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P. Ruden and G. H. Dohler
Max Plan-ck Insti-tut fur Festkorperforschung, Heisenbergstrasse I,

D 7000-Stuttgart 80, Federal Republic of Germany

(Received 6 August 1982)

The dynamically two-dimensional electronic subband structure and the effective energy

gap are tunable quantities in semiconductors with a doping superlattice. We present self-

consistent calculations of the electronic states, in the framework of the local-density approx-

imation, as a function of the charge-carrier concentration. A discussion of several superlat-

tices differing in their design parameters exemplifies the wide range of electronic subband

structures which may be realized in this type of system.

I. INTRODUCTION

During the last two years a number of experimen-
tal investigations have been performed on a new

type of artificial semiconductor superlattice consist-
ing of ultrathin n- and p-type doped layers, which
were in some cases separated by undoped (i-} intrin-
sic layers (n ip i-c-ry-st-als). ' ' The experiments
have confirmed the crucial predictions concerning
the novel electronic properties of this new class of
semiconductors made by one of the present authors
(G.H.D.} a long time ago. This author had point-
ed out that doping (or p njuncti-on} superlattices
would differ qualitatively not only from homogene-
ous semiconductors but also from compositional su-

perlattices (or heterojunction superlattices) be-
cause of the different superlattice potentials. In
doping superlattices the conduction and valence
bands are modulated by the periodic space-charge
potential of the impurities. As a consequence the
electron states near the bottom of the conduction
band are shifted in their position by half a superlat-
tice period with respect to electron states near the
top of the valence bands (indirect gap in real space)
Compositional superlattices with opposite sign of
the conduction- and valence-band —edge discontinui-
ties of the components (type-I superlattices, ) such
as the Al„Cxa& As/CxaAs system, in contrast, exhi-
bit a direct gap in real space. Heterojunction super-
lattices with equal sign for conduction- and
valence-band —edge discontinuities between the con-
stituent materials such as the GaSb/InAs system
(type-II superlattices ' ) also have an indirect gap in
real space. The overlap between electron and hole
states, however, is still quite large in those systems.
Therefore, they do not possess the following basic
features of doping superlattices, which result from a

very small overlap between electron and hole states.
(l) Owing to extremely long excess-carrier life-

times, large deviations of the carrier concentrations
from the thermal equilibrium values can be induced

by rather weak optical excitation or carrier injection
from outside.

(2) Because of the spatial separation of electrons
and holes the compensating charge of the excess car-
riers decreases the amplitude of the space-
charge —induced superlattice potential and thus in-
creases the effective energy gap drastically. The ef-
fective gap of doping superlattices is thus no longer
a fixed parameter of the system, but a quantity
which may be tuned by changing the nonequilibrium
electron and hole concentrations.

The interesting quantum-size effects (quasi-two-
dimensional subband formation) which have been
the major point of interest in the study of composi-
tional superlattices are present in doping superlat-
tices also. It is evident that the tunability of the
(two-dimensional) carrier concentration and of the
effective band gap makes the latter kind of superlat-
tice a more fascinating model substance for the
study of two-dimensional many-body effects.

In a recent Letter' the soundness of the theoretical
concept was demonstrated by the observation of a
tunable band gap in photoluminescence measure-
ments and of tunable subband separations in Raman
scattering experiments. Moreover, excellent quanti-
tative agreement with our self-consistent calcula-
tions of the electronic subband structure was found.
The first purpose of this paper is to show a more de-
tailed presentation of these calculations including a
discussion of many-body effects. Secondly, we will
illustrate by a few examples the wide variety of tun-
able subband structures obtained by different
choices of design parameters including the case of a
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n-i-p-i crystal in which the composition is also
modulated periodically (n i p--i-heterojunction super-
lattice}. Finally, we want to provide a basis for our
forthcoming discussion of absorption, luminescence,
and inelastic light scattering. '

II. THEORY OF ELECTRONIC SUBBANDS
IN n-i-p-i CRYSTALS

A n-i-p-i crystal consists of an arbitrary homo-
geneous semiconductor with a periodic variation of
n- and p-type doping,

nD(z+d) =nD(z)

and

and if the superlattice period and the doping concen-
tration do not exceed some limiting values to be dis-

cussed below. Under these conditions all the impur-
ities will be ionized and the superlattice potential
will be the space-charge potential of the impurity
distribution,

pp(z)=e[nD(z) —nq(z)] .

