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Mean-field theory of nuclear-spin relaxation in the spin-glass phase
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Based on Edwards-Anderson mean-field theory a calculation of nuclear-spin relaxation in

the spin-glass phase is presented. It is shown that most of the features of the available data
can be understood within this mean-field theory. In particular, a nonexponential form of
.nuclear magnetization recovery is obtained, in agreement with experiment. Further, it is

shown that the impurity spin-correlation time v, changes rapidly from &, »k&T~ to
fi~, &&k&Tg around Tg (Tg is the spin-glass transition temperature), which agrees, qualita-

tively, with the result obtained from recent p+-meson depolarization experiments.

Nuclear-spin relaxation of the host metal in dilute
magnetic alloys provides useful information about
the impurity-spin dynamics. In particular, it can be
useful in the study of spin-glasses, ' where
impurity-spin dynamics assumes a more important
role. In a recent work we presented a theory of
high-temperature nuclear-spin relaxation in these al-
loys. The purpose of this paper is to present calcu-
lations for low temperatures, i.e., for temperatures T
less than the spin-freezing temperature Ts. The
theory is restricted to the case of zero applied mag-
netic field.

The basic assumptions of the present calculations
are the same as those of Ref. 3. However, instead of
using a random exchange model and a Langevin
equation, we use a simple time-dependent form of
Edwards-Anderson (EA} mean-field theory ' to
describe the impurity-impurity interaction part of
the problem. We assume an impurity spin S of one-
half and negligible applied magnetic field. The ef-
fect of the finite field and S&—, will be discussed

qualitatively. At the end of the paper we will also
discuss some of the recent developments in the
theory of spin-glasses and their relevance to the cal-
culation described here.

The data that will be discussed most extensively
here is the data taken on dilute Cu-Mn spin-glasses
by Bloyet et al. , as it appears to be the most com-
plete. For quick reference their data for the two
lowest-field strengths have been reproduced in Fig.
1. Unfortunately, in these experiments substantial
fields are present. Very recently, Chen and Slichter
have reported some zero-field measurements on a
different spin-glass system. As we will discuss later,
the zero-field limit of the results of Bloyet et al.
does not appear inconsistent with the findings of
Chen and Slichter. We will show that most
features of the available data for T & Tg can be un-

derstood within the mean-field theory. In particu-
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FIG. 1. Experimental results of Ref. 6. ~„is a mean-
nuclear-spin relaxation time. Solid circles represent the
data at H -275 G (310 kHz), while the open circles stand
for the data at H-1330 G(1.5 MHz). In both cases the
impurity concentration X=43p 10 and Tg= 86 mK.

lar, a nonexponential form of nuclear magnetization
recovery, which is practically the same as that seen

by Bloyet et al. , is obtained. Further, the tempera-
ture dependence of the impurity-spin self-correlation
time ~, obtained by comparing the theory with the
experiment is very close to the temperature depen-
dence of r, obtained by Uemura et al. from p+-
meson depolarization experiments.

Turning to our calculations of nuclear-spin relax-
ation, we assume that the dominant impurity con-
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tribution to the host-nuclear-spin relaxation is given
by the Bionett, de Gennes, and Silhouette' (BGS)
rate. This can be written as

Here fm„ is the nuclear Zeeman splitting and X(co )

is the impurity transverse dynamic susceptibility. C,
for the purpose of our discussion, can be treated as a
constant. Now the problem of calculating T] '

reduces to the calculation of impurity transverse
susceptibility in the spin-glass phase. To do this we
employ a time-dependent form of EA mean field.
This generalization of EA mean-field theory has
been used before in different contexts. " The effec-
tive mean-field Hamiltonian for an impurity spin S
can be written as

the total instantaneous field, rather than to the static
one alone, is required in order to obtain the correct
static limit of the dynamic transverse susceptibility
X(co). Here r, is the impurity relaxation rate.
There are two possible sources of this relaxation
process. The most obvious one is the Korringa re-
laxation of the impurity spin due to its interaction
(Kondo) with the conduction electrons. The other
could result from the part of the impurity-impurity
interaction which has been left out of the mean-field
theory. We know of no calculation of v,

' in a
spin-glass; therefore, we will treat it as a parameter
of the theory to be determined by the experiments.

