Thermal properties of Eu₃S₄: Order-disorder transition

R. Pott and G. Giintherodt

II. Physikalisches Institut, Universität zu Köln, D-5000 Köln 41, Federal Republic of Germany

W. Wichelhaus* and M. Ohl

Max-Planck-Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany

H. Bach

Institut für Experimentalphysik IV, Ruhr-Universität Bochum, D-4600 Bochum, Federal Republic of Germany (Received 2 August 1982)

Capacitive thermal-expansion, specific-heat, and electrical-resistivity measurements on single crystals of Eu₃S₄ and La₃S₄ have established for Eu₃S₄ a first-order, nonstructural phase transition near $T_t=186$ K and the entropy change $\Delta S=9\pm0.9$ J/moleK of an order-disorder transition with a configurational entropy $R \ln 3$. The transition exhibits $\Delta V/V=9\times10^{-4}$ and $d \ln T_t/dp = d \ln E_a/dp = -8.7\times10^{-11}$ Pa⁻¹, i.e., a proportionality between T_t and the activation energy E_a of the resistivity.

Homogeneous mixed-valence compounds have attracted much attention in recent years because of valence fluctuations, which in the inhomogeneous mixed-valence counterpart are due to thermally activated hopping between equivalent cation sites.¹ In the latter class of materials the basic questions concerning charge ordering at low temperatures, associated lattice distortions, and order-disorder phase transitions have not been answered unambiguously to date.^{2,3} The reason lies in the rather poor, ambiguous experimental evidence, obscured mainly by inherent problems in sample preparation, stoichiometry, and purity. 3 On the other hand, a clear statement about a charge-ordered state in inhomogeneous mixed-valence systems and about the magnitude of the associated lattice distortion could help to clarify questions concerning intersite couplings⁴ in homogeneous mixed-valence systems: lowering of the ground-state energy due to charge fluctuations,⁵ or spatial correlations of rare-earth ions, ⁶ Wigner lattice formation,⁷ and qualitative changes in Fermi surface.

The prominent inhomogeneous mixed-valence compound $Eu₃S₄$ with equivalent Eu sites at room temperature, but inequivalent Eu^{2+} and Eu^{3+} sites at low temperature, 9 represents an ideal test case because of the well-defined change in configurational entropy for a complete order-disorder transition.¹⁰ However, the small entropy change observed¹⁰ as well as the lack of conclusive evidence from x-ray data about structural changes at the phase transition near 175 K (Ref. 11) did not support the previously suggested $(Eu^{2+}-Eu^{3+})$ charge order-disorder transition.¹² Hence the nature of the phase transition near 175 K (Refs. 11 and 13) or 160 K (Ref. 10) and the question concerning charge ordering at low temperature are still undetermined particularly due to problems with sample stoichiometry.³

We report on measurements of (capacitive) thermal expansion, specific heat, and electrical resistivity for the first time on single crystals of $Eu₃S₄$ compared with those of $La₃S₄$. Hence we show for the first time that the phase transition of Eu₃S₄ near $T_t = 186$ K is of *first order*, exhibiting the configurational entropy of an order-disorder transition and that the values of T_t and of the activation energy E_a of the resistivity for $T < T_t$ $(E_a=0.32 \text{ eV})$ are proportional $(E_a \sim T_t)$. The structural contribution to the phase transition of $Eu₃S₄$ is found to be very small compared to the second-order (structural) phase transition of $La₃S₄$.

The relative length change $\Delta L/L$ has been measured by a capacitive method¹⁴ between 1.5 and 380 K (sensitivity 10^{-7} , accuracy $\pm 2\%$). This very sensitive method could be applied for the first time in the temperature range around T_t , which is usually not easily accessible. The linear thermalexpansion coefficient α has been calculated by a spline fit to $\Delta L/L$ (Ref. 15) (sensitivity 10^{-8} K⁻¹, accuracy $\pm 2\%$). The specific heat C_p (20 < T < 350

$$
\mathcal{L}_{\mathcal{A}}(x)
$$

27 359 01983 The American Physical Society

FIG. 1. Relative length change $\Delta L/L$ and linear thermal-expansion coefficient α of Eu₃S₄ single crystal (unoriented) as function of temperature.