For the sake of simplicity we will restrict ourselves

in the following to the case of homogeneous doping
as shown in Fig. 1(a} with rectangular doping pro-
files which are symmetric with respect to the origin
placed in the rniddle of an n-type doped layer.

The space-charge potential of the impurities up(z)

is obtained by integrating Poisson s equation,

n~ (z +d ) =nq (z),

where z is the direction of periodicity and d the su-

perlattice period.
The ground state of the n-i-p-i crystal can be

described quite easily if there are no other impurities
present than the shallow donors and acceptors, if the
crystal is "macroscopically compensated, " i.e.,

a'u, (z) =4~epp(z) /Kp,
az2

subject to the boundary conditions,

Bup(z)
up(0) =0

(4)

(5)

8/2 d/2I nD(z)dz = J nq(z}dz, (2)

where ~0 is the static dielectric constant of the semi-
conductor. up(z) consists of parabolic parts in the
doping layers,

(2ne nD/Kp)z for ~z
~

&d„/2
up(z}=

2Vp (2ne n—z/sp)(d/2 ~z
~

) for d/2 —~z
~

&d~/2,
I

(6)

and linear parts in the intrinsic regions,

up(z)=(2rre nDd„/Kp)( ~z
~

—d„/4)

for d„/2& ~z
~

&(d —dz)/2 . (7)

The maximum height of up(z) is 2Vp, given by

2Vp (2~e /xp)(nDd——„/4+nqdz/4+nDd„d;) .

(8)

For
~

z
~

)d /2, up(z) is obtained from a periodic re-

petition of the expressions (6)—(8).
Figure 1(b) shows the important consequences of

the superposition of up(z) to the crystal potential.
The effective band gap E~, i.e., the difference be-

tween the lowest conduction- and the uppermost
valence-band states, is lowered by about 2Vp com-
pared with the gap of the homogeneous bulk materi-
al Eg. (Deviations which result from quantum-size
effects and from impurity-band formation will be
discussed later. ) The term indirect gap in real space
which was used in the Introduction now becomes
clear: The lowest conduction-band states are shifted

by half a superlattice period with respect to the up-

permost valence-band states.
It should be noted that the value of 2VO may

exceed the band gap Eg of the unmodulated semi-
conductor. Such a situation implies the possibility
of conduction subbands with energies lower than the
upper valence subband edge, which would corre-
spond to a negative effective band gap Eg . Actual-

ly, under these conditions there will be a finite-
electron and -hole concentration in the n- and p-type
layers in the ground state. The compensating space
charge of the charge carriers reduces the value of
2Vo and changes the shape of the space-charge po-
tential in a self-consistent way to be calculated later.
The ground state will then be characterized by elec-
tron and hole concentrations no

' and po
' per layer

which make the Fermi level equal for both types of
carriers (n-i-p-i semimetal).

Another case with a finite-carrier concentration in
the ground state occurs whenever the n-i-p-i crystal
is not compensated, i.e., condition (2) does not hold.
The ground-state superlattice potential, evidently,
has to be calculated self-consistently in such a situa-
tion also.

As mentioned in the Introduction, one of the
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FIG. 1. n-i-p-i crystal with constant impurity concen-
tration in the n- and p-type layers. (a) Periodic doping
profile and (b) modulation of conduction- and valence-

band edge by the periodic space-charge profile vo(z) from
(6) and (7). Plus signs indicate ionized donor levels near
the conduction-band edge and minus signs indicate the
negatively charged acceptor levels above the valence-band

edge. The effective gap E~ is an indirect gap in real

space. IO differs from the gap of the homogeneous bulk
material E~ roughly by 2VO as given by Eq. (8). Cor-
rections to Ez due to subband- and impurity-band forma-
tion are not shown in this schematic picture.

peculiarities of n-i-p-i superlattices is the possibility
to induce metastable deviations from thermal equili-
brium with different electron and hale quasi-Fermi-
levels P„and Pz, by varying of the electron and hole
concentration in the layers. Thus the calculation of
the electronic structure of a n-i-p-i crystal is not to
be restricted to the ground state. The subband ener-

gies and wave functions are required as a function of
the tunable-carrier concentration.

