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Quasiparticle energy-band structures in semiconducting polymers:
Correlation effects on the band gap in polyacetylene
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Single- and many-particle effects contributing to the formation of energy-band gaps in

semiconducting polymers are investigated using exact-exchange Hartree-Fock (HF) theory
and Toyozawa's electronic-polaron model. The electron correlation is calculated by )4eller-
Plesset perturbation theory including explicitly all significant matrix elements in second or-
der. Their efficient calculation is facilitated by the use of optimally localized Wannier func-
tions. The importance of both short- and long-range contributions, of extended atomic basis
sets, and of the use of the full virtual space is exhibited in the case of trans-polyacetylene
(PA) as a model system. Correlation effects are shown to reduce the single-particle energy-
band gap first by diminishing the bond alternation in PA. On the other hand, due to the
self-energy corrections, the HF energy-band states are transformed to quasiparticle
(electronic-polaron) states, the valence band is shifted upward, and the conduction band is
shifted downward. The original HF energy-band gap of 5 eV is reduced to 3 eV at an es-
timated level of 70—75% of valence-shell correlation. Its extrapolated value for full corre-
lation is found to be 2.5 eV. The remaining 0.5-eV difference between theory and experi-
ment is assigned to phonon-polaron and relaxation effects.

I. INTRODUCTION

During the past few years, considerable progress
has been made in obtaining highly accurate wave
functions for insulating and metallic polymers by
the solution of the Hartree-Fock (HF) equations
with nonlocal exchange. ' Calculations of this type
also confirmed, among other polymers, in the case
of polyacetylenes the expectations that the HF
value of the fundamental energy-band gap would be
larger than the experimental band gap by several
electron volts. This fact is in agreement with simi-
lar observations made for other nonmetallic solids
and corroborates the previous theoretical results ob-
tained by Kunz and co-workers.

It is well established that the considerable errors
introduced into the optical band gap are related to
the principal deficiency of the HF point of view that
neglects the correlation between the motions of elec-
trons with opposite spin. Conduction-band electrons
and valence-band holes are regarded as "bare" parti-
cles moving in the average periodic self-consistent
potential produced by the nuclei and the other elec-
trons that do not respond to the presence of the ex-
tra particle. It is evident that this picture cannot be
physically correct, and there have been several early
efforts to improve upon it. The first quantum-

mechanical treatment of this problem was provided
by Toyozawa, who considered the interaction of an
extra particle with the rest of the electrons by intro-
ducing the concept of the electronic polaron —an ex-
tra electron (or hole) dressed with virtual longitudi-
nal excitons. The excitons are restricted to one band
without dispersion in his model, and they are cou-
pled to the electrons by a Frohlich-type interaction,
which requires that the extra charge be screened by
the static dielectric constant at large distances. No
requirement is imposed, however, for the short-
range behavior. The formalism of Toyozawa's
method closely resembles the lattice polaron prob-
lem, with the virtual excitons replacing the virtual
optical phonons. Using the intermediate-coupling
method of polaron theory, ' Toyozawa studied the
effect of electronic polarization on the state of a
low-momentum conduction electron in the
effective-mass approximation.

Haken and Schottky generalized Toyozawa's
theory for the interaction of an electron and a hole
via electronic polarization including both an r-
dependent dielectric function and self-energy correc-
tions. " Inoue et al. calculated by the electronic-
polaron model correlation corrections at the bottom
of the conduction band of several alkali-halide crys-
tals using both the Green-function and perturbation
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methods to the Toyozawa Hamiltonian. ' In
Hermanson's approach' the collective excitations of
the valence-electron system are represented by a
plasmon field whose dispersion ~(q) is defined with
the help of the longitudinal dielectric function
e( q, co), and the electron-plasmon interaction reflects
the detailed q dependence of the dielectric response.

Kunz and co-workers extended the electronic-
polaron model for the case an electron in a filled
band as well and studied several nonmetallic crys-
tals. ' ' Pantelides et al. ' also included metallic
systems into the analysis and estimated the contribu-
tion of short-range effects. Finally, Toyozawa's
model was applied to estimate correlation effects in

organic molecular crystals of the tetracyano-
quinolenium (TCNQ) type' and in deoxyribose nu-

cleic acid (DNA) models. '

All the above-mentioned applications of the
electronic-polaron model' ' gave interesting quali-
tative estimates about the effect of electron correla-
tion in different solids. It is evident, however, that
for quantitative predictions the two fundamental ap-
proximations, inherent in the previous calculations,
must be removed: (i) the assumption of a single,
dispersionless exciton band and (ii) the phenomeno-

logical estimation of the electron-exciton coupling
matrix element. These improvements of the theory
seem to be absolutely necessary if we consider that
even in a relatively simple solid such as polyace-
tylene the conduction bands are spread over a region
of about 60 eV, and, as we shall see later, excitations
to higher-lying bands also give non-negligible contri-
butions to the correlation energy. On the other
hand, the interaction matrix elements strongly de-

pend on the details of the excitonic wave function;
therefore they must be calculated with the same ac-
curacy that is achieved in solving the HF problem
itself.

The aim of this work is to combine the
electronic-polar on model with the theoretical
methods worked out to calculate correlation effects
in atomic and molecular systems from first princi-
ples (without empirical parameters or phenomeno-
logical approximations). The configuration-
interaction (CI) method can be applied only after
truncation to larger systems (restricted usually to
single and double excitations). However, in this
form it is not "size consistent, " i.e., its application
even to an ensemble of isolated units leads to nonad-
ditive results. This feature makes it inapplicable to
infinite solids.

