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Transport in lateral surface superlattices
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A numerical Monte Carlo simulation is carried out to find the velocity and energy as a
function of the electric field for a surface superlattice structure. The energy is found to sat-
urate at the half-filled-band energy, while the velocity displays a negative differential con-
ductivity. The scattering rates included in the Monte Carlo routine have Van Hove singu-
larities arising from the electron density of states. This singularity is removed by including
a self-energy correction to the electron Green s function. The simulations indicate that the
negative differential conductivity is due to Bloch oscillations of the electrons.

I. INTRODUCTION

The present understanding of device physics has
advanced to the point where quantum interactions
can be used to develop novel device concepts. Not
only must quantum effects be taken into account
when characterizing next-generation devices in tight
arrays or structures such as metal-oxide-
semiconductor (MOS) or charge-coupled device
(CCD) arrays, they can lead to new conceptual phe-
nomena. Individual devices (or structures) begin to
interact with their surrounding environment when
the critical spacing of such systems becomes com-
parable with the de Broglie wavelength in that sys-
tem. This preempts the device from being treated as
an isolated entity and thereby makes it necessary to
reasonably account for environmental interactions.
The work reported here investigates the quantum in-
teractions in a structure which is described as a la-
teral surface superlattice (LSSL).

In particular, the velocity-electric field curves of
the lateral surface superlattice are calculated using a
Monte Carlo simulation. The curves from the simu-
lation show a definite region of negative differential
mobility. This is found to be caused by Bloch oscil-
lations occurring from quantum interactions within
the LSSL.

Kroemer' first proposed a microwave amplifier
using the quantum-derived sinusoidal bands. He
suggested that the electrons would exhibit a negative
mass if they could be excited to the top of the band.
This would cause a reduction in the velocity for an
increase of the electric field and thus produce nega-
tive differential conductivity. Such a condition
could be used to produce amplification. In order for
this to actually happen, the bands must be suffi-
ciently narrow that the electrons can be accelerated
to the top of the band before they are scattered by

phonons or some other mechanism. Unfortunately,
in all semiconductors studied thus far the combina-
tion of bandwidth and electron-phonon scattering
prohibits this process from occurring. If one could
obtain a narrower bandwidth, the effects could be
observed. Such narrowing can be achieved by the
creation of a miniband structure inside the normal
conduction band.

Peierls discussed a general distortional instability
that would introduce minigaps in the conduction-
electron spectrum. This distortion superimposes a
larger periodic potential upon the already existing
potential from the lattice of atoms. The minigaps
(and minibands) produce smaller dispersive energy
ranges. Although Peierls was trying to explain the
complicated shape of energy for electrons in metals
and alloys, later methods suggested that the super-
potential could be obtained by a superlattice, which
would yield much the same results. Others have
developed the concept of charge-density waves
which can create a superlattice potential with or
without an applied external force. The charge-
density waves are the result of a stable charge distor-
tion, as suggested by Peierls, and modify the physi-
cal properties of the medium. In a self-consistent
fashion, the zero of the dielectric response are re-
sponsible for a spontaneous charge instability creat-
ing a charge-density wave without the presence of
an externally applied field.

Esaki and Tsu developed the current interpreta-
tion of one-dimensional layered superlattices where,
in the most common form, molecular-beam epitaxy
is used to lay down, for example, alternate layers of
GaAs and GaA1As. The superlattice is obtained by
periodic variation of an alloy composition or of im-
purity density introduced during epitaxial growth.
In this way, a generic semiconductor can be pro-
duced with not only the physical properties of the
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host semiconductor, but with properties that also de-
pend upon the structure of the superlattice. This al-
lows the physical characteristics of such a system to
be modified on demand by adjusting the critical
spacing of layered material. This critical spacing (as
compared to de Broglie wavelength) is the control
parameter for the width of the energy bands and
thus the electronic properties of the superlattice.

The energy dispersion in a superlattice band, such
as that of Esaki and Tsu, is sufficiently narrow for
an electric field to accelerate an electron to the top
of the band. The problem Kroemer experienced, in
which the energy dispersion is too broad, has now
been overcome through the development of the su-
perlattice, and the generic superlattice structure.
However, there has not yet evolved definitive evi-
dence indicating negative differential mobility
(NDM) in the velocity-field curves. A possible ex-
planation for the lack of observation of NDM
could be that the electrons in the quantized dimen-
sion (sinusoidal energy spectrum) are able to be scat-
tered to an intermediate energy level in another sub-
band since the other two dimensions remain nearly
free in the effective-mass approximation. Thus the
subbands actually overlap in the transverse dimen-
sion. Since these intermediate levels are in the gap
of the quantized dimension, they therefore allow
higher subbands to be populated. Electrons will be
scattered to intermediate states before they can ever
reach the edge of the reduced Brillouin zone. Al-
though strong NDM may not be obtained, a
resonant structure for the current, as a function of
the field, could still develop.

