transforming to the rotating coordinate system by
means of

e—iml/Z 0
U= 0 piat/2 (11)
simplifies the Hamiltonian to
_1|e —B
H=3 —B* —a|’ (12)
where

a=E —#iw—Dej cos(wt —kz —¢)

and B=Mege! ¥ +9),
The equatlon of motion of the transformed densi-
ty matrix p'=U pU is given by

ifip’=[H',p'], (13)
where H' is the transformed Hamiltonian. Defining

u =pypexpl —i(kz +¢)]+c.c., (14)

v=ipyexpl —i(kz +¢)]+c.c., (15)
and

W =Pag —Pbb » (16)
one can write (13) in the form

u=—Cf+& —u/T,, (17)

v=Cu —&u +(Mey/H)w —v /T3 , (18)
and

w=—(Meog/#i)v —(w —wy)/T, , (19)

where w, is the equilibrium difference in occupation
probabilities,

wo= —tanh(#iw/2kpT) ,
and
E=(Dey/#i)cos(wt —kz —@) .

Equations (17)—(19) are the acoustic analog of the
Bloch equations of magnetic resonance. Relaxation
times T'; and T have been introduced in the usual
way. T, is the phase memory time and T is the
time for thermal equilibrium. For convenience in
what follows, we abbreviate 75 to T,. The terms
containing £ result in a longitudinal coupling of the

sound wave with the two-level systems which pro-
duces a high-frequency small-amplitude variation of
the precession about the w axis. For pulses which
are more than a few cycles in length, and particular-
ly for states with strong off-diagonal coupling
(D << M), the terms containing £ may safely be ig-
nored.

We can distinguish three regimes of pulse length 7
with respect to T, and T',.

(1) Coherent regime (7<<T,T,). Relaxation is
unimportant in this regime and many coherent
propagation effects are observable, such as phonon
echoes, self-induced transparency, etc., in direct
analogy with coherent optics.

(2) Intermediate regime (T, <7<T,;). Phase
memory is lost during the pulse but populations are
functions of z, ¢, and §.

(3) Steady-state regime (T';,T, <<7). In this con-
tinuous-wave (cw) regime, all transients have died
out, so that u, v, and w are functions of only z and §.

C. Coherent regime

In the coherent regime one must use the fully cou-
pled wave (8) and Bloch [(17)—(19)] equations. For
(R) we combine Egs. (2), (10), (14), and (15) and
find, neglecting terms in D,

R(z,t,8)= —~MZ—N((u +iv)

—¢(z)]} +c.c.) .
(20)

Xexp{i[wt —kz

To obtain the total stress wave, R (z,7,§) must be in-
tegrated over the available spectrum of states:

Rz0=[R(zt5)(E)dE . 21)

Expressions (3) and (21) can be inserted into the
wave equation (8) to obtain equations for ey(z,¢) and
#(z). Following McCall and Hahn!® and Shiren,!’
we assume that the envelope e, is slowly varying
compared to a wavelength or period of oscillation,
and that (M /pgc?)|u +iv | is small compared to
eo. Under these assumptions the in-phase and out-
of-phase components of (8) can be written as

10e e MoN
c ot | oz 2

e 2""” [uznepdet . @3)

T [o@nog©ds, 22

In the coherent regime, pulse propagation is
described!” by these first-order linear integral-
differential equations coupled with the Bloch equa-
tions (17)—(19).
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D. Intermediate regime

A much simpler set of equations can be obtained
for the intermediate regime by setting ¥ =v=0 to
represent complete loss of phase memory. Thus

Mey(z,t) T3¢

u (Z»t:§)= - # 1+ T%gz W(Z,’ag) ’ (24)
(z,4,6)= Meolz) T (z,4,6), (25)
vzt =—"1 1+T2§2w 2,46
T
W(z,6) = — 2MI (z,t) 2

oc P 14+ T3E
w(z,t,§)—w,

T, , (26)