Before we solve the Schrodinger equation for a n-
i-p-i crystal we will at least comment on some of the
simplifying assumptions which we have made in our
calculation of the impurity space-charge potential.
So far, and also in the numerical calculations to be
discussed, we have treated the space charge of the
impurities as homogeneously smeared out in the
respective doping regions. In doing so we have
neglected the following:

(1) the spatial potential fluctuations which result
from the random distribution of impurities in the
doped regions and

(2) the point-charge character of the impurities
which may lead to bound impurity states or to the
formation of impurity bands.

These two points, indeed, limit the possibility to
observe quantum-size effects in space-
charge —induced potential wells and occasionally

A rough estimate of the band splitting is

2V(2m/rr)=& /Kprl=& nI «p. (10)

The tight-binding picture is appropriate for rI »az
whereas the nearly-free-electron model suits the case
e(~/rl ) &&2V(2m. /rl ). With an experimental value
for the ionization energy of shallow donors in GaAs
ED-6 meV which corresponds to a Bohr radius,
aD-10 nm, and using m '=0.067m p we get

were used in the past as an argument against the ex-
istence of well-defined quasi-two-dimensional sub-

bands io this kind of system. "
Without going into a detailed discussion of this

rather complex problem we want to make plausible
in the following that in GaAs doping superlattices,

(1) the influence of potential fluctuations is
reasonably small,

(2}donor impurity bands may be neglected, and
(3) the formation of acceptor impurity bands must

be considered within the typical range of values of
design parameters of n-i-p-i crystals.

Long-range potential fluctuations are screened by
a small concentration of free electrons in the n-type
layers (holes in the p-type layers). Thus they will be
unimportant if at least a certain fraction of the im-
purity space charge per layer is compensated by free
carriers. The short-range potential fluctuations re-
sult mainly from the random nearest-neighbor im-
purity distances, which deviate from the mean value
rr (we use the subscripts I to indicate that the fol-
lowing is valid for donors as well as for acceptors).
These fluctuations may be estimated by calculating
the value of the unscreened Coulomb energy e /Kpr&

of a point charge at distance rr [4m/——(3nr)]'r For.
any reasonable statistical distribution of the impuri-
ties the width of the distribution will have roughly
the value of the average. The numerical value of
e /KprI increases from 15 to 32 meV within the
range 5 &(10' cm & nI & 5 X 10' cm with
Kp= 12.5 for GaAs, which is always smaller than the
corresponding subband energies. It is clear that the
screening by the charge carriers in the layers will ac-
tually reduce the potential fluctuation.

The importance of impurity bands may be es-
timated by the following argument. Let us consider
a regular simple cubic array of nI shallow impurities
with ionization energy EI, Bohr radius al, and
nearest-neighbor distance rI ——nI ' . The impurity
bandwidth would be approximately
12Erexp( rr /ar } in a tigh—t-binding picture.

A different approach would be based on the
nearly-free-electron model. Here the kinetic energy
at the Brillouin-zone boundary becomes

e(n/rr) =(R /2m')Hnr
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/~i, (r)=(1/v A )exp(ikll rll)~i &,(z), (12)

where k~~ is a wave vector parallel to the doping
layers. A is the normalization area and g&i, (z) is the

2

superlattice Bloch function of subband p and wave
vector k, ( n./d & k, & m /d), —with the lattice
periodic part u-„o(r) neglected. For the eigen-
values e - we thus get

p, k

e& i =e&g +(flak II /2m'), (13)

and the Bloch functions g&q (z) and the eigenvalues

e&~ are to be determined self-consistently from
2

e(ir/rn) &2V(2'/rD) for nD &10' cm ' .Thus
even the unscreened impurity potentials act as a rel-
atively small perturbation at donor concentrations
which are typical for n-i-p-i crystals. Therefore
impurity-band formation in the case of the conduc-
tion band can be neglected, and it is allowed to re-
place the actual donor space charge by a homogene-
ous space charge of density enD(z) for the calcula-
tion of uo(z) as given in Eqs. (6)—(8).

On the other hand, for the acceptors we find (be-
cause of the larger heavy-hole effective mass m"") a
Bohr radius az -1.8 nm so that rz p az for
n„&10 cm and e(rr/r„) &2V(2m/r„) only if
nz &2X10' cm using m""=0.6mp. Thus we can
expect an impurity band in the p-type layers of a n-
i-p-i structure unless nz is extremely high. This re-
sult does not signify that hole subbands do not exist
in the p-type layers or that they are unimportant.
The presence of an acceptor impurity band implies,
however, important consequences for the calculation
of the self-consistent potential. The population of
the acceptor impurity band by holes is equivalent to
a neutralization of the negatively charged acceptors.
It is, therefore, a reasonably good approximation to
consider the central part of width dz

——p' '/nz in
the p-type layers as neutral, if p' ' holes per layer are
present in the sample.