K) has been measured by a calorimeter described elsewhere¹⁶ (accuracy $\pm 2\%$). The preparation of the single crystals of La_3S_4 and Eu_3S_4 with parameters $a = 8.724 \pm 0.001$ lattice Ă and $a = 8.532 \pm 0.001$ Å at 300 K, respectively, is described elsewhere.^{17,18}

In Fig. 1 we show $\Delta L/L$ of the unoriented Eu₃S₄ single crystal (length 5.63 mm) between 1.5 and 380 K. There is a sharp discontinuity at $T_t = 186$ K. α shows a monotonic continuation above and below T_t . The anomaly in α near $T = 3.8$ K is attributed to the ferromagnetic ordering of Eu_3S_4 .¹⁰ The jump in $\Delta L/L$ [inset of Fig. 1 (bottom)] with increasing temperature is -3×10^{-4} with a width of only about 1 K.

Figure 2 shows $\Delta L/L$ and α of the unoriented single crystal (length 6.04 mm) of $La₃S₄$. Contrary to Eu₃S₄, $\Delta L/L$ is a continuous function of temperature near the structural phase transition^{19,20} $(T_m = 102 \text{ K})$ and α is not monotonically continued

FIG. 2. Relative length change $\Delta L/L$ and linear thermal-expansion coefficient α of La₃S₄ single crystal (unoriented) as function of temperature.

FIG. 3. Specific heat C_p of Eu₃S₄ single crystal as function of temperature of full (a) and expanded (b) scale. Dashed line in (b) is the Debye fit extrapolated for $T > 186$ K.

below and above T_m .

The specific heat of the $Eu₃S₄$ single crystal (weight 0.4932 g) exhibits a giant anomaly [Fig. $3(a)$] near 186 K. The inset of Fig. $3(a)$ shows a well-pronounced double-peaked structure near 185.5 and 186.3 K with an overall width of only about 1 K. Note the similarity in C_p and α [see inset of Fig. 1 (top)]. No significant hysteresis could be detected, contrary to the 5-K hysteresis reported by Davis et al^{11} . The entropy of the anomaly is about $\Delta S_1 = 5.2 \pm 0.1$ J/mole K. As can be seen in Fig. 3(b) there is a step in C_p of Eu₃S₄ for $T > T_t$. Unfortunately, for the determination of the background we cannot consider C_p of La₃S₄, since the phonon spectra of this superconductor and the mixed-valent Eu_3S_4 seem to be very different. Therefore, in order to use the Debye formula as reasonable background approximation for a $T > T_t$, we have calculated C_V of Eu₃S₄ using $C_V = C_p - 9T V \alpha^2 B$ [B = 92 GPa (Ref. 21)]. The asymptotic limit near T_t of the strongly temperature-dependent $\Theta_D(T)$ is $\Theta_D = 180$ K, which has been used in the above Debye fit (dashed line). The corresponding excess entropy for $T_t < T < 400$ K is about $\Delta S_2 = 3.8 \pm 0.8$ J/mole K. The error is mainly due to the uncertainty in Θ_D and accounts also for the uncertainties in the extrapolation $\Delta C_V/T \rightarrow 0$ near 400 K. Hence the total entropy is $\Delta S = \Delta S_1 + \Delta S_2 = 9 \pm 0.9$ J/mole K.