Xw(z,t,§)—

where we have used the definition of the acoustic in-
tensity I =poc 3¢3/2. Equation (22) can then be writ-
ten as

191 oI _ IMZwN N f Trg(Hw(z,t,8)dE
cor Az 14 T3¢

=—al. (27)

The absorption coefficient a can be identified!’ as

M?*oN  T28(8)w(z,t,8)dE
fipoc’ 1+T32

alz,t,w,§)=—

(28)

Two extreme line shapes are interesting. If inhomo-
geneous broadening is dominant and the input inten-
sity is small, the denominator acts as a § function
and we have

™M nyowq(z,t)
poc’ ’
which is the familiar low-intensity absorption coeffi-
cient. If, on the other hand, homogeneous broaden-
ing is dominant, g (&) acts as a § function to yield

alz,t,w)=— (29)

M T2Nw(z,t,§)
fipc®  14+T3¢

alz,t,w,§)=—

=—oNw, (30)

where we identify o as the cross section for a single
two-level entity interacting resonantly with a pulse
which is long compared to T, and centered at a fre-
quency o at a distance £ from exact resonance:

M?» T,

=20 2 31
fipoc? 1+ T3 b

In the homogeneous limit and for {=0, Egs. (19)
and (22) therefore reduce to a pair of coupled, linear,
first-order differential equations for I(z,t) and
w(z,t):

) 1 aI

3z cor +oNlw , (32)
ow 20lw W—Wp

o8 kT 33

E. Steady-state regime

For small values of ayz, where a, is the low-
intensity attenuation of the medium and z the path
length, the amplitude e, of the pulse is not a strong
function of z and propagation effects are corre-
spondingly small. The problem then approximates a
(standing-wave) magnetic-resonance experiment
with spin-% particles. Setting w=0 in Eq. (26)
yields the steady-state population difference

wo(1+T3£Y)
14+ T382+1/1,

which describes the inversion produced in a homo-
geneous line centered at a distance £ from the infi-
nitely narrow exciting spectrum, or equivalently, the
inversion produced in a very wide inhomogeneous
line by a cw spectrum at fixed frequency. The spec-
tral width of w (t = «,§) is

AL(FWHM)=2T5'(1+1/I.)'?. (35)

Equations (34) and (35) exhibit the familiar phenom-
ena of saturation and power broadening for intensi-
ties above a critical value

I, =pc’#/2M*T T, . (36)

Substitution of Eq. (34) into Eq. (28) and integration
over ¢ leads to a o« (1+1/1,.)™" with n—l for the
homogeneously broadened case and n =- for inho-
mogeneous broadening.

We define a critical intensity I, as the input for
which a=ay/2. Thus in the cw limit, I, =1, for
homogeneous broadening and I, =3I for the inho-
mogeneous case. Similarly, we define a critical ener-
gy density &.=1_7.

w(f)= s (34)

F. Modified rate equations

A rigorous solution in the intermediate regime
with inhomogeneous broadening would require a
combination of Egs. (22), (25), and (26) into a pair of
integral-differential equations. However, it is possi-
ble to modify the much simpler rate equations (32)
and (33) and use them to approximate the inhomo-
geneous case, at least for I <I.. We modify the
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parameters N and o, taking into account the pulse
of finite length 7 with a spectral width Aw ~27/7
[full width at half maximum (FWHM)]. We take
the effective number of absorbers to be

N=hny[r~'+(2T,)" "] 37

and, to satisfy the independence of a from r or T,
in Eq. (29), we take an effective cross section to be

5=M2w[7'—1+(2T2)_ll_l(ﬁpoc3)_l ,

in analogy with Eq. (31) for £=0. N and 7 are used
in place of N and o in the actual fit to the data in
Sec. IV.