We will now proceed by discussing the electronic
subband structure in the n-type layers in the frame-
work of the local-density-functional formalism of
Hohenberg and Kohn' and Kohn and Sham. To-
gether with the effective-mass approximation' this
formalism leads to a Schrodinger-type equation of
the form

[—(fi /2m') V +vo(z)+ uH(z)+ v„,(z)]P„-„(r)

=e ql( q(r) . (11)pk pk

Since the potential does not depend on x or y and is
periodic in z with the periodicity d we can write for
the wave functions

2m'

a2
+uo(z)+vH(z)

az2

+ v„,(z) g&i (z)=e&~ g&1 (z) . (14)

The Hartree contribution of the electrons to the
self-consistent potential is given by the solution of
Poisson's equation

5 uH(z) 4ire'n (z)
az2

(15)
Kp

subject to the boundary conditions

au„(z)
=0, vH(0) =0

a
(16)

E, is the energy of the bottom of the conduction
band at z=0.

The local exchange and correlation potential is
obtained from

u„,(z)=e„,(n (z) ) +n (z)(5e„,/5n), (18)

where e„,(n) is the exchange and correlation energy
per electron of a homogeneous electron gas of the
(local) density n. Since the electronic densities of in-
terest in n-i-p-i crystals are usually very high, i.e.,
the mean distance between two electrons is short

corn~ared

to the effective-mass Bohr radius
QD =QaKp(mo/m'), we will take

e„=——e =(0.916/r, )(e /2KOQD )

with

r, = [4irl(3n)]'~'/QP)

(19)

(20)

The inclusion of higher-order correlation terms does
not affect the results appreciably. The contribution
of the holes in the p-type layers to the self-consistent
potential is not written explicitly since it can be in-
corporated into Up(z), as discussed above.

In most cases of interest only the lowest electronic
subbands are partially occupied. For these low sub-
bands and typical doping parameters an extreme
tight-binding approach is correct, i.e., the subbands
are flat in the k, direction. The Bloch function can
be written as

with the electron density

n(»=2+
I g s,(» I'

pk

Xe(y„—e g
—(fPkII/2m') —E, ) . (17)
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gzk (z}=(I/QNst }+exp(ik,mq)4&(z —md),

n(z}= gnp'

Italo(z)

I Nsi.

= g n„'' ~4„(z—md)
~

p, m

(22)

(23)

where the population n„'' of the pth subband is
determined by the requirement of equal Fermi levels
in occupied subbands, '

e~+(R /2m')2mn& =ep+(fi /2m')2irnp '

(24)

with

&OCC

(25)

We have solved Eq. (14) self-consistently by direct
numerical integration at k, =0 and k, =m/d. The
boundary conditions to be imposed are as follows:
for @=0,2,4, . . . ,

z=O
=0, (26)

(27)

and for p = 1,3,5, . . . ,

kpo(0}=kg, /d(0} =0 (28)

z=O
=0. (29)

Some n-i-p-i crystal subbands with a finite k, disper-
sion may become occupied in the very highly excited
state. It is then usually sufficient to calculate the
potential once with the wave functions associated
with k, =0 and once with those at k, =n./d and
then to average.

III. RESULTS AND DISCUSSION

We have solved the system of Eqs. (14)—(25) self-
consistently, taking into account the boundary con-
ditions (26}—(29) and averaging over occupied
bands, if necessary as mentioned above, for different