On the other hand, many-body perturbation
theoretical (MBPT) methods based on Rayleigh-
Schrodinger (RS) PT define their total energy by the
linked-cluster expansion, ensuring proper size
dependence for earth order of PT. ' Their efficien-

cy depends heavily on the choice of the zeroth-order
Hamiltonian Ho. Various possibilities for the choice
of Ho for correlation-energy calculations will be dis-
cussed elsewhere. In this paper we apply the
Meller-Plesset (MP) partitioning scheme, 24

which treats the full Hamiltonian H as a perturbed
spin-restricted HF (RHF) Ho. A similar scheme
based on a spin-unrestricted HF (UHF) zeroth-order
Hamiltonian has recently been successful when ap-
plied to a larger number of molecules.

As a physical system, we shall investigate the
electronic structure of pure trans-polyacetylene
(PA). This interesting polymer has been the subject
of both theoretical and experimental investigations
for many decades, and the recent discovery of
enormous changes in its conductivity upon doping
stimulated a great number of measurements and cal-
culations to understand the mechanism of electrical
conduction in this material. One of the basic quan-
tities governing the electrical properties of PA is, of
course, the fundamental energy gap whose origin
has been the subject of dispute for a long time. Us-
ing the first-principles version of the electronic-
polaron method, we shall therefore calculate this im-

portant quantity, including electron correlation.
The outline of the paper is as follows: In Sec. II

the MP scheme for infinite periodic solids is intro-
duced through the use of ab initio linear combina-
tion of atomic orbitals (LCAO) one-particle Bloch
orbitals, and an expression for the ground-state
correlation energy (E„)of the N-particle system is
derived in terms of pair correlations. The
electronic-polaron model is introduced in Sec. III us-

ing the previously discussed pair-correlation ener-

gies. Various factors (size of the atomic basis, num-
ber of included conduction bands, etc.) influencing
the value of E„are investigated, and electron and
hole self-energy corrections are calculated for trans-
PA in Sec. IV. Finally, the summary and the con-
clusions are presented in Sec. V.

II. MSLLER-PLESSET SCHEME FOR
INFINITE PERIODIC SOLIDS

The zeroth-order approximation to the true
many-electron wave function 4 is taken as a HF
determinant

@nF——(N!) '~ det[ . P (r;)a(o;)
XP" (r;+()P(o';+)) ' ]

(2.1)
The N electrons are assigned to doubly occupied
Bloch orbitals (with band index m and quasimomen-
tum index k) for which a tight-binding LCAO ex-
pansion is used:
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h=i a=i

~
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G and n stand for the number of cells and for the
number of basis orbitals per cell, respectively. The
atomic functions X~ are fixed linear combinations of
Gaussian-type atomic orbitals (GTO), which have
been optimized for atomic and molecular calcula-
tions. ' The size of these atomic basis sets plays
an important role both in the HF and correlation
studies of solids; therefore we shall specify later in
more detail the different sets used in our calcula-
tions. From the set of orthonormal occupied Bloch
functions defined in Eq. {2.2) we can construct the
first-order density matrix of the crystal

p(r, r ')= gg{{) (r)[P "(r '}]~, (2.4)
m

which in turn defines the Pock operator (in atomic
units)

@0 @HF ~

I =CACI@~F ~

AS
IJ A S I J HF&

(2.7)

(2.8)

(2.9)

~ ~ ~

The corresponding eigenvalues of Ho are

(occ)
Eo= g ez ~

K

(occ)

EI = g EE+EgA

K~I

AP
(occ)

EIJ = g ex +Eg +EB ~

K~I
K~J

(2.10)

(2.11)

{2.12)

~ ~ ~

Expanding the eigenfunction 4'" and the cor-
responding eigenvalue E" of H"=Ho+kg (where

Q = H —Ho is the perturbation operator) accord-
ing to the RS PT in the form

occupied levels in the ground-state configuration,
while A,B, . . . refer to virtual levels, we can classify
the eigenfunctions of Ho as singly, doubly, etc., ex-

cited configurations:

+ dr'f , p(r', r'}
O' —4 +A,% +A, '0 + (2.13)

~pp(r, r ) p(, )
/r —r'/

(2.5}

nA is the number of atoms per cell and P is the per-
mutation operator interchanging the variables before
integration. The self-consistent p{r, r } is obtained

by the iterative solution of the Fock equation'

F(r)P "(r}=e"{{)"(r), (2.6)

E"=Eo+AE1+A, E2+ (2.14)

and terminating these series at second order, we ob-
serve that the only matrix elements of Q that must
be calculated, are of the type (40~ Q ~

4» & (due to
Brillouin's theorem and of the fact that Q contains

only two-electron operators}. Setting A, =l, we ob-

tain in first order the term missing from Eo to the
HF energy, i.e.,

E„,=E,+E, =E,+(C, iQ iC, &, (2.15}

while in higher orders we get correlation corrections
to it. The full correlation energy is defined as
E„=E—E~F. Its value in second order is ob-
tained as

, &~OI Q I
~»'&&c~»'I Q 1

~0&E2- AS
I J A S E0 EIJ

(2.16)