G. Power broadening

As in the cw case, power broadening in the inter-
mediate regime undoubtedly scales as T; ' and is
therefore less important the shorter the pulse.
Furthermore, power broadening in the intermediate
regime is time dependent,’ and states in the wings of
the long-time power-broadened spectrum require a
reasonably large fraction of T to respond, especial-
ly for input intensities no greater than, for example
10I,. Therefore, power broadening in the intermedi-
ate regime is observable only near the transition to
the cw regime (r=T,) and is most significant for
T, <<7. In Sec. IV we make quantitative estimates
of the importance of power broadening under the
present experimental conditions.

H. Spectral diffusion

The dominant contribution to the loss of phase
memory at temperatures below 1 K is a particular
type of spectral diffusion’”?! in which the thermal
flipping of two-level systems outside the pulse spec-
trum causes a wandering in energy of the states
which are in resonance with the pulse. This interac-
tion occurs through the diagonal coupling in Eq. (2)
and produces a spectral width I'(¢,T) which depends
on time as well as temperature. At times short com-
pared with T; (E ~kgT), T «tT*, whereas at much
longer times I'(¢,7) > T (o0, T) « T.

The effect of spectral diffusion on the phase
memory as measured by phonon echoes is more
drastic. The result is an effective time constant
T,(pe) < T~2, in agreement with experiment. Be-
cause of the time dependence of this complicated sit-
uation, it is not clear which value to assume for the
effective T, in a single-pulse saturation exper-
iment—I'~!, or T,(pe) extrapolated to higher tem-
peratures. As we shall see below, the difference be-
tween these two options is fortunately small at the
temperatures of interest for the present experiment.
We shall assume T, =BT 2 with B to be determined

by comparison with the data for I.
III. APPROXIMATE SOLUTIONS

A. Analytic limiting cases

The coupled rate equations for the incoherent
case, Eqgs. (32) and (33), do not have closed-form
solutions for I(z,¢) and w(z,z). However, we can ob-
tain approximate analytic expressions for certain
limiting cases.

For the cw regime (T, T, << ), equilibrium is at-
tained in a time short compared with 7, so that we
may set 8] /0t =0w /9t=0. The rate equations are
reduced to?

20'T1
In[1(z)/Iy]+ —ﬁw——[l(z)—lo] =oNwyz ,

(38)

where I, is the input intensity. This equation for
1(z) can be solved numerically to obtain the absorp-
tion as a function of input intensity and distance,
and can also be used to find an expression for I:

fiwayz

I =—2%
¢ 40T,

[1—exp(—agz/2)]7!. (39)

For a thin absorber (agz << 1), Eq. (39) simplifies
to
__fw
- 20 Tl ’

I, (40)
If o=T,0M?*/#ip,c’®, we regain the expression for
I, Eq. (36).

For a thick absorber (agz >>1), Eq. (39) becomes

I. =fiwayz /40T, . (41)

In the intermediate regime (T, <7< T;), the rate
equations have been solved analytically*>?* for the
limiting case of no relaxation (7 << T;), with the re-
sults?

Iz =Io(O[1+(e 7" —1)e /™)1
42)
w(z,t)=wo(z)e moNy Rl | Nyt
43)

where J, and J, are integrals over distance and time:
z t
J,= fo wo(z')dz’ and J,= fo I(tdt' . (44)
We can derive an expression for I, in this regime:
1, = /207 )In{(e“F — 1) /[T >~ 11} ,
(45)
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where ¢t refers to the time at which the maximum
amplitude occurs.
Equation (45) reduces to

#iw /207 for ayz << 1 (46)
= |fwagz /4ot for agz>>1 . 47)

The expressions for I, Egs. (40), (41), (46), and (47),
may also be derived intuitively if one defines I, as
that intensity which, in the cw regime, excites the
states as rapidly as they decay, or, in the intermedi-
ate regime, as the intensity which, multiplied by the
pulse length, yields sufficient energy &, to excite
only half of the available states.