(21}

where NsL is the number of superlattice periods in
the crystal and 4&(z —md) is the wave function of
subband p centered at the n-type layer with label m.
Obviously, the square modulus of g„k (z) is in this

case independent of k„and the electron density may
be written as

v„(z)=vo(z)+vH(z)+v„, (z) (30)

flattens and broadens due to screening of the fixed-
impurity space charge (see Fig. 3). In order to show
the behavior of the subbands, in particular the finite
width of the upper bands at large carrier concentra-
tions, the subband energies are displayed more clear-
ly once more in Fig. 2 as an inset on an expanded
energy scale and with the maximum of v„(z), i.e.,

n-i-p-i crystals, including n-i-p-i heterojunction su-
perlattices. To illustrate the variety of electronic
structures obtainable with different design parame-
ters of the system we present results for a structure
without intrinsic layers (Figs. 2—4), for an extreme
n-i-p-i structure with thin doping layers and rather
wide intrinsic layers (Figs. 5—7) and, finally, for a
n-i-p-i heterojunction superlattice composed of a
periodic n-p-type doping structure with undoped
layers of a smaller band-gap material interspersed in
the middle of the n-type layers (Figs. 8 and 9). To
facilitate the comparison of these systems we have
kept one parameter fixed, namely, the superlattice
constant d. We would like to emphasize the depen-
dence of the subband structure on the shape of the
doping profiles.

As the first structure we have chosen the sample
for which we have compared quantitative results
with experiments in Ref. 1. It is composed of 40-
nm-thick GaAs layers with constant doping concen-
trations nD ——n&

——10' cm and does not contain
intrinsic layers. In Fig. 2 the solid lines represent
the energies for the bottom of the various subbands
referred to the position of the hole quasi-Fermi-level
(('iz as a function of the two-dimensional carrier con-
centration per layer. We have assumed that P& coin-
cides with the acceptor level in the central part of
the p-type layers (acceptor ionization energy Ez ——28
meV for Be acceptors).

It should be noted that the curve P„—P~ vs n' '

(dashed-dotted line) does not deviate appreciably
from a parabola with a vertex at n ' '= nDd„
=4X 10' cm . This behavior reflects the parabol-
ic relation between injected carriers and the quasi-
Fermi-level distance P„—P~ which would be ob-
tained from a simple classical treatment of the prob-
lem.

At n' '=0 all the subbands shown are nearly
equally spaced with

ep —e~ i ='Ii[4~e n D(K/p m)]

since the bare potential vp(z) deviates appreciably
from a harmonic potential only at higher energies.
With increasing carrier concentration the subband
distances decrease monotonously as the shape of the
self-consistent potential
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FIG. 2. Subband energies and a quasi-Fermi-level as a function of the electron concentration per period n ' ' for a dop-
ing superlattice with constant doping n~ ——n~ ——1X10" cm ' in the n- and p-type layers, respectively, and with
d„=d~=40 nm and d;=0. E,„=E,+e„, the bottom of the pth conduction subband, and P„, the electron quasi-Fermi-
level, are referred to the position of the hole quasi-Fermi-level P~ in the acceptor impurity band. The inset shows the same
subbands for large values on n"' on an expanded energy scale and with the maximum of the self-consistent potential
chosen as zero. The finite subband width due to the k, dispersion becomes appreciable near zero energy, which corre-
sponds to the classical free-particle threshold energy.

(a) n~2~= 0

~ I % A I Irl I l~~

(b) n =1.4xl
-d/2 0

z direction
d/2

FIG. 3. Self-consistent potential u„(z) (thick solid line),
conduction-subband energies, and envelope wave func-
tions for one period of a superlattice with the same design
parameters as in Fig. 2. (a) Ground state (n' '=0) and (b)
excited state (n' '=1.4)&10' cm ).

the classical free-particle threshold as the zero of en-
ergies. The bandwidth becomes appreciable only
when the energies nearly reach this threshold. For
energies above the threshold, however, the subband

gap becomes rather narrow. Thus the subbands

change their character from tight-binding to nearly-
free-electron behavior within a few meV. This is to
be expected because of the wide barrier between
neighboring quantum wells. Another detail which
should be noted is the position of P„at
n' '=4X10' cm (which corresponds classically
to a neutralization of all donors and acceptors by
electrons and holes, respectively), which is found to
be only slightly above the threshold energy. This
means that the electrons almost exactly fill up to the
top the self-consistent potential well formed by the
impurity charges and the free carriers together.