A lateral surface superlattice has three-
dimensional quantization, as opposed to the conven-
tional one-dimensional superlattice. Thus there are
gaps in the energy spectrum in all three dimensions
simultaneously, in contrast to the latter. The ab-
sence of intermediate energy levels provides for the
possible existence of NDM in the velocity-field
curves at relatively moderate fields. Since the elec-
tric field necessary to produce NDM is comparative-
ly moderate, electrons cannot be excited to higher
subbands through intermediate states within the
same cell nor can they tunnel to higher subbands in
neighboring cells. Sate' proposed such a structure,
which formally is similar to a charge-coupled-device
array. Although technology has not yet produced
the required device density for the surface superlat-
tice to be formed, it is within research limits of elec-
tron and ion-beam hthography for such a structure
to be made. Another type of lateral surface super-
lattice is that on a tilted surface of Si [small tilt
away from the (100) surface], which was used to ex-
plain the valley splitting observed in Shubnikov —de
Haas measurements of inversion layers at low tem-

peratures. These experiments suggest that there are
minigaps at the Si-SiG2 interface which arise due to
a surface superlattice.

In this paper, the details of a theoretical Monte
Carlo calculation for the velocity and energy are
presented for a LSSL. A description of the scatter-
ing rates with Van Hove singularity corrections for
the sinusoidal bands used in the Monte Carlo rou-
tine and the results of the Monte Carlo simulation
are given. The simulation shows evidence of Bloch
oscillations as the cause of negative differential mo-
bility as will be apparent from the velocity-
autocorrelation function. The distribution function
is also obtained from the Monte Carlo simulation
and again seems to indicate that Bloch oscillations
are the cause of the NDM.

II. THE MODEL

The specific model developed here is composed of
cylinders of GaAs imbedded in a very thin epilayer
of GaAIAs. The GaAs cylinders are arranged in a
two-dimensional square-lattice array within the epi-
layer. The radius of the cylinders is taken to be 37.5
A, while the spacing between cylinder centers is 100
A. The system is considered to be operated at room
temperature, so that the mass of both GaAs and
GaAlAs (taken to be a direct band-gap material)
may be taken as 0.068mo, " where mo is the free-
electron mass. The form of the LSSL, as described
above, is shown in Fig. 1.

The potential energy of the model is developed
from the structural layout of the superlattice
described in the preceding paragraph. The thin epi-
layer confines the electrons to a surface as a quasi-
two-dimensional system. ' The electron, in the
direction perpendicular to the surface, therefore ex-
periences infinite potential barriers at the boundaries
of the epilayer. These potential barriers allow only
widely-spaced, discrete energies. Indeed, for elec-
tron transport, one need consider just the other two
dimensions, neglecting this third dimension. The
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FIG. 1. Picture of the LSSL model for the calculation
of energy dispersion. The cylinders of GaAs in GaAlAs
produce the potential variation.
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difference between the conduction-band energy of
GaAs and GaAlAs generates cylindrical potential
wells in the square-lattice array in the surface layer.
This is necessary for the superlattice. The composi-
tion of GaA1As alloy is adjusted so that the band
edge is approximately 0.5 eV above the GaAs
conduction-band edge for an Al concentration of 0.4
in Ga~ „Al„As (Ref. 13) at room temperature.

It should be noted that the model developed here
is generic in form. The different parameters, includ-

ing layout and material, can be changed while still
retaining the superlattice nature of the structure.
This allows the LSSL model to be applied to MOS
structures where the system dimensions approach
that of the de Broglie wavelength and the fields are
very similar to that of the LSSL. In this way, possi-
ble coherent quantum effects can be studied to in-
vestigate the influence in such high-density very-
large-scale integration (VLSI) structures.