(the prime on the summations ensures that each
double substitution is counted only once). Using the
Slater-Condon rules to expand the matrix elements
in Bloch functions, we get

which defines the one-electron energy-band structure
e". In calculating the matrix elements of F, special
attention must be paid to the proper truncation of
the infinite lattice sums, arising from the potentials
in Eq. (2.5), to avoid numerical instabilities that may
lead to nonphysical solutions in the case of extended
atomic basis sets. '

Following M511er and Plesset we now choose the
unperturbed Hamiltonian Ho as sum of the Fock
operators. Besides 4zF, we can construct further
eigenfunctions of Ho by replacing some of the occu-
pied orbitals in 4~F by virtual orbitals, which we
also obtain from Eq. (2.6). Introducing the fermion

creation and annihilation operators cI and cI,
respectively (with the compound index I= ti, k}), —
and labeling the states such that I,J, . . . stand for
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, 1&dr(144(2) I(1 I'u)"iz'
I be(I)A(2)& Ig

I J A B E'y+ EJ —6g —6g
(2.17)

One of the major advantages of second-order PT
in correlation studies is the fact that in this case
only matrix elements between the ground-state and
doubly excited configurations must be computed. In
the next order, however, the knowledge of the ele-
ments &4q~

~ Q ~
@PL) is also required, whose list

may exceed that of the former elements by orders of
magnitude, since even with the use of basis sets of
moderate size the virtual orbitals are much more
numerous than the occupied ones. It seems, there-
fore, that even applying sophisticated techniques for
the evaluation of the above-mentioned matrix ele-

ments the determination of the higher-order correla-
tion corrections will not be an easy task for
medium-sized elementary cells. In order to get an
estimate of the importance of these terms, MP cal-
culations up to fourth order are in progress in the
case of simple monatomic linear chains.

Two other possibilities of improving E„seem to
be, however, more promising in the case of solids.
On one hand, the use of the virtual orbitals obtained
from Eq. (2.6} for the construction of excited config-
urations is only a convenient, but not necessarily the
most efficient choice. Modified HF virtuals as
well as other sets of orbitals orthogonal to the occu-
pied space could be used here as well [but trivial
generalizations of the molecular methods do not
work for solids since the operator added to F to ob-
tain proper virtual orbitals that correspond to an
(N —1)-particle potential goes to zero in infinite
systems]. On the other hand, one can utilize the fact
that there is no natural expansion parameter A, to be
used in Eqs. (2.13) and (2.14) for the correlation
problem. This makes the definition of the order of
the perturbation contributions ambiguous and per-
mits the modification of Ei in Eq. (2.16) in order to
get closer to E in second order. Various partitioning
schemes have been proposed to achieve this goal,
but their common feature is that they finally arrive
at the "shifted denominator" of the Epstein-Nesbet
PT. Work along these lines is in progress in our
laboratory.

Another important feature that makes second-

order PT especially attractive for solid-state applica-
tions is the fact that Eq can be thought of as a sum
of separate electron-pair contributions if it is written
in the form

E,=gg'eri ~

I J
(2.18}

where the pair-correlation energies ezJ are defined

by the comparison of Eqs. (2.16) and (2.18). In this
way, the particle concept can also be preserved
beyond the HF theory, and one can define quasipar-
ticle states (and energy bands) that incorporate
correlation effects at the given level of approxima-
tion. Together with the corresponding wave-
function corrections obtained from

J g g Ep —E

these quasiparticle bands play an important role in
the calculation of optical and transport properties in
polymers. As it is well known, furthermore, the
energy is invariant in all orders of MPPT with
respect to unitary transformations among the occu-
pied spin orbitals in 4HF (since Hp itself is invariant
in the same sense). The individual terms eiz in Ei,
on the other hand, are not invariant and they may
turn out to be quite different for, e.g., canonical
(Bloch} orbitals or for localized ones. This degree of
freedom permits us to transform the Bloch basis [by
the appropriate choice of the free phase of the i)}'s as
obtained from Eq. (2.6)] to a set of Wannier func-
tions for which the intraorbital contributions are
maximized. The same procedure also helps to com-
pute eqJ's that are transferable between related poly-
mers and to facilitate the inclusion of correlation ef-
fects in aperiodic polymers.

The calculation of the matrix elements appearing
in Eq. (2.17) is somewhat tedious but requires only
simple algebra. Substituting the Bloch functions
(2.2) and using their transformational properties, we
obtain for the pair-correlation energies

z ~A(ij, a, b, k;, kz. , q)
~

k. k. k.+q k.—q+E') —E'g —E'y

(2.20)

with
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The physically meaningful correlation energy per elementary cell is given by

E ~A(i j,a, b, k;, kj, q)
~

e...=
G

=XXXXXXXG '
~,

J a b k i k q 6'It +6J' —6a

(2.22)

A (ij,a, b, k;, kj, q) = g g g [exp[i(q R—k; R; —kj RJ )]
R R;R.

k.—q

X&A; (ri)A J(r2 —(R —R; —R)) ~r» ~A, (ri —( —R;))Ab (r2 —( —R; —R))&

—exp[i [(ki —k; —q} R—k; R; —kj Ri])

X{A; '(ri)AJ '(r2 —(RJ —R; —R))
~
r, 2 i As ' (r, —( —R;))A, ' (rq —( —R; —R}))].