To simulate our experimental results, we need to
calculate pulse shapes, population changes, and the
effective attenuation after a complete round trip for
a variety of input intensities, pulse lengths, and sam-
ple parameters. This can be done using Egs. (42)
and (43) for the pulse regime, but for completeness
we have developed a numerical simulation of the
rate equations which can be used in all four coherent
regimes (thick or thin sample, intermediate or cw)
including the crossover regions between the limiting
cases.

I

B. Finite-difference algorithms

In applying the method of finite differences to the
rate equations, it is convenient to take forward

Pass z | ao
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FIG. 1. Normalized effective attenuation 4 =a/aq,
where a, is the unsaturated attenuation, as a function of
input peak intensity I,. z is the total path traveled by the
pulse. The solid curves are the solution of the rate equa-
tions (32) and (33). The dotted curve is (1+1/I.)~", with
a critical intensity I,=8.17 erg/cm?sec pulse. Pulse
length 7=90 nsec, sample length L=1 or 2 cm, f=0.692
GHz, and 0=7.74X 10~ "? cm?.

differences in distance (i) and backward differences
in time (k). The results of this approach are

. w,-,k_1+(At/T,)wo
Wk = (20At /)y + At/ T,

(48)

and
Ii+l,k=(l-—AZ/CAt —-Aza,, )Iik
+(AZ/CAt)I,"k_]+AZUNw,"k ’ (49)

where we have included a term in the rate equations
to represent any nonsaturable attenuation «, that
may be present in the experiment.

C. Numerical results

We have used the numerical procedures and ana-
lytic expressions described above to explore the
behavior of the rate equations in the various regimes
of T, /7 and ayz for both a single pass and a round
trip through the absorbing medium. These results
are general and may be applied to any system in
which a pulse (optical or acoustic, for example) is
traveling through a saturable, homogeneously
broadened medium in either the cw or the inter-
mediate regime. The transition to the coherent case
will be discussed below.

The normalized saturation curves in Fig. 1 show
the dependence of the absorption on the peak input
intensity I, after either one or two passes for several
extreme cases. While the results are very general, a
convenient scale factor for the intensity has been
chosen to facilitate comparison with the experimen-
tal data. In the intermediate regime [Fig. 1(a)] the
effect of the second pass in a thin absorber (curves 2
and 3) is simply to lower I, by approximately a fac-
tor of 2. The probability of any two-level system be-
ing excited by the pulse is doubled on the second
pass if the pulse is weakly absorbed (agz << 1). For
a thick absorber (ayz >>1), on the other hand,
curves 5 and 6 illustrate the competition between the
above effect and the dependence of I, on ayz [Eq.
(47)]. Equation (46) is consistent with curves 1 and
2 having the same I,. Curves 4 and 6 compare a
two-pass case with a single pass through a sample
twice as long (same ayz). The effect is a shift by
again a factor of 2 in I.. In Fig. 1(b) there is no
difference between single and double pass in the cw
regime, as expected. Furthermore, the variation as
(1+41Iy/I,)" " is clearly shown for ayz << 1. We note
that in both regimes the transition at I, is broader
for small ayz than for large ayz.

The critical intensity I, extracted from such sa-
turation curves is shown in Fig. 2 as a function of
agz and T,. The transition from one extreme to
another is smooth and the numerical calculations
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FIG. 2. Calculated values of I, as a function of ayz
and T,. 0=5.0x10""" cm? f=0.692 GHz, and =65
nsec. The dashed lines represent the limiting values
described in the text.

agree quite well with the limiting cases (dashed
straight lines) obtained from Egs. (40), (41), (46), and
(47). The dependence on 7, 0, and w in these expres-
sions is also reproduced in the numerical results.
Variations in I, on the order of 10% are observed
for the two-pass case in the intermediate regime if
one uses different input pulse shapes. The general
behavior can be visualized with the help of the
three-dimensional representation of I.(agz,T;) in

%
&
"
:
\

(77

FIG. 3. Surface for I, (ayz,T,) for a particular value
of w/or and a single pass. Different values of w /o7 will
scale the surface as described in the text.

10 .