We have also measured C_p of several agglomerat-

ed single crystals $(0.5-1$ mm in diameter) of Eu₃S₄ prepared by the same method. They show one or two peaks with $183.0 < T_t < 188.3$ K. The steplike behavior of C_p is also observed with similar ΔS_1 and ΔS_2 contributions as above. The width of the C_p anomaly decreases with increasing T_t towards about 1 K. Note that only C_p shows a variation in T_t , whereas the lattice parameter of all samples is $a = 8.532 \pm 0.001$ Å. Hence C_p is a much more sensitive probe to determine the quality of a Eu_3S_4 sample than the lattice parameter.

The specific heat of the $La₃S₄$ single crystal (weight, 0.6027 g) shows a sawtooth-shaped anomaly near $T_m = 102$ K (Fig. 4), exhibiting an entropy of about 0.9 J/mole K. This value should be taken with caution, since the phase transition is of second order (see below).

The specific electrical resistivity ρ of our semiconducting $Eu₃S₄$ single crystal (Fig. 5) shows a discontinuity near $T_t = 186$ K without any significant hysteresis. With decreasing temperature, ρ increases at T_t by about a factor of 50. The activation energy E_a is 0.32 ± 0.01 eV below and 0.16 \pm 0.005 eV above T_t .

The discontinuity of $\Delta L/L$ of Eu₃S₄ near 186 K (Fig. 1) shows for the first time that the phase transition is definitely of first order. This could not be seen by previous x-ray studies showing a rather poorly resolved transition with peak broadening and loss of intensity upon cooling through the phase loss of intensity upon cooling through the phase
transition.¹¹ On the other hand, La₃S₄ does not show such a discontinuity in $\Delta L / L$ (Fig. 2), i.e., the structural phase transition of $La₃S₄$ is of second order, contrary to the conclusions in the literature.^{20,21}

The linear thermal-expansion coefficient α of our unoriented single crystal of $La₃S₄$ exhibits a steplike behavior for temperatures below and above T_m .²² Since α of Eu₃S₄ shows a uniform continuity be-

FIG. 4. Specific heat C_p of La₃S₄ single crystal as function of temperature.

FIG. 5. Specific electrical resistivity ρ of Eu₃S₄ single crystal as function of temperature.

tween 4 and 400 K, except for the peak at T_t (see Fig. 1), the phase transition of $Eu₃S₄$ is not dominantly a structural one, i.e., there is no significar displasive effect on the Eu and S positions. This is consistent with $x-ray$ ¹¹ and recent neutrondiffraction measurements, 23 which show that the change of the atom positions is extremely small, indicated by a small, probably orthorhombic, distortion²³ for $T < T_t$.

From our above results we can calculate the pressure dependence of T_t of Eu₃S₄ using the Clausius-Clapeyron equation $dT_t/dp = \Delta V/\Delta S$. ΔS and ΔV are the entropy and the volume change, respectively, at the phase transition. With $\Delta S = 5.2$ J/mole K we obtain $dT_t/dp = -(1.6\pm0.1)\times10^{-8}$ K/Pa, i.e., we predict that T_t decreases with increasing pressure. In contrast to Eu_3S_4 , La_3S_4 is known to have a positive pressure coefficient $dT_m/dp=+(1.6\pm 0.15)\times 10^{-8}$ K/Pa.²⁴

The measured total entropy $\Delta S = 9$ J/mole K equals about R ln3. The configurational entropy of an order-disorder transition where three configurations (one Eu^{2+} and two Eu^{3+}) are involved in R ln3.¹⁰ Hence the *first-order* transition of Eu₃S₄ is of order-disorder type. Note that our entropy is a factor of 3 times larger than the value reported previously.¹⁰ We attribute this difference to our better sample quality reflected by $T_t=186$ K compared to 160 K,¹⁰ a width of the C_p anomaly of 1 K compared to 7 K,¹⁰ and a lattice parameter of $a = 8.532$ \mathring{A} compared to 8.507 \mathring{A} .¹⁰ Furthermore, the entropy of the C_p anomaly of La_3S_4 is 10 times smaller than that of Eu_3S_4 , indicating again the different nature of the phase transition (second order, structural, $dT_m/dp > 0$) of La₃S₄ compared to Eu₃S₄ (first order, $dT_t/dp < 0$).