For the actual calculation of X(co), we take the z
axis along the static field hp and

h,„,(t)=h,+„,[h+=
~

h+
~

(x+iy")/v 2]

H = —gps hp(r ).S, (2)

where hp(r)=v'q/3(J/ps)r is the effective ran-
dom magnetic field seen by a given impurity due to
all others. r is a random vector with an associated
probability (2m )

r exp( —r /2). J is the width of
the Gaussian distribution assumed for the couplings
J,J between the impurities. q is the EA order param-
eter which for S=—, satisfies the following equa-
tion

—,—q =—(2n. )
r T'v'5/q

X f d rre " tanh, V'q/5r, (3)
2

where T'=T/Tg is the reduced temperature and Tg
is the transition temperature defined by
ks Ts ——v'15/12J.

In the usual study of the transverse response of a
single spin one applies a large static field and then
perturbs this spin by impressing on it a small rotat-
ing rf field h,„,(t) perpendicular to the direction of
the external static field. In the model we are consid-
ering there is no external static field. The only static
field seen by a given spin S is the field hp( r ) due to
all other impurities. Thus in our calculations ho re-
places the external static field. In the presence of a
small rotating rf field h,„,(t), the equation of mo-
tion for the ith component S; of a spin S becomes'

ds;i' = [S;,Hp]
dt

where go is the static susceptibility calculated with

Hp only. h; „,(t) is the ith component of the net in-

stantaneous field, i.e., h„,(t) =hp+ h,„,(t). As
shown by Spencer and Orbach' this relaxation to

with
~

h+
~

&&
~

hp ~. With the use of Eq. (4) and
following the same steps as in Ref. 11 to calculate
(s+(cp }) and the retarded spin-flip propagator up to
first order in h+, it is straightforward to obtain the
transverse dynamic susceptibility X(co, r ) as'

rop+ir, ' (s, )
X(~p,r)=(gps)', , (5)

6)0—N+l7; ~0
where (s, ), as calculated with Hp only, is

(s, ) =
2 tanh(pirttpp/2) . (6)

Here fico p Vq/3( J/A)r ——and P =1/ks T. Now the
use of the imaginary part of Eqs. (5) and (6) in Eq.
(1) gives Ti ' as

tanh(Pficop/2)

irtpip/2
(7)

Equation (8), together with Eq. (7), then describes
the nuclear-spin relaxation in a spin-glass. Howev-
er, Eq. (7} can further be simplified by noting that

To proceed further, we remark that a fixed value
of r corresponds to a fixed configuration of the
bonds JJ. To make contact with experiments, one
has to average over different configurations. This
means one has to calculate an average over the ran-
dom vector r. For fixed r the nuclear magnetiza-
tion recovery M(t) is proportional to
exp[ t/T&(r)]. The ex—perimental nuclear magneti-
zation recovery shape is thus obtained by averaging
this quantity to obtain

M(t)=Mpv'2/nfdr r e ." r e ' . (8)
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fico„/ficop-p„H/k&T~, where )M„ is the nuclear
magneton and H is the externally applied magnetic
field. Even for the largest field strengths for the ex-
periments discussed in this paper %co„/%coo-10
Thus %co„ in the denominator of Eq. (7) can be
neglected and Eq. (7) becomes

&, '/k~Tg
Ti '(r)=B

qr + „(fir—, 'Iks Tg )

tanh[(2/T') Vq /5r ]
(2/T')v q/5r

(9)

where B=

5C(gpss

) /16ktt Ts.
Equations (9) and (8) are our central results

describing nuclear-spin relaxation in spin-glasses for
T & Tg for the case of negligible applied field and an
impurity spin of one-half. These can be used to ex-
tract information about the impurity-spin correla-
tion time v;.

Next we show how one can obtain the nonex-
ponential form for M(t) for T « Ts, which is seen
experimentally. To arrive at this form we assume
that for T« Ts, Ar,

' «k&Tz. This assumption is
consistent with the random freezing of impurity
spin below Tg and is supported by p+-meson de-
polarization experiments, which indicates that z, '

is scaled by Tg. Further, we note that for T «Tg,
q -1, and because of the weight factor
r exp( r l2) in Eq. (8—) the values of r that are im-
portant —1. Thus, in the denominator of Eq. (9),
qr —1, while due to the assumption made
above (Ar, '/king/Ts) «1, and therefore,

(fir, 'Ike Ts) in the denominator of Eq. (9) can be
neglected. In addition, for T«Ts (i.e., T'«1),
tanh[(2/T')&q/5r] —1. With these simplifications
Eq. (9) for T« Ts reduces to