COMPUTER
SIMULATION

DATA
f=1.51 GHz
T=326 mK
LENGTH =0.635 cm
2 PASS

o 0 60 120
TIME (nsec)

FIG. 4. Pulse shape I(t) after one round trip, normal-
ized to the peak intensity I, of the input pulse, for a num-
ber of input intensities near I,. Calculated pulse shapes
are shown in (a) for the input pulse (dotted line) and for
input intensities o=0.19 (1), 0.48 (2), 0.92 (3), 1.51 4),
2.59 (5), 5.89 (6), and 11.1 (7), in units of I, =9.55x 107’
erg/cm? pulse. The calculations simulate the conditions
of the data (b) for acoustic propagation in fused silica.

Fig. 3. For Ty <<, I, scales as fiw/0, whereas for
Ty>»>7, 1, <fiw/oT.

For Iy~I. and T, >, the trailing part of the
pulse encounters a medium which has been partially
saturated by the leading edge. Significant reshaping
of the pulse can occur for large ayz, as shown in Fig.
4(a). We have used an input pulse shape given by

I, _o=Iysin*(7t/2.757) , (50)

which has a FWHM equal to 7. It is useful to cal-
culate the FWHM and the time delay of the output
pulse as a function of &,=1Iy7 and ayz (Fig. 5).
Pulse narrowing at large &, is due to the leading
edge of the pulse being more highly absorbed than
the rest. One might have expected a certain amount
of pulse broadening for a large a(z as a precursor to
the extreme broadening found in the coherent re-
gime.!”?> The absence of pulse broadening in Fig. 5
is probably due to our incomplete treatment of inho-
mogeneous broadening and phase memory. The
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FIG. 5. Calculated pulse width (FWHM) and pulse de-
cay () as functions of &, and of agz. Values of ayz are
0.5 (1), 1.5 (2), 3.0 (3), 6.0 (4), and 12.0 (5). The five criti-
cal energies & are shown by arrows.

maximum amount of pulse delay depends on agz
and the shape of the input pulse but has a limiting
value of approximately 7/2. This behavior is also in
contrast to what is expected for the coherent re-
gime!”?* but can be understood as described in Sec.
Iv.

In the cw case a perfectly rectangular pulse under-
goes no reshaping, but the leading and trailing edges
of a more realistic pulse will be made sharper if I, is
in the vicinity of I.. This is because the peak ex-
periences less attenuation (for a typical saturation
curve) than the (lower-intensity) leading or trailing
edges. The narrowing, however, should produce no
pulse delay.

IV. DATA AND ANALYSIS

Measurements of acoustic saturation and the
recovery from saturation have been made in con-
junction with an investigation of phonon echoes in a
glass at low temperatures.? Phonon echoes are ob-
servable only below T'~0.1 K for the conditions of
our experiment, but the saturation and recovery
measurements were continued up to 7~0.5 K. The
technique has been described previously.?® Most of
the data were obtained with pulse length 7=65 nsec
at a frequency f=0.692 GHz using a ZnO thin-film
transducer on a 0.635-cm cube of Suprasil W in con-
tact with a *He-*He dilution refrigerator. Some of
the data were obtained with f=1.5 GHz and some
with 7 up to 500 nsec.

Pulse reshaping is clearly visible in most of the
data, especially for large apz. An example is shown

in Fig. 4(b), where we have emphasized the reshap-
ing by choosing a higher frequency to obtain a large
ay. The experimental pulse shape is distorted by the
imperfect transient response of the amplifiers, par-
ticularly on the trailing edge, but the qualitative
agreement with the computer simulation in Fig. 4(a)
is evident.

Saturation data are shown in Fig. 6 for the short-
est 7 at 0.692 GHz and a number of different tem-
peratures. The solid lines represent the computer
simulation with parameters which have been chosen
to yield overall best agreement with the data. The
agreement with I, is obtained by choosing y; =2.5
eV. N and G are calculated with the parameters
given in the caption. The unsaturated absorption
agz (Ig<<I,) agrees with the expected dependence
of @y on —w=tanh(#iw/2kT). The curves in all
cases exhibit a somewhat sharper transition at I,
than do the data, but the trend toward a broader
transition at the highest temperature is reproduced
by the calculation, where it is due to agz <1.