Figure 4 demonstrates the influence of v„,(z) on
the subband splitting. For n' '&10" cm the
difference between the results with v„,(z) taken into
account (solid lines) and the Hartree energies (dotted
lines) remains nearly constant and relatively small
compared to exchange and correlation corrections in
Si metal-oxide-semiconductor structures. The near-
ly constant exchange and correlation contribution is
a consequence of the fact that the electron distribu-
tion n(z) only widens with increasing n' ' but does
not appreciably increase in height which is close to
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FIG. 4. Comparison of the subband splitting between
occupied and the nearest-neighbor subbands for low car-
rier concentrations calculated with (solid lines) and
without (dotted lines) exchange and correlation correc-
tions. The dashed-dotted and dashed-double-dotted lines
represent the Fermi energy of the lowest subband P„—E, 0

for the case with and without exchange and correlation
corrections. The design parameters are those of Fig. 2.

n~ over a layer of the width n' '/nD.
The corresponding results for a n-i-p-i structure

with very thin doping layers of only 4 nm and a
thickness of 36 nm for the intrinsic layers are
given in Figs. 5—7. The doping concentration
nD ——nq ——5.25&10' cm has been chosen such
that the effective gap has approximately the same
value for n' '=0 as in the former case. From Fig. 5
we see that the subband distances are now larger at
small p values and that they decrease at higher p
since the bare potential uc(z) has a triangular rather
than a parabolic shape. The relation between
P„—P~ and n ' ' is quite close to a linear dependence
because of the wide nearly constant field zones in
the intrinsic layers. The subband spacing also de-
creases with increasing n' '. In contrast to the
former case, however, the relative decrease is weaker
and affects the higher subbands more than the lower
ones: e~ —eo decreases only by 1/1.8 between
n' '=0 and n' '=nDd„compared to 1/4.3 in the
former case. e2 —e&, however, decreases now faster
than ei —eo, namely by 1/4.2, whereas the corre-
sponding decrease of E'2 —E'i by 1/3.5 was less pro-
nounced for the first example. The two cases exem-

FIG. 5. Subband energies and a quasi-Fermi-level as a
function of the electron concentration per period n ' ' for a
n-i-p-i superlattice with the design parameters
na ——nq ——5.25&10' cm and d„——dp 4 nm, d;=36
nm. E,„=E,+e„, the bottom of the pth conduction sub-
band, and P„, the electron quasi-Fermi-level, are referred
to the position of the hole quasi-Fermi-level P~ in the ac-
ceptor impurity band. The inset shows the same subbands
for large values of n"' on an expanded energy scale and
with the maximum of the self-consistent potential chosen
as zero. The finite subband width due to the k, dispersion
becomes appreciable near zero energy which corresponds
to the classical free-particle energy.

I/ 4 V I aI~~
(a) n~»=O

Ec+Vsc1

(b) n 1=1.4x10' cm
-d/2 0

z direction
d/2

FIG. 6. Self-consistent potential U~(z) (thick solid line),
conduction-subband energies, and envelope wave func-
tions for one period of a superlattice with the same design
parameters as in Fig. 5. (a) Ground state (n' '=0) and (b)
excited state (n' '=1&410' cm ).

plify that it is possible to tailor details of the sub-
band structure and of the relation between P„—P~
and n' ' simply by an appropriate choice of the
design parameters nD, np dp dp, and d;, or by even
going one step further and changing from zones of
constant doping to continuous doping profiles nD(z)
and n„(z)

The variation of the bandwidth near the classical
free-particle threshold energy is less abrupt for the
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FIG. 7. Comparison of the subband splitting between
occupied and nearest-neighbor subbands for low carrier
concentrations calculated with (solid lines) and without
(dotted lines) exchange and correlation corrections. The
dashed-dotted and dashed-double-dotted lines represent
the Fermi energy of the lowest subband P„E,o for the-
case with and without exchange and correlation correc-
tion. The design parameters are those of Fig. 5.

n-i-p-i case with wide intrinsic layers than for the
first example (compare the corresponding insets in
Figs. 2 and 5), due to the smaller width of the zone
with maximum barrier height (see Figs. 6 and 3 for
a comparison).

Finally, a comparison of the exchange and corre-
lation shift as depicted in Fig. 7 for the genuine n-i-
p-i sample with the corresponding results for the
sample without intrinsic layers shows that not only
the absolute value of the e& —6'p subband spacing is
increased but even the relative importance of the ex-
change and correlation correction is larger. The re-
sult becomes plausible if we consider that in the
present case the lowest subband wave function is less
extended in the z direction for a given carrier con-
centration n' '. The resulting larger local density
lowers the self-consistent potential in this region.
Therefore the energy of the E'p band is lowered con-
siderably, whereas the much more extended ei band
is much less affected by the exchange and correla-
tion correction.