(2.21)

Since there are G values of k in the first Brillouin
zone, the three summations in reciprocal space give
a contribution proportional to G, i.e., e is in-
dependent of G as 6 goes to infinity. (One recipro-
cal space sum is saved due to momentum conserva-
tion: This fact underlines the importance of the
proper use of translational symmetry in correlation
studies on solids. )

III. QUASIPARTICLE ENERGY BANDS:
THE ELECTRONIC-POLARON FORMALISM

The physical content of the HF energy bands is
given by Koopmans's theorem, ' which states that
the orbital energies calculated by Eq. (2.6} for the
conduction and valence bands, respectively, are
equal to the corresponding electron affinities and
ionization potentials:

e, '(HF) =ELF+ —EHF', (3.1)

ei (HF}=EHF' EppF (3.2)

If we make the assumption that during the excita-
kI k

tion of an electron from the state P) to P,
' the

distribution of the other electrons is not changed,
i.e., no relaxation takes place (which is quite a
reasonable assumption for an infinite system) and,
furthermore, if the excited electron and the remain-

ing hole are infinitely separated, then the excitation
is a simple one-electron transition over the single-
particle energy-band gap:

hex(HF) =e, '(HF) —ei '(HF) . (3.3)

Following Toyozawa's suggestion, as further
developed by Kunz and co-workers, ' ' we can
also retain the above picture if we go beyond the HF
model. By analogy to Eqs. (3.1) and (3.2) we define
quasipartiele (QP) states using, instead of the HF to-
tal energies, the correlated energies from the preced-
ing section:

c(QP} E(N+i) E(N)

)(QP) E(N) E(N —I)

(3.4)

(3.5)

By writing for the total energy E=EHq+E2, we
obtain

7k k
e, '(QP) =e, '(HF)+E'2 +" E2 ', — (3.6)

el (QP)=e& (HF)+Ei ' E2— (3.7)

E2 '= g g'ePi'= g g 'elJ''+ g eZ ',
I J I~L J~L I~L

(3.8)

In order to interpret these expressions we use the
decomposition of E2 into the sum of independent
pair correlatiohs. We note that the application of
the results obtained for the N-particle system in Sec.
II involves a further approximation here since the
(N +1)- and (N —1)-particle states are not closed-
shell configurations. Thus Brillouin's theorem does
not exactly apply and, therefore, also single-particle
excitations should be included in PT. It can be
shown, ' ' however, that the contribution of these

singly excited configurations is negligible as com-
pared to the doubly excited ones, which are included
here. A further problem should be also mentioned,
though it is a general problem in band-structure
theory: Namely, the P's used to construct the
(N+1)- and (N —1)-particle states are eigenfunc-
tions of the N-particle Fock operator instead of be-
longing to the (N+1}- or (N —1)-particle Fock
operators, respectively. In principle, one should use
again an open-shell formalism for their determina-
tion, but it can be hoped (and the overall success of
band theory supports this view) for the infinite sys-
tem that the error made is not a serious one.

Using the convention that, e.g., E2" ""denotes
the correlation energy of the (N —1)-particle state,
which we obtain by removing an electron from the
valence-band state L, we obtain from Eq. (2.18)
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z. (N —1)L ~ ~ e (N —1)LI"Z
—~ ~ &IJ

I~L J~L
E(N+1)C ~ ~i (N+1)C

I J
(C) (C)

(N+1)C+ g (N+1)C

I J I

(3.9)

(3.10)

+ y y (
(N pl)C (N))

I J
(3.11)

[The first two suminations in Eq. (3.10}involve also
the extra occupied conduction-band state C.] Sub-
stituting these expressions into Eqs. (3.6} and (3.7),
we get for the quasiparticle energies

ec(QP}=ec(HF}+g epc+"
I

duced in 4' +" as compared to 4' ', since scatter-
k

ings to (t),
' are excluded. Froin the point of view

of (p' +", the terms e~q
+" ep—J' in Eq. (3.13) de-

k
stabilize the hole in P,

' (before its occupation with

the extra electron); their sum results, therefore, in a
hole self-energy X'c + "(h). The formal analysis of
these self-energies can be made more transparent if
we denote the contribution of each double excitation
to the correlation energy by re, i.e., we write Eq.
(2.17) in the form

(3.15)

In terms of these ~'s the self-energies are obtained as

X(N+1)( ) y (N+1)C y y y t AB

I I A~CB~C

el (QP)=eL (HF}+ g epL'
I~L

y (
(N) (N —))L)

I~L J~L
(3.12}

(3.16)

X(N+1)(h) y yi y y i AB y yi AB

I J A+CB~C A B

(eQlP) =eL (HF)+Xp'(e)+Xp'(h} . (3.14)

Recalling Toyozawa's electronic-polaron model, we
can identify the origin of these self-energy correc-
tions as a cloud of virtual excitons dressing the
"bare" HF particles (in complete analogy to the lat-
tice polaron problem, where virtual optical phonons
accompany the polarizing particle}. As shown by
Eq. (2.20), each "correlation bond" between two HF
particles consists of a sum of momentum-conserving

k,. k,.+ q
virtual scattering pairs (P;

' ~P, ' and
k. k.—q

Pb J, respectively).
With this physical model in mind we can visualize

the formation of an electronic polaron according to
Eqs. (3.11) and (3.13) in two steps. At first, the ex-
tra particle put into the HF conduction-band state