A closer comparison between the calculated and
experimental values of I, is made in Fig. 7, where a
few points for larger 7 and lower T have been in-
cluded. For convenience, we have chosen to plot
& ., the critical energy per cm? in each pulse. At the
highest temperatures, & .(7,T) tends toward a sim-
ple T? dependence, independent of 7, in agreement
with Eq. (46) for 0 ~T,~T 2 in the intermediate
regime. If the intermediate regime were retained to
the lowest temperatures, the data should follow the

t(,(orqlz:mz puise)

FIG. 6. Attenuation of an acoustic pulse after one
round trip in Suprasil W at various temperatures. The
lines are fits to the data using the following parameters:
=65 nsec, f=0.692 GHz, T,=7x10"% usecK*/T?
po=2.2 g/cm’, transverse velocity cr=>5.8X 10° cm/sec,
and sample length L=0.635 cm.



27 ACOUSTIC SATURATION IN A GLASS ATLOW ... 3705

1075 Ty —— T

T EXPT. CALC. g

65nsec = | 1

3 115 (¢} 2 1

I 270 L] 3 4
500 ] 4

T
!

£ (erg/cm2pulse)
15)
?
o0
'l

7

1077 -

A 1 [ S S | 1 1 n N
10 102 103
T (mK)

FIG. 7. Critical energy density &, vs temperature for
the data in Fig. 6 as well as for data obtained with longer
pulses and at lower temperatures. The solid-dashed lines
are calculated with rate equations using parameters given
in the text. The arrows at the lowest temperatures are ap-
proximate predictions for the coherent regime (Ref. 17).

dashed lines which vary as ag«tanh(#iw/2kT).
However, the most complete data (7=65 nsec)
remain roughly constant for 7'<200 mK. The
disagreement is consistent with the low-temperature
data occurring in the coherent regime. The depen-
dence on pulse length &, 7~ also agrees with pre-
dictions in the coherent regime'® as indicated by ar-
rows. The transition from the coherent to the inter-
mediate regimes occurs at T,(T)=7/2, indicated by
vertical lines in Fig. 7. In Fig. 8 we compare the
values for T, used in the fit with the bandwidth of
the pulse. As described in Sec. IIH, spectral dif-
fusion in a glass at these temperatures is a time-
dependent process and it is not clear which to use as
the effective T,—the phonon echo phase memory
time or the inverse linewidth after a time ~7. The
spectral diffusion width calculated by Black and
Halperin®® has been interpolated from their figures
and scaled up as in Ref. 11 to match bandwidth
measurements. We see that, in fact, the two choices
for the effective linewidth are similar for 0.05
K <T<0.5 K using a spectral-diffusion time equal
to 7, and not very different from the T, used in the
fit to the I, data.

As discussed in Sec. IIG, power broadening is
another time-dependent process that might be im-
portant for r=T; and T, <7. However, from the
calculated behavior of the population spectrum with
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FIG. 8. Temperature dependence of various contribu-
tions to the spectral halfwidth. The short-dashed lines are
the spectrum of excited states I' /27 for various times
after excitation, based on calculations of spectral diffusion
in Ref. 20. The halfwidth (27T,)~! due to the phase
memory time T,, as measured with phonon echoes, is
plotted with a dotted line. The solid line represents the
T,(T) which is used to fit the data in Figs. 6 and 7. Also
shown, with long-dashed lines, are the halfwidths (27)~!
of the experimental pulse spectra. (277T;)~" for y, =2 eV
is plotted for comparison as a dotted-dashed line.
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FIG. 9. Change in acoustic attenuation of a weak
second pulse caused by a strong first pulse. 7y, is the time
between pulses. Frequency f=0.692 GHz.
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FIG. 10. Recovery of the population w to its equilibri-
um value w, after saturation. The values are obtained
from the data in Fig. 9 by means of a rate-equation simu-
lation. The solid curves are fit to the data using y; =1.6
eV and the distribution function p’(r) described in the
text.

time,” we estimate for our worst-case parameters

(largest 7 and smallest T',) that the power-broadened
response is only 10—20% of the long-time value.
Thus we feel safe in ignoring the effects of power
broadening.