The energy dispersion for the given physical
parameters of this generic model has been calculat-
ed previously. ' Two approaches were evaluated to
ensure the validity of the results. The first involved
a linear combination of atomic orbitals (LCAO)
technique in which Bessel functions, evolving from
the cylindrical wells, were used as the atomic orbi-
tals. The second approach gave rise to a Mathieu
equation, the solutions of which are Bloch functions.
The two methods of calculation were in good agree-
ment for the same set of parameters. The details of
the approaches that lead to the energy spectrum will
not be given here, but only the resulting energy
equation, which is"

E=e (e/2) [co—s(k„D )+cos(k„D )],
where @=0.05 eV is the half-filled-band energy and
D =100 A is the spacing between potential wells for
the parameters selected here. The general form of
this expression has also been found for one-
dimensional layered superlattices, where the bands
are sinusoidal in only one dimension. The above ex-
pression is used in the Monte Carlo simulation
below to obtain the velocity-field curves.

III. SCATTERING RATES

The scattering rates for the GaAs-GaA1As LSSL
are developed in this section starting from the
transition-matrix element corresponding to the par-
ticular scattering. For GaAs and GaA1As, the dom-
inant scatterers at room temperature (which is the
temperature assumed throughout) are acoustic and
polar-optical phonons. A Van Hove' singularity
appears in the evaluation of the scattering rate and
is resolved near the end of the present section by a

where it has been assumed that ~~ ~&kz T' so that
exp(fm~/ks T) -=1 and

This is just the equipartion limit. The usual sum
over wave vectors has been converted to an integral
(in two dimensions) through

fdV» .
» 4

Using the linear relation for the phonon-dispersion
curve, cov =uq (u is the velocity of sound), (2) be-
comes

2gE', k~T g
)t,(K)=

2 fdV»5(E» E» ), (3)—
NMAu

d V~ is an integration over two-dimensional K space
where the energy is sinusoidal, so that the argument
in the 5 function can be written in Cartesian coordi-
nates as

E» e (e/2) [cos(E„'D)——+c—os(E~ D )], (4)

smoothing of the usual Green's-function energy-
conserving 5 function. This leads to replacement of
the latter by a Lorentzian curve. Since the energy
spectrum is of complex nature, the total scattering
rate from a state K can only be evaluated numerical-
ly. The matrix elements are calculated as a function
of K and K', at which time the K' is numerically
integrated. Graphs of the scattering rates are the fi-
nal output of this approach, and show only an ener-

gy dependence as expected.
Because of the discrete energy levels of the per-

pendicular dimension in the LSSL, most of the cal-
culation involves only two dimensions. The third
dimension in most cases is normalized out of the
problem, allowing a two-dimensional analysis to be
used.

Fermi's golden rule' is used as the initial expres-
sion for the transition probability in the electron-
phonon interaction. Therefore, it is assumed that
the interaction is turned on adiabatically and the
'collisions are instantaneous in time. The energy-
conserving term in the transition probability can
then be interpreted as a 5 function. The general
analytical expression for the transition probability is
thereby given for the acoustic deformation-potential
scattering rate as

iWK)= fdV»S(KK', )

4g g A Eiq ATfd V» 5(E» E».), —
4 2M¹oq %cod
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dV~ =dSC„' dSCy .

Integrating the 5 function of (3) with respect to K»,
the scattering rate transforms to

&(,(K)=
2n.E)kg T
NMAu' 4d

2(e Eg)—
X fdK, 'I—

—cos(K„'D)

' —1/2

25 i I I I
/

I I I

(5)

The scattering rate can also be integrated over E„',
but this does not further the understanding of the
process. In fact, when the scattering rate for the
polar-optical phonons is determined it will be found
that this integral cannot be integrated. The integra-
tion over E„' leads to elliptic integrals of complicat-
ed form, so that it takes a very detailed analysis to
extract any physical phenomena.

The numerical integration of (5} by a simple tra-
pezoidal rule is shown in Fig. 2. Note that the
scattering rate is symmetric about the half-filled-
band energy as it should be for a sinusoidal band
and also is singular at this same point. The singu-
larity is the result of the saddle point of the two-
dimensional density of states for sinusoidal bands

and is better known as a Van Hove singularity. The
singularity is removed below with the use of a pho-
non self-energy correction in the Green's function.
The Van Hove singularity at the saddle point in the
density of states is the point where the denominator
of the integrand in (5) vanishes.

The singularity is handled by the use of a phonon
self-energy correction that is found to be important
only in a small region around the singularity. Oth-
erwise, the self-energy correction is of insignificant
value and can be ignored in the Green's function.
The electron Green's function, without the phonon
correction, in general is'

G(r r )
&l (t&&&—t )

with

fico=Eg —Eg .

