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The Hamiltonian of the phonon-assisted tunneling problem in crystals contains three

fundamental constituents (lattice and tunneling parts and the coupling between them), for
which different hierarchical assumptions are possible. In previous theoretical work (e.g., on

paraelectric centers) it has always been assumed that the dominating phonon frequency coq

is much larger than the bare tunneling parameter 5/A'. Although this seems reasonable,

the predicted transition rate is by far too small. In this paper we have discussed the com-

peting influence of low-frequency phonons, for which Acoq&h. Here an alternative

mechanism takes over, in which the tunneling is effectively transferred to the phonon sys-

tem. This is discussed. Moreover, a new optimization procedure is given for the mul-

timode problem, which is not confined to the specific mechanism considered here. In our

approach the artifice of a static external field is not required. The calculated temperature

behavior of the relaxation time turns out to be qualitatively similar to that of the conven-

tional mechanism, but the relevant physical parameters entering the results are quite dif-

ferent. A future unified treatment of high- and low-frequency phonons proves urgent.

I. INTRODUCTION

Phonon-assisted tunneling is of lasting interest in
the investigation of paraelectric and paraelastic de-

fects in solids, and has become of growing interest
recently in the context of glass investigation. For a
good survey of earlier work we refer to the paper of
Narayanamurti and Pohl. ' A more recent review is

given in the article of Bridges.
One of the best-known examples for tunneling

centers is OH in KC1. Here the OH ion replaces
Cl ' and aligns along the (100) directions of the
host lattice. Thus the proton has six equivalent po-
sitions and can move from one to the other by
phonon-assisted tunneling. In an external static
(electric or elastic) field one of the positions may be
occupied preferentially. If one switches off the
field, the system will relax to its equilibrium state
where all sites are equally occupied. This relaxation
process, which is mainly due to 90' transitions, has
been experimentally investigated ' by Kapphan and
t.uty. They have measured the temperature depen-

-dance of the relaxation time ~ and have found a
T ' law for low temperatures corresponding to
one-phonon processes and a T law for higher
temperatures, when multiphonon processes become
important.

In the theoretical description of tunneling centers

the same specific mechanism has always been con-
sidered, which is explained in a very transparent
way in a paper of Dick. It is based on the funda-
mental assumptions that the dominating phonon en-

ergy ficod is very large with respect to the tunneling
splitting 4, and that external static fields establish a
strong energy difference E'p between the equilibrium
positions of the tunneling particle (roy&h). These
assumptions effectively lead to a phonon-induced
screening of the tunneling parameter 6 by a kind of
Debye-Wailer factor. However, in these approaches
the Debye-Wailer exponent appears to be by far too
large.

On the other. hand, it has been argued by Sander
and Shore that the assumption AcoD »5 seems
reasonable on the grounds that 5 cannot be larger
than fP/2I, which describes the splitting between
rotational energy levels of the dipole in free space
(-27 K for OH ). Thus b should be much smaller
than the Debye frequency coD. This argument may
well be true, but one should note also that the low-
frequency lattice modes may have an enhanced in-
fluence by means of their frequency being close to
h. In the overlap region %co~ -6 there may even be
something like Fano behavior, but we will not dis-
cuss this here.

The motivation for our work is the question of
whether the influence of low-frequency phonons
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II. MODEL HAMILTONIAN

A model Hamiltonian for KC1:OH has been de-

rived in a recent paper of Kuhn and %'agner. Con-
sidering a fixed 90 transition, we can confine our-

selves to a two-state defect system; then the Hamil-
tonian reads

H =HL +HD+HDI,

~~=-X[~-kk~ -kk+~'(k ")QkkQ--kk]
k, A,

and

t
Hg) = (Q iQp+020i ),

2

can yield an effective diminution of the exceedingly
large Debye-%aller exponent. Therefore, we con-
sider a tunneling mechanism, for which the
hierarchical assumptions are opposite to the con-
ventional ones. Our principal interest concerns the
question of what kind of relaxation behavior one
obtains if one assumes the dominating phonon fre-