1

T&(r) T r
vS
2 k, T q3/r

8
B g

(10)

and hence Eq. (8) for M(t) takes the form

[M(t)]r «T =Mph 2/ir dr r e " e
0

where

2 q'"
V 5B T' keTs

(12)

Equation (11) is our theoretical result for T «Ts,
while the form of nuclear magnetization observed by
Bloyet et al. is

[M(t)] —M e
" """"""'

(13)

with a =0.3 and ~„amean-nuclear-spin relaxation
time. In Fig. 2 we plot the result of numerical in-
tegration involved on the right-hand side of Eq. (11).
We have plotted ln[M(t)/Mp] as a function of
(t/a ) for small t. For comparison, in Fig. 3 we plot
the same quantity as obtained from the experiments,
Eq. (13), as a function of (t/ai. „).These two graphs
clearly show that the form of our result in Eq. (11)
and the experimental expression in Eq. (13) are the
same for small time t, i.e., for the values of t which

l0
I

l5
( t/e)

FIG. 2. Form of nuclear-spin magnetization M(t) as predicted by Eq. (11) for T && Tz. Plotted is in[M(t)/Mp] as a
function of t /a.
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are important from the experimental point of view.
This rather excellent agreement suggests that the as-
sumption Ar, '«kttTs for T«Ts made earlier is
correct.

We now turn to a discussion of the temperature
dependence of r, . A quantitative comparison of
Figs. 2 and 3 gives r„=1 4r„.Th. en with the use of
Eq. (12) one finds that

r„cc(q /T')(ktt Tsar, ') .

Since for T« Ts, q is a very slow varying function
of temperature, the temperature dependence of r„
mostly represents the variation of the impurity re-
laxation rate ~, ' with temperature. Thus given
~„asa function of T, one can calculate r, '(T) for
T ((Tg.

Now we compare the lowest-field result (Hp 275
Oe} of Ref. 6 with our zero-field theory as regards
the temperature dependence and try to extract the
temperature dependence of r, Since .these fields are
still substantial (pttH-kttTs} and spin-glasses are
known to be sensitive to the applied fields, only a
qualitative comparison is appropriate. For very low
T (T« Tg), r„varies approximately as 1/T, which
gives ~, ' as a constant. As the temperature in-
creases r„starts falling as 1/T, and than at a much
faster rate r, ' correspondingly increases until
Ar, 'Iktt Tg becomes comparable to 1. At this point
the (A~, 'IkttTg) term in the denominator of Eq.
(9) can no longer be neglected. As r, ' continues to

increase the (Rr, '/ktt Ts) term in the denominator
of Eq. (9) starts to dominate. Since now
r„cc(fir, '/ktt Ts ) ', r„starts increasing. This
behavior gives the minimum in the 'experimental
data shown in Fig. 1.

It should be mentioned that as Tg is approached
from below and Ar, '~ ktt Ts, the shape of the nu-
clear magnetization recovery changes. However,
this can be accounted for by giving a small r depen-
dence to ~, ' near Tg. This r dependence of 7,
means that near Tg, instead of a single relaxation
time r„weneed to consider a distribution of relaxa-
tion times r, (r) which is not at all unreasonable
(see the discussion of the end of the paper). Near T&

there is also some temperature dependence due to
t anh[(2 /T') v'q /5r ], which is not crucial until
T~Ts (T'~1), q~O, and one recovers the ex-
ponential decay for the nuclear magnetization.
Thus the general shape of the experimental curve r„
vs T shown in Fig. 1 can be explained by assuming
that for T« Tg, Rr, ' « ktt Ts, while for T» Tg,
fr~, '&&AT .

Although our theory is restricted to the case of
negligible applied field, the field dependence of the
data shown in Fig. 1 can be understood, qualitative-
ly, by appealing to what is known about the effects
of a magnetic field on the properties of a spin-glass.
Since our calculations involve the susceptibility its
field dependence is particularly valuable, Generally,
the effect of finite fields is to broaden the transition
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FIG. 3. Experimental curve Eq. {13){Ref. 6) for nuclear-spin magnetization M{t) Plotted is ln[M{t. )/Mo] as a func-

tion of t/~„'=t/ar„,with a =0.3.