The data presented thus far are obtained with a
single pulse. If one uses instead a strong first pulse
followed after a time 7, by a weaker second pulse,
the apparent attenuation of the second pulse can be
used to monitor the recovery of the system from sa-
turation. In principle, this provides a direct mea-
surement of T;. The results of such a measurement
are shown in Fig. 9 for several temperatures. To ex-
tract a value of T,;, however, one must first
transform changes of attenuation into changes of
fractional population difference Aw. The transfor-
mation is accomplished by simulating the absorption
numerically for the actual intensity of the second
pulse as a function of an initial w. Inputs for w in
the numerical simulation range from wy, the value
in thermal equilibrium at the experimental tempera-
ture, to w=0, representing complete saturation. The
results of the transformation are plotted as
Aw =w —wy in Fig. 10. It is clear that the decay of
Aw at any temperature is not exponential. The slope

varies by nearly an order of magnitude from the be-
ginning to the end of the data at the lower tempera-
tures. The solid lines are the result of fitting a dis-
tribution p'(r) similar to Eq. (6) but with a factor of
r? instead of 7 in the denominator. The higher
power of r increases the number of slower, asym-
metric states relative to the faster, symmetric
states.”’ We calculate the decay using the expression

1
Aw =w, fo p'(r)r?exp[ —rr1y/T (min)]dr ,
(51)

where w, is the initial value of Aw and depends on
the strength of the first pulse. The factor of r? is
due to the fact that the excitation of a particular
state by each of the two pulses is proportional to r.
This cancels the 7 =% in p'(r) and keeps the integral
finite. Thus the cutoff at small r which is required
to keep the total number of states finite cannot be
determined from the present fit. The best fit to the
data corresponds to y; ~ 1.6 eV. The expression for
p'(r) is certainly not unique but yields a much better
fit 2than with, for example, ~! or r ~3/? in place of
r-

Several additional comments about saturation
recovery are appropriate. If the intensity of the sa-
turating first pulse is much greater than I, it does
not fall to a negligible intensity after one round trip
but continues to reflect back and forth, resaturating
the states until it spreads out by diffraction or is
consumed by nonresonant absorption in the sample,
reabsorption in the transducer, etc. This effect tends
to keep Aw at a higher value than without the multi-
ple passes. For this reason we have chosen saturat-
ing pulse intensities which are not much greater

0‘| 1 i n 1 1 I 1
10~ 1 10 102 10®

2T,/T OR T/T

FIG. 11. Location of the data in the ayz — T, /7 (solid
lines) and apz — 2T, /7 (dashed lines) planes.
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FIG. 12. Maximum delay of the peak of a pulse after
one round trip. Zero delay time occurs for either very
large or very small pulses, and the maximum delay occurs
for Ip~1.. The solid curve is based on rate equations
[compare Fig. 5(b)] and the solid straight line on self-
induced transparency (SIT).

than I.. In addition, we have delayed the fit at
higher temperatures by three round trips. A com-
peting effect is due to spectral diffusion which takes
energy from states at w=wg and spreads it over a
width Aw < T, which can be estimated from the
curves in Fig. 8. The effect is significant for =65
nsec only at the highest temperature, but even there
the spreading is in the long-time limit after 7, ~ T,
after which further changes are small compared to
the changes observed in Aw. Thus there is some un-
certainty in the interpretation of Aw for 7, < T},
and the fits to the data in Fig. 10 are optimized pri-
marily at later times.