((),
' inust establish its new correlation bonds with

the other N particles present in the (%+1)-particle
system N' +", giving rise to the electronic self-
energy correction Xc + "(e). At the same time, ow-

ing to the occupation of the previously empty state
k4, ', the pair correlations eIJ (I&C, J&C) are re-

Following the suggestion of Pantelides et al. ,
' we

can interpret the correction terms appearing in addi-
tion to the HF band energies in these equations as
electron and hole self-energies [X(e) and X(h),
respectively]. For this purpose we introduce the no-

tation

ec(QP) =ec(HF)+X'c +"(e)+X'c +"(h),

(3.13)

~IJ
I J A

(3.17}

Before explicitly calculating these quantities we can
observe some qualitative trends for them. ' For the
bottom of the conduction band the denominators of
ric in Eq. (3.16) are always negative (see Fig. 1);
therefore, the electron self-energy shifts this state
downward. Also, since the re's in Eq. (3.17) are
negative, the hole self-energy produces a positive
(upward) shift. [Note that in the calculation

of Xc + (h) C is regarded as an empty state tha
will be occupied only as a second step after the
correlation stabilization of the corresponding "hole
state. "] Furthermore, we can expect that

~

X' +"(e}
~

will be usually larger than

~
Xc +"(h)

~

since in the latter case both scattering
events occur across the gap and, therefore, as a net

C&) C o B'2
)&

FIG. 1. Virtual excitations contributing to the forma-
tion of electron and hole self-energy corrections in the
(N + 1)-particle state.
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result the bottom of the conduction band will move
downward due to polaron formation. It must be
mentioned, however, that this comparison is very
approximate since in most cases the symmetry of
the wave functions entering the calculation of the ~'s
(which can be different for different conduction
bands) may strongly modify this picture or even re-
verse it (higher-lying conduction bands may have
larger correlation contributions than the lowest con-
duction band, despite the larger denominators).

A further difficulty may arise if we calculate po-
laron states belonging to the upper part of the con-
duction band. As we can see from Fig. 1 for the
state C' the self-energy correction is larger than that
for C since the energy differences for the scatterings
I~A and C'~B, respectively, have opposite sign
[and at the same time the denominators of the J~C
scatterings increase in Eq. (3.17)]. This situation re-
sults in a stronger shift for the upper conduction-
band states than for the lower states, i.e., in an effec-
tive band narrowing (in analogy to the Franck-
Condon factor appearing in phonon-polaron theory).
We have to keep in mind, however, that if the width
of the HF conduction band is equal to or larger than
the forbidden gap, second-order MPPT breaks down
for the top of the band, and one must either sum up
to higher orders or choose another partitioning
scheme. For the same reason, higher-lying conduc-
tion bands cannot be corrected by the scheme ap-
plied previously.

To calculate polaron corrections to valence-band
states we decompose the self-energies defined by
Eqs. (3.12) and (3.14) as

~L (e) X &IL = X XX &tL, , (3 lg)
I+L I~L A B

= X X' XX' »'-XX t".'"
I~L J~L A B A B

(L) (L)

IJ
I~LJ~L A

(3.19)

IV. CORRELATION EFFECTS IN
trans-POLYACETYLENE

Pure PA may be crystallized into two isomers
having cis and trans single-chain structures. The

Looking at Fig. 2, with the same reasoning used be-
fore, we conclude that at the top of the valence band
XL '(e) produces a negative shift, while XL '(h) a
positive shift; in this case the latter should be gen-
erally larger in magnitude. The. same caution as dis-
cussed above applies again using MP partitioning.

FIG. 2. Virtual excitations contributing to the forma-
tion of electron and hole self-energy corrections in the N-

particle state.

former is thermodynamically unstable, and it is
transformed upon heat treating or doping to the
latter structure. The lack of single crystals and the
fibrous morphology of PA preclude the determina-
tion of the geometrical structure by traditional crys-
tallographic methods, and therefore, the "existence
and magnitude of bond alternation has been the cru-
cial and fundamental issue remaining to be
resolved. " The closely related second important
question is, of course, the origin of the energy-band

gap observed in the excitation spectrum of PA.
Since no precise structural parameters of PA can

be obtained experimentally, the theoretical investiga-
tions optimizing the single-chain bond lengths and
bond angles from first-principles calculations
(without empirical input) are of interest. They
predict at the one-electron (HF) level the trans form
to be more stable, independent of the atomic basis
sets applied. Inclusion of interchain interac-
tions as well as electron correlation effects does not
qualitatively change this picture.

Before applying the previously discussed
electronic-polaron scheme to the energy-band gap
problem of PA, we shortly summarize the results of
MP correlation calculations performed for the Ã-
particle ground-state problem. Since it is well
known from molecular physics that the extension of
the atomic basis set plays a crucial role in correla-
tion studies, we applied in this work five different
sets starting from a minimal one (STO-36, Ref. 29),
extending it to double-g set in the valence shell [4-
31G, 6-31G (Ref. 30)], and including also d-type po-
larization functions on carbon (6-316*) and a p set
on hydrogen (6-316~*, Ref. 47). The specifications
of these sets are collected in Table I. The systemati-
cally increasing quality of these basis sets allows one
to observe the influence of the size of the atomic
basis on the one hand, and it permits one also to
draw, by extrapolation, basis-set —independent con-
clusions. In the course of the PT calculations we
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TABLE I. Atomic basis functions used in the LCAO expansion of the Bloch orbitals. The
convention rsvp/psvp, etc., means that on each atom p s-type, v p-type, etc., Gaussians are

centered and are divided into p, v, etc., groups (contractions).