Our last example is a n-i-p-i heterojunction crystal
consisting of n- and p-type doped layers of
Ale zGao sAs with a layer thickness of d„=20 nm,
dp 40 nm, and doping concentrations nD ——2 Q 10'

(b) n(»=1.4x 10' cm
-cI/2

I

0 d/2

z direction

FIG. 8. Self-consistent potential v (z) (thick solid line),
conduction-subband energies, and envelope wave func-
tions for one period of an Alp 2Gap SAs/GaAs n-p hetero-
junction superlattice with the design parameters
nD ——2X10' cm ', n~ ——10, cm, d„=20 nm, d~=40
nm, d; =0, dG~, ——20 nm. (a) Ground state (n' '=0) and
(b) excited state (n' '=1.4X10' cm ). The discontinuity
in the potential reflects the transition from n-type doped
Alp 2Gap 8As to undoped GaAs. The p-type layers do not
contain GaAs layers in this example.

cm, n&
——1X10' crn . The n-type layers are

separated into two layers (of thickness d„/2) by an
intrinsic GaAs layer of thickness dt-, A,

——20 nm.
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FIG. 9. Comparison of subband splitting between oc-
cupied and nearest-neighbor subbands for low carrier con-
centrations calculated with (solid lines) and without (dot-
ted lines) exchange and correlation corrections. The
dashed-dotted and dashed-double-dotted lines represent
the Fermi energy of the lowest conduction subband
/(/„E, o for the case with —and without the exchange and
correlation correction. The design parameters are those
of Fig. 8.
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This system thus provides an example of a semicon-
ductor superlattice whose subband structure in the
ground state is determined by the doping parame-
ters, the width of the GaAs layer, and the Al con-
tent of the Al„Ga~ „As alloy. Through its depen-
dence on the variable carrier concentration n' ' the
subband structure may be tuned over a wide range
as in normal n-i-p-i crystals. This is not the case in
the modulation doped heterojunction superlattices
(the dependence of the subband structure on the
electron concentration shown in Fig. 5 of Ref. 14
corresponds to a variation of the doping parameters
and not to change in a tunable charge carrier con-
centration). The dependence of E,„ttrs on—n' ' is
quite similar to the results of the first example and
is, therefore, not shown here. It is interesting to
consider the subband spacing as a function of n' '

because of the different nature of the quantum wells

(Fig. 9). The spatial extent of the wave functions is
now determined by the width of the GaAs layer
(Fig. 8), whereas in the case of the space-
charge —induced quantum wells it varied from one
subband to another and changed appreciably as a
function of n ' '. Consequently, the subband energies
are less dependent on the carrier concentration in a
n-i-p-i heterojunction crystal. A remarkable result is
the relatively large difference in the exchange and
correlation corrections for the e~ —eo and the e2 —eo
subband separations.

IV. CONCLUSIONS

We have shown that the subband structure and
the effective band gap in n-i-p-i crystals can be

tuned by variation of the nonequilibrium carrier
concentration. Our discussion was exemplified by
three systems with very different design parameters
to show how the subband structure and its depen-
dence on n' ' can be tailored within wide limits.
The n-i-p-i heterojunction superlattice, in particular,
may become of interest in the future because of the
high electron nobility in the GaAs layers and the
weak broadening of the subbands due to statistical
potential Auctuations. These features will be more
pronounced when the GaAs layers are separated
from the doped Al„Ga& „As layers by an intrinsic
A1„Ga~ „As space layer as is the practice in normal
modulation doped multiple —quantum-well struc-
tures. "

We have not discussed the hole subbands. Their
calculation is quite straightforward as the self-
consistency problem is a trivial one if the holes pop-
ulate the acceptor impurity band. The only problem
would be the coupling between light- and heavy-hole
states due to the space-charge potential. The solu-
tion of this problem may, however, be of academic
interest only, since the subband structure of the
heavy holes may be broadened too much by random
potential Auctuations in order to be detectable. In a
planned subsequent paper we will, however, provide
examples showing that the light-hole subbands will
be relevant for the observation of a steplike structure
in the optical-absorption coefficient.

We have restricted our discussion to semiconduct-
ors with a band structure of the GaAs type. Obvi-

ously, some of our results would change dramatical-

ly if, e.g., a many-valley band structure of the host
material were considered.
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