quency md to be smaller than 6/A' and the phonon-
tunneling interaction to be strong. However, we do
not claim that this relaxation path is the dominat-

ing one. Rather, we assume that the conventional
and the alternative tunneling mechanisms compete
with each other. Before discussing this competition
it seems worthwhile to investigate the alternative
mechanism alone. In our approach, the theoretical
description does not require the existence of a static
field. In passing we mention that in a recent com-
munication we have shown how the artifice of a
static field can be avoided also in the computation
of the conventional mechanism. In Section II we

present our model Hamiltonian. In Sec. III we
describe a method of handling the fundamental
multiphonon-mode problem by means of an optimi-
zation procedure. Performing a unitary exponential
transformation in Sec. IV, we can profit from our
hierarchical assumptions in a very effective way.
The calculation of the relaxation behavior is given
in Sec. V. %e employ the Kubo formalism. The
respective Green functions are calculated from their
equations of motion in the transformed space. Up
to Sec. V the tunneling system is treated in a two-
state picture, which seems adequate to a fixed 90'
transition. In Sec. VI the procedure is generalized
to a six-state tunneling description.

HDI ——g QK~(k, A)Q. kka;a; .
k, A, i=1

(lc)

The first term HL is the lattice Hamiltonian, HD
describes the defect (tunneling} system, and H~L is
the coupling between the phonon and the tunneling

systems. The coupling constants I(;{k,i.) given in
the article of Kuhn and Wagner include a nonadia-

batic description of the tunneling proton. For the
following calculations we need only the symmetry
relations

K~( —k, k, )=[K~(k,A, )] (i =1,2) .

Introducing spin operators

0' = (a )a2+apa) ),

a =—.(a,aq —apa(),1

2l

cr, = —,(a&a& —a2a2),

which satisfy the usual commutation-rules, we can
write the Hamiltonian in the form

H =HL +ho„+qog

+ QQ « —,[K,(k, k, )+K,(k„A,)],

III. CANONICAL TRANSFORMATION
OF THE PHONON COORDINATES

%e now go from our original phonon coordinates

[Qk&,Pkz] to new coordinates [Qk&,Pkz} in

such a way that q represents a single "configura-
tional" mode. This can be achieved by the linear
unitary transformation

Qkk X kA, ;k'A, 'Qk'A, ' '
k ', A,

'

Pkk gL k„k,&,P—— .
k *,A,

'

Introducing the total coupling E by

q = QQ-kk[K)(k, A) —K2(k, A)] .
k, A,

q is a special linear combination of the phonon
coordinates Q k &, by which the lattice couples to the

defect system. The fundamental idea is, to interpret

q as a kind of new representative coordinate. This
will be discussed in more detail in the following sec-
tion.
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K = g ~Ki(k, i, )—K2(k, l, )
~

we can define

Ki(k ', }i,') —K2(k ', A, ')
01;k 'A, ' g

Then we have that q =Kgoi. Thus Qoi is the con-
figurational lattice coordinate. Taken as a legiti-
mate phonon coordinate, it is the only one which

couples to the tunneling system. It should be em-

phasized that by Eq. (5) only Qoi and Poi have been

determined. For the remaining new coordinates
multiple choices are still possible; however, there is
a best way to choose them. We note that the new

coordinates are no longer normal coordinates of
the lattice. Thus HL, expressed in terms of
[Qk&,PkkI, is not diagonal. This disadvantage

can be minimized by a suitable choice of the new

coordinates [Q-k&,P-kz) or of the transformation

coefficients L -k&. k,&„respectively. We now

describe an optimization procedure to find the most
suitable transformation matrix L = (L k &. k,&,}.