The Fourier transform of the causal component of
the Green's function, with respect to time, leads to
the replacement of the usual 5 function for the ma-
trix element in the "golden-rule" approximation by a
Lorentzian of the form

@E»: E~ +~q)—
1 1

(6)
2n (Eg E~ +ficoq) +it(E)

with

&(,(E)= fi

r(E) '

OI
CO

Oo

20

where in the above ficoq has been included for later
use where the polar-optical phonons are evaluated.
The above is just a statement of the finite-time dura-
tion of an electron in a specified energy state.

The scattering rate can now be written as a func-
tion of energy and has an integral structure after (6)
is substituted into (3} for the 5 function. This re-
placement gives
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FIG. 2. Scattering rate vs energy for acoustic phonons
for the LSSL. A Van Hove singularity occurs at half-
filled-band energy.

A,(E )=A f f dK„dK„,
A,(Es )

(K K»)+k (Eg)

where

rl(K„&K» ) =Ek —
I e—(e/2)

X [cos(K~D ) +cos(K»D )]],
E i' TAC=
AlVu 2m.

Since the present concern is in computing an upper
limit to the scattering rate, expression (7) can be es-
timated in the vicinity of the half-filled-band energy.

In the region of the singularity, the relation
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qI(E) &&I' enables sin(K, D) to be approximated at
its maximum value of one without affecting the re-
sult. This allows the scattering rate to be expressed

X(E)=4Cf' ~uK.f,' ', d5
(Ei5) +A, {E)

2 2

=4C V2 f d5 . (g)
D2 (E 5}2+$2(E}

The limits on the remaining integral can be taken to
infinity since the integral has significant value only
in the region of the half-filled-band energy. The in-

tegral is now evaluated, and finally the algebraic
equation can be solved for the upper value of the
scattering rate for acoustic phonons

A. =9.5 x 10+"

in units of sec '. A maximum value is obtained
which restricts all other values of the scattering rate.
A more complex and less instructive procedure
would find the detailed smoothing of the curve due
to the self-energy correction, but is not done in this
work as the upper limit in (g) is reached only near
E=—e and lies well above the data of Fig. 2.

A similar analysis for the evaluation of the polar-
optical phonons scattering rates can be applied. The
only differences occur in the wave-vector depen-
dence in the matrix elements and in the energy-
dependent 5 function which now also contains the
phonon energy.

The scattering rate can be calculated with the sub-
stitution of the appropriate matrix element into (2},
which leads to the relation

)t(K}= f fdK„'dK„' 2 [nq5(K+q K')5(E—» E» A—coq)—
fi 2yV~O y

q

+(n, +1}5{K—q —K'}5(E»—E» —%0q)] . (10}

The summations over K' are once more transformed into integrals. There is an implicit sum over all phonon
wave vectors, which enables the 5 functions in wave vectors to be integrated. If this is done, (10) simplifies to

}t,(K)= f fdq„dq„2 [n 5(E~ g -~ E» —%co )—
iii 2y Vuio 4 q2~q I

+ 9 I

+(nq+1)5(E» E
I

g—
Substituting the functional relation for the energy (E) in terms of the wave vector (K) and integrating over the
phonon wave vector qy one obtains the expression

A.(K)= —cos(q„D }—K„
e 3 De 2 1 i 2(e El)—

nq dq„' (q —K„)2+ —cos

2' —1

—cos(q„D)
2(e EI}—

X 1—
2 —1/2

cos(q„D) +—K„
De, 2 1, 2(e EI)—

+(nq+1)fdq„' (q„+K„)2+ cos—
2' —1

—cos(q, D)
2(e EI)—

X 1—
' 2 —1/2

(12)

with the limits
PE( )

cos(q„D) & 3— I
1

2E(q )I
cos(q D) & 1—

(13)

where

EI =Ez —%coo s

EI ——Eg+Acoo .

Here Ez (Ei ) indicates the energy Ei (EI ) satisfying
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=5.48X10'

in units of sec

IV. FINAL-STATE SELECTION

(15) Therefore, the probability of being scattered is pro-
portional to a one-dimensional density around the
equal-energy contour. The corresponding probabili-

ty for the final state of a scattering due to acoustic
phonons is

The final process that must be evaluated before
the Monte Carlo technique is complete is the deter-
mination of the final state after a scattering process.
This final state depends on the type of process in-
volved in scattering the electron to its final state.
For the purpose of this work, acoustic phonons
transfer no energy to or from the electron so the ini-
tial energy is the final energy. However, the polar-
optical phonons extract or induce a constant quan-
tum of energy (fico) through emission or absorption.
The final wave-vector state is determined by the
magnitude of the density of states and any wave-
vector dependence attributed to the matrix element.
This is interpreted as a probability for scattering to
or from a particular wave-vector state. Again, it is
computationally and conceptually easier to work
with a uniformly distributed random number. The
expression P(r}dr=P(K)dK, where r is a uniformly
distributed random number is once more applied
with K the final wave vector.