Notation

a: STO-3G
b: 4-31G
c: 6-31G
d: 6-31G'
e: 6-31G*~

Carbon atomic set

6s 3p/2s 1p
8s 4p /3s 2p

10s4p /3s 2p
10s 4p 1d/3s 2p 1d
10s4p 1d/3s2p 1d

Hydrogen atomic set

3s/1s
4s/2s
4s/2s
4s/2s
4s 1p/2s 1p

did not include excitations from core orbitals, since

we found in a preliminary calculation that they con-

tribute only 1—2% to E2 (on the other hand, an un-

polarized core is a certainly good approximation in

the case of the physical effects that we are looking

for}.
The major computational effort in PT is the

transformation of the bielectronic integrals, which

are calculated for the HF problem in terms of the
AO basis (X's), into the Bloch basis (P's}. In second

order, not considering k dependence, this would be a
relatively simple task since the number of operations
needed would be proportional only to n v (where v

is the number of filled bands). The difficulty arises,
however, from the fact that the matrix elements in

Eq. (2.21) must be calculated in a momentum-

dependent manner, i.e., one would have to perform
the above transformation for a larger number of
representative points in the Brillouin zone (BZ),
which would be an impractical time-consuming pro-
cedure for PA (especially for larger atomic sets).
We can see, on the other hand, that the problem is
not the entire k dependence in Eqs. (2.20) and (2.21},
but only the part entering through the LCAO coeffi-

cients cp into the fourfold summation over the AO
indices [see Eq. (2.3}]when we form integrals of the

type (A;A& i
r i2'

i A, Ab ). Thus we can avoid those
difficulties by expanding the Bloch orbitals in terms
of Wannier functions (WF's}

P"(r)=G 'i +exp(ik R)w (r —R) . (4.1)
R

The WF w (r —R), localized around the cell R, be-

longs to band m; it is obtained by a unitary transfor-
mation of the corresponding P's:

w (r —R)=G 'i~+exp( —ik R)P "(r) .
k

(4.2)

The WF's solve the previously discussed problem
only if they are well localized in real space, i.e., in
their LCAO expansion

w (r —R)= ggd& Xz(P. R Rs), (4—.3)—
h p

the overwhelming contribution comes from the cen-

tral cell and its closest neighbors. This can be
achieved in PA if before performing the transforma-
tion in Eq. (4.2) we make use of the fact that the

phase of the P's, as obtained from Eq. (2.6}, is un-

determined, i.e., any Bloch function of the form

=P" exp(iA") is, also an eigenfunction of the
same Fock operator (with the same eigenvalue).

This degree of freedom can be used to influence

various properties of the WF's as obtained from Eq.
(4.2) (symmetry, localization, real or complex na-

ture). ' Comparing different methods, ' we

found that in PA the most efficient localization can

be obtained by optimizing the integral proposed by

Blount

I(A, ")= w (r)z w (r)dr,m

where the z axis is identical with the polymer axis
and the integration is restricted to the unit cell at
R =0. This variational procedure of determining

A,~ in the entire BZ allows for one further degree of
freedom that can be used to calculate either real or
symmetry-adapted WF's. From the point of view of
the PT calculation, the former property turned out
to be more advantageous. '

Substituting the Bloch functions as given by Eq.
(4.1) into Eq. (2.17), we arrive at the same expression
for the matrix elements A as before LEq. (2.21)], with

the only difference being that the k-dependent A' s
are substituted by the R-dependent w's. The compu-
tational problem has been further reduced in our
calculations by an effective selection procedure ap-

plied before the actual transformation of the in-

tegrals from the AO basis to the WF's. To estimate
the order of magnitude of whole groups of integrals

proved to be especially important in systems such as

PA, where the majority of the contributions is very
small due to symmetry reasons.

Turning to the results, we present first in Table II
the HF and correlated (E =EHF+E2) total energies

per elementary cell of trans-PA as obtained for the
optimum of the bond alternation LM (the four in-

dependent structural parameters shown in Fig. 3 had
been optimized previously using the. same basis
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TABLE II. Optimized single-double bond-length difference hR in trans-PA as obtained
with the HF approximation and using second-order MPPT (E =EHF+E2). The total energies
per elementary C~H~ units EHF and E belong to the optimum bond alternation for a given
basis set.

Basis set

STO-36
4-316
6-316
6-316'
6-316"

~HF
(A)

0.156
0.112
0.109
0.103
0.103

EHF
(a.u. )

—75.947 121
—76.776 843
—76.859 247
—76.886 912
—76.892 675

ARE
(A)

0.122
0.091
0.085
0.084
0.084

E
(a.u. )

—76.065 389
—76.955 733
—77.036 179
—77.137486
—77.168 100

sets' ). We can see that the value of ~ is well con-
verged at both levels of approximation with respect
to the basis-set extension, and its correlated value (if
projected on the polymer axis) is in good agreement
with the experimental one published recently. ' We
can observe at the same time that, though EHF has
reasonably converged, a considerable part of E2 is
still missing. This is physically understandable since
our spd sets still do not have enough oscillations to
make it possible for the electrons to avoid each other
efficiently. For this purpose further basis functions
with higher angular momenta would be required
that could increase (through their nodes) the kinetic
energy and thus result in a larger correlation contri-
bution by virtue of the virial theorem. The compar-
ison of the influence of the atomic basis for EHF and
E2 is facilitated by Fig. 4. We can see that the mag-
nitude of the slope for the E2-vs-EHF curve gets
larger and larger in the region of better basis sets.