Since L is assumed to be unitary (L '=L~), the
inversion of Eq. (4) is given by

g kk X L k 'A, '; keg k 'A,"
k ', A,

'

t
kA, X k'A, ';kA. k'k' '

k ', A,
'

(6}

Then the new phonon coordinates [Q k&,P k& I

satisfy the same commutation relations as

(Q kA, 'Q k 'A, ']— ( kA, ' k 9.']—

[Q-kk, Pk.i, ] =i' -k-k, 5&i

Using Eqs. (6} and {7) we can express the lattice
Hamiltonian Hl in terms of [Q k z,P k k ):

In addition to unitarity, we want the transformation
coefficients to satisfy the condition

(7)

HL =YPoi+ i g PkkP 7kk+ 2eogoi+W
k, A,+(0, 1)

I

+Qoi g Q kk i g co (k ', A, ')(Loi. k,kL kk. k,k. +L kk. k,kLPi. k,k),
k, A,+(0, 1) k ', A,

'

where

I 2~=- X X g-k Q--x-XL k', k (»}}L
k, A,

' k ",A,
" k, A,

+(0,1)

and where ~00 is the frequency which is attached to the configuration mode Qoi ..

~
Ki(k, A, )—K2(k, A, }

~

F00 —— c0 (k, }i,)
k, A,

K

(10)

The potential energy in Eq. (10) has three different constituents, namely the configurational mode part
& —2 2
&

67 Og Oi the interaction between Qoi and the remaining phonon coordinates Q k k, and the part which is

denoted by W. We will determine the transformation coefficients L k&. k,&, by minimizing this last term 8'.
The notation becomes more transparent, if we introduce the vectors 1-kz and the matrices D,E,P in the fol-

lowing way:

1 k k, [ k k„ k 'k' j k 'k'

[especially I oi
——[Ki(k ', A, ') —K2(k ', }(.')/Kj k.&],

D= {5k k,5k' c0 (k,A)) kg k .k,

(diagonal matrix),

k k ' ~~') k X, k 'A, '

(unity matrix), and

(12)

(14)



27 ALTERNATIVE MECHANISM IN PHONON-ASSISTED. . . 3649

[Ki(k,A) —K~(k, A)][K,(k', A, ') —K2(k ', A, ')]
( ( P& }k k( P& }k 'A, ') k k„k 'A, '

E kA, , k 'A, '

In this notation the unitarity condition for L reads

kkl k'A, ') 5k k'5.~

and 8' can be written in the form

(15)

(16)

w=X X Q-„Q-, -'-& -. 'l-l
k ', A.

' k ",A,
"

Q(0, 1)

Minimizing W, we will preferentially try to make the coefficients of the diagonal terms Q k,k, Q -k, &, as small

as possible under the conditions (16). That leads to the restricted variational problem

(18)

where

(51-„
l 1,)=0, (1-„

l
1,)=0.

By means of the projection matrix P, we can go from 1 k & to the vector x:

1 kk=x —lp&( lp)
l
x) =(E P)x— (20)

(22)

In a component representation, Eq. (22} reads

Then Eq. (18), expressed in terms of x, reads

5(x
l
(E P)(D —p'"—' 'E)(E —P)

l
x) =0 (21)

where we have used the abbreviation p,
' "'"'=( 1 k & l

D
l

1 k&) /( 1 k k l
1 k&). Contrary to 1 k k, x allows a

free variation, so we finally end up with the eigenvalue problem

(E—P)D1 k~
——P'"' '1-

( k, A, )

k ",A.
"

[K)(k ', A, '}—K2(k ', A, ')][K) (k ",A,")—Kt(k ",A,")]
E

rp (k",A,")(1kk)-k„k„

for (k, A, )Q(0, 1) . (23)

Equation (23) represents a nondiagonal 3N-dimensional problem, N being the total particle number of the
crystal. So an exact solution of this problem seems tobe very difficult. However, from the analytical form of
Eq. (23) we can guess an approximate solution. If, for instance, we set p' " ' '=co ( k, A, ), Eq. (23) can be satis-

fied up to terms of order O(1/N) by

[K)(k,A}—K2(k, i, )][K,(k ', A.') —Kt(k ', A, '}]
kk)k 'I, ' kA, 'k 'A, ' k k ' E

for (k, A. ), k ', A, ')Q(0, 1) . (24)