With the above estimates of T; and T, it is in-
teresting to locate our data in the apz —T,/7 or
agz —2T, /7 planes (Fig. 11). The data presented
above all lie along the lines for the four pulse
widths. The boundary between the intermediate and
coherent regimes (7~2T,) occurs at relatively high
temperature (T ~200 mK for 7=65 nsec). It is
mildly surprising, therefore, that the rate-equation
approach works as well as it does, down to T ~50
mK in Fig. 6, for example. The reason is probably
that the transition is very gradual. To examine this
transition more closely, we plot the maximum pulse
delay as a function of the number of absorption
lengths in Fig. 12. For data lying well within the in-
termediate regime (high temperatures, long pulses),
there is agreement with the predictions of the rate
equations. For agz>1 which occurs at lower tem-

peratures, there is a clear deviation to larger delay,
even exceeding 7. This is consistent with a smooth
transition to the self-induced-transparency predic-
tion'® for large ayz in the coherent regime, i.e., a de-
creased pulse velocity with a delay proportional to
agz. Such behavior occurs when a 27 pulse travels
with essentially no loss as the front half of the pulse
inverts the two-level systems and the back half
stimulates them to return their energy to the pulse,
producing a reduced group velocity. The charac-
teristic distance for this process is one absorption
length ag !, which explains qualitatively why &,(T)
remains constant in the coherent regime. The path
length z in Eq. (47) for I, might be replaced by aj !
upon entering the coherent region, thus eliminating
the ayz dependence which is responsible for the tem-
perature dependence of the rate-equation prediction
in Fig. 7.

V. CONCLUSION

The rate equations which describe pulse propaga-
tion in the intermediate and cw regimes for a homo-
geneously broadened line have been used to map out
the behavior of the critical intensity and pulse
reshaping. The analysis may be applied to any
saturable absorber with two-level systems satisfying
these conditions.

The present acoustic data occupy the intermediate
and coherent regimes at high and low temperatures,
respectively. We have used expressions for the
homogeneous case which have been modified to
represent the spectrum of excited states in an inho-
mogeneously broadened absorber. With this modifi-
cation, we obtain a consistent description of the tem-
perature and pulse-length dependence of I, in the in-
termediate and, approximately, in the coherent re-
gimes. The coupling constant determined from this
fit is y,(I.)=2.5 eV. The shape of the saturation
curves, on the other hand, is not so well described by
the rate equations, being in all cases somewhat
broader than the calculated curves. This is perhaps
due to the neglect of the { dependence which ap-
pears in Egs. (22), (25), and (26). It is more likely
due to a distribution of matrix elements p(r), be-
cause this broadening is also observed in the low-
temperature, coherent regime.

We have used the numerical simulation to
transform saturation recovery data from changes in
attenuation to changes in population. It is clear
from the latter that there is a distribution of states
with decay times ranging over at least a factor of 10,
as expected on a two-level tunneling model. A
reasonable description of the shape of the decay
curves is obtained with a distribution function
which emphasizes the slower, asymmetric states.
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From this fit we determine y; (sat. rec.)=~ 1.6 eV.

A reanalysis of the phonon echo data using a
similar distribution of coupling strengths leads to
v (pe)=~2.0 eV. Thus our best estimate is an aver-
age of the three results, 7, =2.0 eV. We conclude
tuat we are observing the one-phonon decay process
in the saturation recovery data. Our pulse lengths
are short enough and the temperatures are low
enough that neither spectral diffusion nor power
broadening is a dominant effect, as they were in pre-

vious measurements®® at higher temperatures with
longer pulses.

We have included data at lower temperatures to
demonstrate that there is a smooth transition be-
tween the intermediate and coherent regimes. This
is seen in the temperature dependence of I, as well
as the pulse decay. At the higher values of ayz, a
gradual trend is observed toward self-induced trans-
parency, the characteristic mode of propagation in
the coherent regime.
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