Another question, especially interesting from the
point of view of electronic-polaron theory, is the role
of short-range correlation effects missing from the
Toyozawa model. These effects are associated with
larger exciton momentum, i.e., thinking in an ex-
tended zone scheme, they involve excitations to
high-lying conduction bands. We therefore intro-
duced in a test calculation thresholds for the max-

imum exciton energy in calculating E2. The results,
presented in Table III, show that high-energy excita-
tions give, despite the larger energy denominators
associated with them, substantial contributions to
the correlation energy. It is interesting to observe,
furthermore, that energy differences are also strong-
ly influenced by these effects. As we can see from
the table, the prediction of the correlation contribu-
tion to the alternating-to-equidistant phase transi-
tion energy in PA would be in considerable error on
the basis of low-lying excitations. The extension of
the virtual space is, of course, closely related to the
previously discussed basis-set problem and under-
lines again the need for f, g, etc., orbitals to obtain
proper short-range correlations.

One would like to know, of course, the percent of
the full valence-shell correlation energy included in
E2 with the best spd basis used. We can get an ap-
proximate answer for this question if we recall that
the valence-shell correlation energy of an acetylene
unit was estimated to be ——10 eV (Ref. 53); there-

4150-

)R,

H H

QR= R„-R~

FIG. 3. Geometrical structure of trans-PA showing the
bond alternation hR =R

~
—R2.

4250-

I

-76.85
I r/ I

-75.95 -7690

EHF(a.u.)

FIG. 4. Correlation energy per C2H2 formula unit vs

HF energy per C2H2 formula unit in alternating trans-PA
using different basis sets (second-order Mailer-Plesset PT,
RHF scheme).
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TABLE III. Dependence of the correlation energy (E2) in alternating and equidistant
trans-PA on the number of conduction bands included in the second-order MPPT calculation.
E,„, is the upper energy limit for conduction-band states that are used to form virtual exci-
ton pairs (results obtained with a 4-31G basis set).

Eexc,max

(a.u. )

0.51
0.88
1.05
1.26
1.95

Number of
conduction bands

included

4
6
8

11
15

Ealt
2

(a.u.)

—0.035 851
—0.069262
—0.104408
—0.151770
—0.178 890

Eeqllid
2

(a.u. )

—0.040 146
—0.072 908
—0.107464
—0.154257
—0.181 135

Ealt Eeqlnd
2 2

(kcal/mol)

2.695
2.324
1.921
1.561
1.409

fore our best energy ( ——7.5 eV) should cover
70—75%%uo of the total value. Nearly the same result
was also obtained recently for an infinite atomic-
hydrogen model chain.

Since various m.-electron Hamiltonians have been

very extensively applied in the past to the polyene
problem, it is also of interest to ask what part of
the correlation originates from purely n.-electron in-

teractions. (Both the highest filled and lowest un-

filled bands have n. symmetry. This question is,
therefore, decisive for doping and for conductive
properties. ) Since, due to symmetry, the rr and m--

type Bloch functions can be completely separated,
we can evaluate the m.-~, cr-cr, and v-cr contributions
to E2 individually. Almost independently of the
atomic basis set, we found that E2' contributes
only 15—20%, showing that for this kind of poly-
mers the whole valence shell must be treated as an

entity; a simple model separating bands with m.-type
symmetry would not work.

The central part of this work is the evaluation of

the self-energy corrections to the HF band energies
using Eqs. (3.11) and (3.12). These quantities are
collected in Table IV for basis sets a, c, and e (the
results obtained for b and d are very similar to c and
e, respectively; therefore, they are not shown here).
The X, 's are calculated at the bottom of the lowest
conduction band, while the X„'s refer to the top of
the highest valence band. These results substantiate
for all basis sets the conclusions of the previous for-
mal analysis, though the quantitative details are dif-
ferent. We can see that the shifts result for both
bands from a positive and a negative term, but as a
net effect the conduction band is shifted downward
while the valence band is shifted upward.

We can follow the formation of the polyene
energy-band gap in four consecutive steps as shown
in Fig. 5. The uppermost curve is obtained at the
HF level using the fixed geometry obtained for the

&p,(ev1 a
S

TABLE IV. Different physical quantities contributing

to the formation of the quasiparticle energy-band gap in

the alternating trans-PA: one-particle energies e(HF),
electron and hole self-energies, X(e) and X(h), respective-

ly, and quasiparticle energies e(QP). All quantities are

given in eV.