To normalize our vectors 1 k & [viz. Eq. (16)],we define

E&(k A, )—K2(k A, )
( 1 k g)01=L k $.01

=
E (25)



By Eqs. (5), {24), and (25) the transformation coefficients L z &. z,&, are completely determined. Although we

have confined ourselves to an approximative solution of Eq. (23), one can easily prove that the resulting

transformation matrix L is exactly unitary and Hermitian (L ' =L t =L ) and satisfies the conditions (7).

We can now express our total Hamiltonian H in terms of IP-„&,g „zJ. Inserting (6} in Eq. (3) and using

definitions (5), (24), and (25), one obtains after some calculation:

H =H1 +H2+H3+H4+H5, (26)

Hi ———,(Piii+ca()giii)+her„+I{'Qoio„H2 ——g gkq —,[Ei(k,A)+Ei(k, k)],
k~, k,

Ki(k, A, )—E2(k, ){,)
H, = —,

' g [F-„,F -„,+ —'(k, X)g-„,g -„,], H, =g„ g g-„, [ '(k, ~)— ,'],
k~, A, k~, A,

H, = g g m(k ', A, ', k ",A,")Q-„,q, gg. ,q„.
k '~, A,

' k "~,A,
"

( k ', A,')+( —k ",A,")

Here we have used the following abbreviations:

iEi(k, A, ) —Eg(k, A, ) i

cy (k, A, )=co (k', )i,)+ 2
[ci) 0—2' (k, k, }]=co (k, iL)+0

l [Ki(k', k') —Ki(k', A,')][Ei{k",A.")—E2(k",A,")]
m(k', k', k",A,")=— [coo—co (k', A, ') —c0 (k",A,")] .

2 E
(28)

It should be emphasized that Eq. (26) is still exact.
The first term Hi in (26) describes a two-state tun-

neling system coupled to a single representative
phonon mode. H3 is the Hamiltonian of the
remaining phonons; their coupling to the represen-
tative mode is given by H4. The nondiagonal ex-
pression H5 describes the different mode coupling
within the system of the remaining phonons. In the
following considerations, we will neglect H5. The
mathematical reason is that we have chosen the new

phonon coordinates in an optimal way; the physical
argument is that we are not primarily interested in
damping effects within the "phonon bath. '*

H2 can be eliminated by a linear shift of the pho-
non coordinates I P -„i,g -„i ] -„~x.

1/2

co(k, l, }
2A'

' 1/2

' 1/2

2%co(k, i, )

(30)

H=Hi+ g Aco{k,A. )(b-„ib-„i+—, )

k~, A,

Simply writing Q and P instead of Qoi, and Poi, we

finally obtain our Hamiltonian in the form

+Kg g E(k, lt, )(bgx+b -„i ),
k q&, A,

We now introduce creation and annihilation opera-
tors [bi a, bk&J k~i, :
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K~(k, A, )—K2(k, A, )
F(k, A, )=

E 2'( k, i, )

' 1/2
U(Q)

X[ro (k, A, ) —ro p] for k+0,

and

{32)

H) ——, (P +—copQ )+ho„+KQo, .

IV. UNITARY EXPONENTIAL
TRANSFORMATION

H1 is the Hamiltonian of a problem, which has
been discussed by one of us' for different hierar-
chies of the parameters E, co0, and h. In the case of
strong phonon-tunneling interactions and of low
phonon frequency Gp, H1 can be approximately di-
agonalized with respect to the tunneling system by

iy(g)a
the exponential transformation U =e

FIG. 1. Potential sheets for the "effective lattice
mode" in the transformed space.

which only the sheet belonging to cr, = —, is
relevant. Wagner has shown' that the eigenstates
of the problem are in a good approximation those of
a double oscillator. Thus the lowest two eigenfunc-
tions are