It is a consequence of the complexity of the prob-
lem that the integral

Kfr= J P(K)dK
0

can rarely be integrated in a straightforward
manner. Thus a technique due to von Neumann,
called the rejection method, is required to calculate
such expressions. In the rejection method, a trial
value K is computed from

1 —[B'—cos(KD) ]
1 —[B'—cos(KD)] +sin (KD)

' 1/2

which has the equivalent form

where K is the magnitude of the final wave vector,
and B'=(e Ex)l—e. A third random nutnber is fi-
nally necessary to estimate the quadrant of the wave
vector. These finally specify the scattering angle.

The final-state probability distribution for scatter-
ing due to polar-optical phonons follows a similar
approach, but now a wave-vector contribution from
the matrix element must be considered. The proba-
bility can accordingly be written as

P(K) = 1

I
K—K'

I

—1/2

x 1+ sin (KD)

1+[A+cos(KD)]

K=a+(b —a)R~, (16)

where (a,b} are the limits on K and R
&

is a uniform-

ly distributed random number. If the condition

P(K) &cR2 (17}

is satisfied, the K value is accepted and used as a
member of the K population being generated; other-
wise, the process is repeated with two new random
numbers. R2 is another uniformly distributed ran-
dom number and c is the maximum value

supP(K = [a,b] ).
The problem now becomes one of estimating a

probability distribution for the phonon mechanisms.
Since the acoustic phonons are completely random-
izing so that all K vectors are equally likely. Thus
the final K state is determined by the density of
states on the particular energy shell. For conveni-
ence, the field is taken in the direction of one of the
major basis vectors of the two-dimensional LSSL.
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FIG. 5. Velocity vs field for the LSSL. At fields above
13 kV/cm the curves show a negative differential mobility
region.
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1 1 —[A —cos(KD) ]
((K K—') + {(1/D) cos '[A —cos(KD)]J —K» ) 1 —[A —cos(KD)] +sin (KD)

' 1/2

(20)

Both K,'+„' represent the initial-state wave vector
from which the electron has been scattered. The
calculation of the probability may be divided into re-

gions, corresponding to regions of the energy con-
tour to enable faster computation.

V. RESULTS

In this section, all the work of the previous sec-
tions come together to develop the results obtained
from the Monte Carlo simulation. These build the
general framework for understanding the basic
transport in the LSSL. The physics of the simula-
tion is an ensemble that evolves in time and that can
be used for transient calculations. A single band,
sinusoidal in both dimensions of the LSSL, is con-
sidered. The third dimension is neglected because of
its widely spaced discrete-energy levels. The lowest
subband is totally filled, and therefore ignored, while
the second is only partially filled and contains the
electrons undergoing transport. Transitions to
higher bands are insignificant and therefore ignored
in their contribution to transport. The temperature
of the lattice is assumed to be 300 K. Acoustic and
polar-optical phonons are considered as the scatter-
ing processes. There is no inclusion of carrier-
carrier scattering nor any type of breakdown
mechanism at high fields. The relaxation times are
as general as the Born approximation and are func-
tions of energy. The electrons are accelerated by an
applied static electric field whose direction is vari-
able within the LSSL.

The transport properties are most easily observed
with the velocity-field curve shown in Fig. 5. The
lower curve results for a field applied along the (10)
basis vector of the square-lattice array of cylinders
(Fig. 1), while the top curve results for the field ap-
plied along the (11) direction. The low-field mobili-

ty for the (10) direction, which can be calculated us-

ing linear-response theory, is estimated to be about

po ——1800 cm /V sec. Likewise, the low-field mobil-
ity for the (11) curve is slightly larger than the (10)
curve, and is po ——1900 cm /Vsec. This difference
in value for the two directions is explained by the
asymmetry of the conduction mass. The energy
width in the (11)direction is larger in magnitude (by
i»2) than the (10) direction, and this energy width is
responsible for the overall larger magnitude of the
velocity at each field point in the (11) direction than
in the (10) direction.