368 W. A. ROSHEN 27

by making the order parameter nonzero for
T ~ Tz. ' In addition, it shifts the maximum of the
susceptibility from T=Tg to lower tempera-
tures. ' ' Now if we compare the experimental re-
sults of Ref. 6 (Fig. 1) for the two lowest-field
strengths (Ho-275 and -330 Oe), we find indica-
tions of both of these characteristics. The max-
imum in v„seems to shift to lower temperatures as
H is increased and, also, the minimum appears to be
less pronounced. This trend would indicate that in
the limit of zero applied field, the minimum would
occur at the spin-freezing temperature and the tran-
sition would be a sharp one. This means that the
condition fir, /k&Ts —1 would occur at the transi-
tion temperature and the change from Az,

' « kB Tg
would take place over a more restricted range of
temperatures around Tg. It is very comforting to
note that the recent zero-field experiments by Chen
and Slichter on a very different spin-glass system
do show a minimum at the transition temperature.
Thus these latter experimental results are not incon-
sistent with the results of Bloyet et al.

Another difference between our theory and the ex-
perimental situation is the impurity (Mn) spin. The
impurity spin for the samples considered is —and

1
2

not —, as our theory assumes. The major effect of
having Sg —, is to increase the field dependence.
This would not change any of our qualitative con-
clusions.

As indicated before the picture that the impurity-
spin self-correlation time ~, changes from
&, '&kBTg to%~, '&~kBTg around Tg as the tem-
perature is increased is in agreement with the recent
p+-meson depolarization experiments by Uemura
et al. ' In fact, if we use their results for the impuri-
ty correlation time r, (T), after properly rescaling
with Ts, in our result Eq. (12) we obtain the curve
for r„vsT shown in Fig. 4. This has a shape which
is very similar to the one seen experimentally for
T &0.5Ts and for the lowest field (Fig. 1).

To summarize, based on EA mean-field theory"
we have derived an expression, Eq. (8), which along
with Eq. (9) describes nuclear-spin relaxation in a di-
lute spin-glasss for the case of negligible applied
field. The theory is valid for T & Tg. This can be
used to extract the temperature dependence of the
impurity-spin self-correlation time ~e. In spite of
the fact that our theory is restricted to the zero-field
case, the main features of the available data, which
involves finite fields, can be understood if one as-
sumes that ~, ' changes around Tg, such that for

~g ~+e &&kB Tg and for T &) Tg,
'AVe )Q kg Tg ~

We believe it is important to point out that in
Ref. 6 it was incorrectly assumed that
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FIG. 4. v„asa function of temperature as given by Eq.
(12), with the use of the temperature dependence of r, as
measured by p+-depolarization experiments (Ref. 9).
has been scaled with proper Tg.

IIIlX(coq ) 1q /(co~+rq ),
and therefore, it was argued that the minimum (see
Fig. 1) corresponds to co„-v, . However, as we
have mentioned before, co„is small compared to oth-
er energy scales, namely coo (as well as gpsH) and
hence it drops out. The minimum actually corre-
sponds to

fi~, '/m)0 ——fi~e '/kBTg —1 .

Since the estimation of Bloyet et al. of v;
' rested

on an incorrect assumption, their estimates of v;
are in error by approximately 3 orders of magnitude.

We conclude by discussing some of the recent
developments in the theory of spin-glasses and their
relevance to our calculations. The work during the
past few years has shown that the EA order parame-
ter, which is purely static, is not sufficient to
describe the spin-glass phase completely. .

' ' In par-
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ticular, computer simulations' by Kirkpatrick and
Sherrington of an infinite range model of the same
authors' have indicated that the EA order parame-
ter decays to zero. Instead, several authors have
proposed dynamic theories. ' In these theories
the spin-glass phase is characterized by time-
persistent spin correlations, which decay over ma-
croscopically large time scales. It is commonly as-
sumed that this slow relaxation occurs in a distribu-
tion of many large time scales. ' ' Further, instead
of using only one order parameter, one employs a
large number of order parameters, q being one of
them. ' '

At present these theories are not capable of yield-
ing any estimates of the time scales for the slow re-
laxation. However, the authors of Refs. 18 and 19
cite susceptibility measurements s in support of this
slow relaxation. The experiments show that the
magnetization, as predicted by EA mean-field
theory for T & Ts, decays to its true equlibirium (i.e.,

ttuly time-independent) value in a time, which is of
the order of hours. Since the time of measurements
in nuclear-spin relaxation is very small (-10 s),
this slow relaxation is unlikely to affect the validity
of our results. We are implicitly assuming that q
remains the most important order parameter for the
short times involved in T&

' measurements. As re-
gards the distribution of many time scales our calcu-
lations indicate that taking into account this distri-
bution is perhaps more important near Te than far
below Ts (recall that near Ts we had to give a small
r dependence to r, ).
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