""[&«]=
[~2 (KQ 2]i/»

—KQ

The transformed operator 81 then reads

UtH, U= —o [6 +(KQ) ]'/ + [P +co Q ]—

(~)
g [+2+(KQ)2]2

K2Q
+fiddCo. y i A

[b,2+(KQ)']'

(33)

y, ( )= 1 1

(2) l/2
( l C)1/2

X[Xo(Q —Qo)+Xo(Q+Qo)l (36)

(even),

yp( )= l l

(2)'" (l —C)'"

X [Xp(Q —Qp) —Xp(Q +Qp)]

(odd), where

+ 1

6 +(KQ)
(34)

C=exp[ —, (K2/fig p)], —

Qo
——K/2' o,

(37a)

(37b)

The last term in Eq. (34) is nondiagonal with
respect to the tunneling system. We will further
make the hierarchical assumption

1/2K"
600

(35)

Then the nondiagonal term is small of order
O(h/K(A/ro p)'/ ) and can be neglected. The
remaining part of U~H1U in Eq. (34) is attached to
two pure oscillatory problems (belonging to
a, =+—,), which both are extremely anharmonic.
The respective potential sheets are shown in Fig. 1.

We will consider the low-temperature case, for

ACOp

( )1/2

1/2E"
C00

o

1 E
exp

4 eo'0
(38)

and where Xp(Q) is the oscillatory ground-state
wave function.

The energy splitting 5 =E' ' —E'" in first order
is given as

1/2

5= K C
(~) C00
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ij =1,2

=--,'(~ »&2~+ I2&&1 i)
The two-state description [ ~

1), I 2) I is isomorphic
to a spin- —, formulation, introducing the operators

S„=-,'{
~
»&2~+ ~2&&1~ ),

(41)

S„=—.( i 1)(2
i

—
(
2)(l

i ), {42)

We introduce the abbreviations
~
1)=(p, (Q)

~
at),

~
2) =(po(Q) )

a t ). [ ~
1), ( 2) J denote the lowest

eigenstates of UtH1U; they can be taken as an
orthonormal base in the transformed space (at least
for Iow temperatures). The projection of U H

~
U on

this base yields

Jl
ij=1,2

= ——,5{ ( l)(1~ —[2)(2[) . (39)

In a similar way, U QU and U o, U can be project-
edonto [ ~

1), ~2)]:

U QU= g )i)(i [
UtQU

[j)(j [

i,j =1,2

, (~1&&2~ + ~2&&1~), (40)2' 0

I.et us now return to the end of Sec. III, where the
total Hamiltonian H of our coupled tunneling-
phonon problem is given in Eq. {31). If we apply
the exponential unitary transformation U [viz. , Eqs.
(33)] to H (having in mind that the operators

[b gg, b gx I p~ g remain unchanged) we obtain

H'=U HU= —5$, + g flu(k, A, )(b-„xb-„~+—, )

71~,A.

+ 2$„+ F(k,A)(b-kq +b tkx) .
No

(4S)

V. REI.AXATION BEHAVIOR

The relaxation behavior of the system can be in-
vestigated by the following device. A very small
static external field is applied adiabatically to the
crystal, causing a nonvanishing "dipole" moment
(o, ) for t =0. If now the field is switched off, the
time evolution of (o, )(t) reveals how the system
reaches its equilibrium state (o, )r ——0. From the
Kubo forinalism we get

&o, &(t)=—„(p E)I
y, e" ([o,(t),tt, (t )] &T"t ~-

S„,S~,S, satisfy the well-known relations ([$„,$~)
cyclic):

[s„,sy ] =i',
(43)

Then the transformed operators U H~ U, U QU,
U cr, Uread

UtH, U= —5S„U QU= 2S„,
No

(44)

x ([A (t),B(t')] )„. (47)

Their Fourier transform is denoted by ((A;8))(E).
Then Eq. (46) can be written in the form

(46)
8 being the step function and p.E being the energy
of the OH dipole p in the electric field E.