The steplike behavior of C_p of Eu₃S₄ for $T > T_t$ [see Fig. 3(b)] is assumed to be a short-range-order effect, extending roughly up to 400 K. Such a contribution was predicted in mean-field theory.²⁵ However, the reported sign is different. A similar double-peaked structure like that of the C_p anomaly of Eu₃S₄ [inset Fig. 3(a)] has also been observed in $Fe₃O₄$ and has been attributed to residual strain effects. The number of peaks, their positions and relative widths depend on the thermal treatment of $Fe₃O₄$. While this possibility cannot be ruled out completely for $Eu₃S₄$, temperature cycling between 4 and 400 K did not show any significant change in position, width, and height of the C_p anomaly. Another explanation of the double-peaked structure of C_p and of α of Eu₃S₄ could be a certain inhomogeneity of our single crystal, showing up in two slightly different transition temperatures within ¹ K. We would like to mention that C_p of some of our agglomerated single crystals show only a single-peaked anomaly with a maximum T_t of 188.3 K (width about 1 K, $\Delta S_1 = 5.6$ J/mole K).

The activation energy of ρ of our Eu₃S₄ single crystal ($E_a = 0.16$ eV) for $T > T_t$ is the same as all values published so $far^{9,13}$ and appears to be an intrinsic property. On the other hand, the magnitude of E_a for $T < T_t$ seems to be correlated with that of T_t , amounting to $E_a = 0.32$ eV, $T_t = 186$ K for our single crystal as compared to $E_a=0.21$ eV, $T_t=175$ K reported in the literature.¹³ Assuming a proportionality between E_a and T_t we obtain
 $d \ln T_t / dp = d \ln E_a / dp = -8.7 \times 10^{-11}$ Pa⁻¹ $d \ln T_t/dp = d \ln E_a/dp = -8.7 \times 10^{-11}$ Pa^{-1}

- 'Present address: Henkel KGaA, D-4000 Dusseldorf 1, Federal Republic of Germany.
- ¹For a recent review, see Valence Fluctuations in Solids, edited by L. M. Falicov, W. Hanke, and M. B. Maple (North-Holland, Amsterdam, 1981).
- ²N. F. Mott, Philos. Mag. B **42**, 325 (1980).
- ³F. Holtzberg, Philos. Mag. B 42, 491 (1980).
- ⁴T. V. Ramakrishnan in Valence Fluctuations in Solids, Ref. 1, p. 13.
- ⁵C. M. Varma and M. Schlüter, in *Valence Fluctutations* in Solids, Ref. 1. p. 37.
- ⁶A. Sakurai and P. Schlottman, Solid State Commun. 27, 991 (1978).
- 7T. Kasuya, K. Takegahara, Y. Aoki, K. Hanzawa, M. Kasaya, S. Kuwii, T. Fujita, N. Sato, H. Kimura, T. Komatsubara, T. Furuno, and J. Rossat-Mignod, in

which is in excellent agreement with the pressure coefficient of E_a found in Mössbauer spectroscopy.²⁷ Such a proportionality $E_a \sim T_t$ has been found in $Fe₃O₄$ (Ref. 28) and is suggestive of a Mott-Wigner transition in $Eu₃S₄$ as well. This is consistent with the charge ordering and with the drop in carrier concentration by roughly 3 orders of magnitude²⁹ upon cooling below T_t .