Quantity

~cond, min(~ )
(N+1)

~cond, min( e )

&cond, min(QP)

e„g, (HF)

e„u (QP)

STO-3G

3.719
0.112

—0.452
3.379

—4.563
0.583

—0.312
—4.293

6-316

—0.806
0.193

—0.623
—1.236

—5.732
0.896

—0.436
—5.361

—1.322
0.274

—0.938
—1.996

—5.749
1.497

—0.724
—4.976

I

-76.80
i I

-75.95 -76.75 -76.85

EHF (a.u. )

FIG. 5. Energy-band gap of trans-PA vs the HF ener-

gy per C2H2 formula unit obtained with the five different

basis sets (a —e) defined in Table I. )(: HF calculation

with fixed bond alterntion. 0: HF calculation with op-
timized bond alternation. 6: HF + MP calculation with

optimized bond alternation but using he~
=e „d;„(HF)—e„,l,„(HF). CI: electronic polaron
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FIG. 6. Extrapolation of the energy-band gap in

trans-PA obtained by the electronic-polaron method using

different basis sets.

minimal basis (a). The extension of the atomic basis
does not influence significantly in this case the value
of hes{HF). On the other hand, it is reduced by -4
eV if the bond alternation is optimized (at the HF
level) with each basis set (second curve from the
top). Nearly -0.7 eV further reduction is obtained
if the structural optimization is performed with the
correlated wave function {third curve from the top}.
The lowest curve shows the energy-band gap values
after polaron formation [Ees(QP)]. It can be seen
here that the amount of correlation, included at this
stage, plays a predominant role: The polaron effect
is more than 2 times larger in the case of the extend-
ed spd basis than for the minimal one. The best
value obtained with this method is keg ——2.98 eV.
For the ionization potential we get at the same time
4.976 eV, which can be reasonably compared with
the experimental value of 4.6 eV.

Since even our best wave function contains only
-75% of the total valence-shell correlation, it
would be interesting to extrapolate the obtained
value of her(QP} for the case of full correlation.
Figure 6 shows that the estimated theoretical value
would lie at -2.5 eV, i.e., about half an electron
volt higher than the position of the first peak in the
absorption spectrum of pure trans-PA. The tail of
the experimental spectrum reaches to 1.4—1.5 eV
probably due to structural disorder present in PA.
This tail is, of course, not represented in the above
fully periodic calculation, for which the one-
dimensional density of states curve has a sharp max-
imum at the band edge. Our theoretical result must
be compared, therefore, with the position of the cor-
responding peak in experiment, which lies about -2
V 43

V. SUMMARY AND CONCLUSIONS

The role of various single- and many-particle ef-
fects in the formation of the band gap in polyenes
has been the subject of a number of previous
theoretical investigations. In these calculations
the ~-electron system of polyene has been treated in-

dependently of the other valence (and core) elec-

trons, and it has been described by model Hamil-
tonians of the Hubbard or Pariser-Parr-Pople
type. Different instabilities of the one-particle (HF)
model have been also identified, and their possible
contribution to the energy-band gap in polyene has
been established (for a recent review and systemati-
zation of these instabilities we refer to Ref. 66).

Following the discovery of highly conducting PA
samples, the electronic structure of different PA
models has also been calculated by semiempirical
all-valence electron methods like extended Hiickel
theory and complete neglect of differential over-

lap ' as well as using ab initio HF pro-
cedures. ' No effort has been undertaken,
however, until now to correct the unrealistically
large HF energy-band gap values obtained in these
calculations.

The main objective of our present study was the
separation of the one- and many-particle effects to
clear up their individual contribution to the energy-
band gap. We optimized, therefore, the structural
parameters of polyene first at the HF level, using
more and more extended atomic basis sets. We
found that the bond alternation converges with

respect to basis set size at the spd level but the
energy-band gap at the estimated HF limit is still
-5 eV (the corresponding bond alternation is 0.103
A).

As a second step we included many-particle
(correlation} effects in the ground state by second-
order PT, which reduced the bond alternation to
0.0&4 A and the gap to -4.4 eV. Contrary to the
one-particle level, we found the spd basis still not
completely satisfactory. Further polarization func-
tions as well as higher orders of PT are needed to
cover the missing 25—30% of correlation energy in
this system. The short- and long-range parts of the
correlation proved to be equally important; there-
fore, the high-lying conduction bands must be in-
cluded without doubt in such calculations on solids.
Since, however, the bond alternation practically con-
verged at the estimated level of 70—75% correla-
tion, the single-particle energy-band gap would
probably also not change by improving our wave
function.

A further substantial reduction of the energy-
band gap is observed if correlation is included not
only in the ground state but also during the band-
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to-band excitation process. The charge carriers pro-
duced in this way are no longer "bare" electrons and
holes, but quasiparticles consisting of a HF particle
and a polarization cloud. The energy-band gap for
this quasiparticle excitation process is -3 eV at our
70—75% correlation level. Extrapolation of our re-
sults to the case of full correlation reduces this value
to -2.5 eV, lying still half an electron volt above
the experimental result. One could think that the
difference comes mainly from the binding of the
created quasielectron to the remaining quasihole.
Our calculations ' have shown, however, that this
excitonic binding is very small in polyene due to
screening effects (the exciton, which is bound for a
HF electron-hole pair, is nearly dissociated if corre-
lation is included). We think, therefore, that other
polarization processes (including high-frequency lat-
tice vibrations) should be also included in the pola-
ron calculations to find the origin of the above
discrep ance.

On the other hand, the approximate procedure
used in this work to construct the (¹I)-particle
many-electron states from the self-consistent N-
particle ground state should be also improved by ap-

plying truly self-consistent open-shell wave func-
tions for these ionized states. Work along these
lines is in progress in our laboratory.
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