%'e now define the advanced and retarded Zu-
barev" Green functions for any operators A and 8
as

((3 (t);8(t') )),~„=+i8[+(t —t')]

+~ ((o„gg))(~+is) ((o„o,)—)(co ie)—
tr, (t)= —p.E 8 dt's,

00 l6) +6

whence the main problem left is the calculation
of the Fourier-transformed Green function
((o„o,))(E). By means of the identities

«o .o » (E)=« U'o U U'o U)) '(E)

we may transfer the calculation to the transformed
Hamiltonian H'= U HU of Eq. {4S) and the
relevant Green function is then ((S„;S„))+(E)
From its equations of motion (with respect to H')
we get

=((s s &) '(E), (49)
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((S,;S„)) (E)= —tanh
2m 2 2kqT

x 2, (50)
E 5 /f—r" A(E—)

where

g2
A(E)=2 E g ~F(k) )

~
(n&&+ —, )~0 k~A,

1

E —co (k, A, )

(51)

n-„x ——[exp[fico(k, A, )/ks T]—1) (52)

Replacing the sum by an integral with phonon state
density p(co) we get

+ ceA(E)=2, E'f p(co) iF i'(co)
0

n(co)+ —,

X 2 2
dco

E —N

(53)

where an isotropic Debye approximation has been
used. Inserting Eqs. (50) and (53) in expression (48)
we get the tunneling behavior of the system:

(cr, )(t}= tanh —cos t e-p.E 5 1 5
5 2k' T 2

ksT

FIG. 2. Temperature dependence of the damping
G(T).

native approach. It should be remarked that our re-

sults are no longer valid for high temperatures,
since in Sec. IV we have taken into account only the
two lowest eigenstates of the transformed Hamil-

tonian U H&U.
The most striking fact is that the relaxation

behavior of the system now does not depend on the

tunneling parameter 6 at all; the tunneling has been

transferred from the original tunneling particle to
an effective lattice mode. Naturally this is due to
the fact that 6 has been taken to be much larger
than Aco0. Physically our relaxation mechanism is

such that the low-frequency lattice motion displays
the tunneling behavior, whereas the original tunnel-

ing particle itself, having a strong coupling to the

phonons, is carried along adiabatically with the lat-

tice motion.

(t & 0), (54)

G(T}=— (p
~

F
~

) —coth== K'' 5 5
4 2k' T

(55}

The periodic tunneling term cos[(5/A')tj is damped
by an exponential factor exp( —Gt). The tunneling
frequency 5/R does not depend on temperature.
(This is probably due to the fact that we have han-
dled H~ as two-state system in Sec. IV.) Much
more interesting is the damping G(T), which must
be understood as the inverse of the relaxation time.
G(T) increases rapidly with temperature as can be
seen in Fig. 2.

For k&T &5/2 we have a linear increase of G
with T. So the T' dependence of the damping as
measured ' by Kapphan and Luty and verified in
the conventional theory also results from our alter-

VI. SIX-STATE TUNNELING
DESCRIPTION

Considering a fixed 90' transition of the proton,
we have so far treated the defect system as a two-

state system. A two-state description has been

given also in previous theoretical work. It is
possible, however, to generalize the theoretical
description of our alternative relaxation mechanism

to a six-state tunneling system, if 180' transitions
are neglected. Of course, the calculations are much
more complicated and we will not discuss these dif-
ficulties here in detail.