The electrical resistivity of $Eu₃S₄$ may also be due to a polaron hopping process.¹³ The activation energy $E_{a,pol}$ associated with this process can be assumed as proportional to $1/\omega_0^2$, where ω_0 is an optical-phonon frequency.³⁰ By using the Grüneise formula we obtain $d \ln E_{a, \text{pol}}/dp = -2d \ln \omega_0 /dp$ formula we obtain $d \ln E_{a,pol}/dp = -2d \ln \omega_0/dp$
= $6\alpha V/C_V = -4.8 \times 10^{-11}$ Pa⁻¹, which again is in reasonable agreement with d lnE_a/dp^{27}

We would like to emphasize that our results reveal a very strong similarity between $Eu₃S₄$ and $Fe₃O₄$, concerning first-order phase transitions near T_t and T_V (Verwey temperature) and associated entropy $(\Delta S = \Delta S_1 + \Delta S_2)$, volume and resistivity changes, pressure coefficients of T_t and T_v , and absence of thermal hysteresis.

Note added in proof. The predicted sign and magnitude of dT_t/dp has recently been confirmed by electrical resistivity measurements under pressure. 31

We thank B. Schoch for sample preparation, W. Boksch, J. Haag, R. Kuhlmann, and G. Neumann for help with the experiments, R. Schefzyk and D. Wohlleben for critical comments, P. Fazekas for fruitful discussions, and A. Rabenau for support. The work of two of the authors (R.P. and G.G.) was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 125.

Valence Fluctuations in Solids, Ref. 1, p. 215.

- 8R. M. Martin and J. W. Allen, J. Appl. Phys. 50, 7561 $(1979).$
- ⁹O. Berkooz, M. Malamud, and S. Shtrikmann, Solid State Commun. 6, 185 (1968).
- 10O. Massenet, J. M. D. Coey, and F. Holtzberg, J. Phys. (Paris) Colloq. 37, C4-297 (1976).
- ¹¹H. H. Davis, I. Bransky, and N. M. Tallan, J. Less-Common Met. 22, 193 (1970).
- 2F. L. Carter, J. Solid State Chem. 5, 300 (1972).
- 13 I. Bransky, N. M. Tallan, and A. Z. Hed, J. Appl. Phys. 41, 1787 (1970).
- ^{14}R . Pott and R. Schefzyk, J. Phys. E (in press).
- ¹⁵R. Schefzyk, Diploma thesis, Universität Köln, 1980 (unpublished).
- ¹⁶A. Junod, J. Phys. E 12, 945 (1979).
- ¹⁷P. J. Ford, W. A. Lambson, A. J. Miller, G. A. Saunders, H. Bach, and S. Methfessel, J. Phys. C 13, L697 (1980).
- ¹⁸G. Güntherodt and W. Wichelhaus, Solid State Commun. 39, 1147 (1981).
- ¹⁹P. D. Dernier, E. Bucher, and L. P. Longinotti, J. Solid State Chem. 15, 203 {1972).
- ²⁰K. Westerholt, H. Bach, and S. Methfessel, Solid State Commun. 36, 431 (1980).
- $21A$. Werner (private communication).
- 22 The probability of accidentally obtaining a uniform continuity for temperatures from below to above a structural phase transition for an unoriented single crystal is considered to be slight.
- $23K$. R. A. Ziebeck, P. J. Brown, and W. Wichelhaus (un-

published).

- ²⁴R. N. Shelton, A. R. Moodenbaugh, P. D. Dernier, and B. T. Matthias, Mater. Res. Bull. 10, 1111 (1975).
- ²⁵J. L. Moran-Lopez and P. Schlottmann, Phys. Rev. B 22, 1912 (1979).
- M. Matsui, S. Todo, and S. Chikazumi, J. Phys. Soc. Jpn. 42, 1517 (1976).
- ²⁷J. Röhler and G. Kaindl, Solid State Commun. 36, 1055 (1980).
- ²⁸G. A. Samara, Phys. Rev. Lett. 21, 795 (1968).
- ²⁹T. Penney (private communication).
- ³⁰D. Adler, J. Feinleib, H. Brooks, and W. Paul, Phys. Rev. 155, 851 (1967).
- ³¹B. Batlogg, R. G. Maines, A. Jayaraman, and G. Giiatherodt (unpublished),