Instead of a single representative phonon coordi-
nate Q (see Sec. III) we now have three degenerate
representative modes Q&, Qz, Q3. Let us recall our
procedure in Sec. IV, where by means of the ex-

ponential transformation U we have transferred a
phonon-assisted tunneling problem to anharmonic
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pure phonon problems. In the six-state tunneling
case, a generalization of U yields six anharmonic
phonon problems, from which in the low-

temperature case only the sheet with the lowest en-

ergy is relevant. The corresponding adiabatic po-
tential is that of a double oscillator in the Q&, Q2, Q3
space and has, aside from its two principal minima,
four other minima of higher energy. The energy
splitting 5i of the two lowest eigenstates is then

64fgg )
5) = exp

77

13 E
&6 %co )

K = g[ReKi(k, k, )]
k, g

(57)

co ) —— -g[ReK)(k, k.)] a) (k, A, ) . (58)

As to the relaxation behavior in the six-state-defect
case, we have an exponentially damped oscillation
with tunneling frequency 5~/R and damping G~(T):

2g 2

G)(T)=— (p+) )
4 fico i

5i
xcoth

8
(59)

where

[ReK)(k, A, )]
E((k,A, )= [co (k,A) —co, ]2

EC

(60)

VII. SUMMARY

In this paper we have discussed an alternative
mechanism for the relaxation of tunneling centers
in crystals. This mechanism is based on the as-

The comparison between the results of Secs. V and
VI displays no significant qualitative differences.
So, in principle, the temperature dependence of the
damping factor drawn in Fig. 2 is also valid for the
six-state description. There are obviously quantita-
tive differences. We especially stress the fact that
in Eqs. (57), (58), and (60) only the real parts of the
original coupling constants EC;( k, A, ) appear.

sumptions of a strong defect-lattice interaction and
the dominance of low-frequency phonons. We have
calculated the relaxation behavior of the system and
we have demonstrated that the damping increases
with the temperature. Within a certain temperature
region the increase is proportional to T. %'e em-

phasize that the conventional approach (we espe-
cially refer to the paper of Dick ) also yields this T'
law, which has been experimentally measured ' by
Kapphan and t.uty. Thus it is not possible to de-
cide from the experimental results which of the re-
laxation paths is the dominating one. Probably
both mechanisms compete with each other.

The main difference between our alternative ap-
proach and the conventional theory consists in the

fact that the results depend on other parameters. In
particular, the tunneling splitting 5, the measure-

ment of which is very difficult and controversial,
has no influence on the relaxation behavior in the
case of our mechanism. The question, how large
the reducing Debye-%aller factor for b, should be,

has led to many discussions during the past. As far
as the alternative mechanism is concerned, this

question does not arise for 5 itself, since the tunnel-

ing is conveyed to an effective phonon coordinate.
In a future, more realistic calculation both mechan-

isms must be allowed to interplay with each other.
Depending on the weight of our alternative mechan-

ism in this interplay, the Debye-%'aller reduction of
6 will be altered.

In our paper we have handled the lattice as an
ideal KC1 crystal. Such a treatment is also given in

the previous theoretical work. However, the pertur-

bation of the crystal around the defect modifies the
lattice dynamics considerably. Probably in our al-

ternative approach the effects of the disturbed lat-

tice dynamics are more pronounced than in the con-
ventional theory, since the tunneling is completely
transferred to the phonon system. W'e leave this
question to a future investigation.

From the fact that 6 does not enter the results in

the case of the alternative mechanism, one cannot
conclude that we consequently have no isotope ef-
fect. The change of 6, if, e.g., the tunneling proton
is replaced by D+, is only one kind of isotope ef-

fect. In a recent paper, Kuhn and Wagner have
shown that there is a second kind of isotope effect
due to the nonadiabatic treatment of the tunneling
particle. Such a treatment is also possible for the
alternative mechanism bg a suitable choice of the
coupling constants K;(k, i, ). Finally the defect-
induced perturbation of the lattice modes also leads
to an isotope effect, which can be calculated only on
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the basis of a disturbed-lattice theory.
We hope the new relaxation path that we have

presented here contributes to a better description of
tunneling centers in crystals. A realistic future
theory should include a nonadiabatic treatment of
the tunneling particle and the disturbed-lattice
dynamics as well as the competition between the
conventional and the alternative tunneling mechan-
isms. Moreover, we think that our mechanism is

not confined to defects in crystals only, but may
also be of importance in other physical areas, such
as superionic conductors and amorphous materials.
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