As the field is increased to approximately 10
kV/cm, the curves begin to show sublinear behavior
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25 30

FIG. 6. Number of electrons that are not scattered be-
fore a traverse through the reduced Brillouin zone, nor-
malized by total number of electrons.

I

and eventually peak near 13 kV/cm. For further in-

creases in the field, the velocity actually decreases.
For this model, the velocity continues to decrease to
zero as the field tends to infinity.

The negative differential mobility, as well as the
difference in peak velocity observed in the graph, is
due to Bloch oscillations, where the electrons are
able to cycle through the reduced Brillouin zone
many times before they are scattered. Evidence for
Bloch oscillations being the cause for the velocity
decrease as a function of the field is seen in the
curves for the fraction of electrons undergoing
Bloch oscillation, in Fig. 6. (What is meant by frac-
tion is the number of electrons actually undergoing
Bloch oscillations divided by the total number of
electrons. ) Note that the field at which the velocity
peaks and begins to decrease is related to that for
approximately 50% reflection. A significant num-
ber of electrons are therefore freely cycling through
the narrow bands.

The mean energy of the carrier ensemble may be
extracted from the Monte Carlo simulation. This is
shown in Fig. 7. The mean energy begins at the
equilibrium value in the absence of an electric field.
As the field is increased, the energy rises and, for all



27 TRANSPORT IN LATERAL SURFACE SUPERLATTICES 3491

35-

0)
E

25
Q
K
UJ
ZUJ20-

15-
(11) Direction

—-—- (10j Direction

10-

5-

I I I

10 15 20
FIELD (kV/cm)

I

25 30

FIG. 7. Energy vs field for LSSL, displaying a satura-
tion of energy at high fields.

1.0

practical purposes, saturates. The point at which
the energy saturates corresponds to the point where
the velocity also is near its peak. The saturation

value of the mean energy is the half-filled-band en-

ergy. The (11) direction has a half-filled-band ener-

gy greater than that for the (10) direction and this
explains the difference in energy saturation of the
two curves.

Another indication for the existence of Bloch os-
cillations is found in the velocity-autocorrelation
function. The numerical formula used in the calcu-
lation of the autocorrelation function is

N

P(hr) = g—v;(r)v, (r+hr),
N,.

where N is the number of particles and the sum is
over all particles. The result of using this formula
in the Monte Carlo simulation is shown in Fig. 8.

At low fields the autocorrelation function corre-
sponds to that found for most homogeneous semi-
conductors, as observed for the curve of 12 kV/cm
in Fig. 8. However, at higher fields the curves show
peaks at long times that can be interpreted as the
period for one, two, etc., cycles through the reduced
Brillouin zone. As the field is further increased, the
peaks are shifted closer together. This is associated
with the higher acceleration, which in turn causes a
shorter cycle time through the zone. Thus the Bloch
oscillations are again substantiated by the velocity-
autocorrelation function.

Lastly, the distribution function in momentum
space for various fields has been calculated. At low
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fields, as for the 5-kV/cm curve in Fig. 9, the distri-
bution function looks similar to a Gaussian, shifted
by the electric field in the direction of the drift
velocity. %hen the field is increased, the peak of
the Gaussian decreases and the distribution begins to
redistribute itself equally throughout K space. The
10-kV/cm curve shows a shift in the peak to higher
wave vector compared to the 5-kV/cm curve, but
the peak has also decreased in magnitude. As the
field is increased past that corresponding to the peak
velocity, the antisymmetric distribution tends to-
ward a symmetric distribution. The drift velocity
which depends on the antisymmetric nature of the
distribution of electrons in K space thereby de-
creases. The dependence on the antisymmetric dis-
tribution is observed from

va= fU, (K)f(K)dV», (22)

where ua(K) is the velocity for an electron and is an-
tisymmetric. Therefore, the only contributions to
the drift velocity will occur from the antisymmetric
part of f(K).

VI. SUMMARY

The important aspects of the Monte Carlo simula-
tion are contained in the negative differential
mobility (NDM). All the results in this paper lend
evidence to the presence of NDM in the velocity-
field curves. The saturation in mean energy found
from the Monte Carlo simulation provides a firmer
foundation for this phenomena.

The distribution function pictured above does
much to solidify the concept of Bloch oscillations in
the LSSL. At low fields, the distribution is a dis-
placed Maxwellian, as in an equivalent homogeneous
semiconductor. However, as the field is increased,
the electrons eventually redistribute themselves
evenly throughout the band, as expected if the elec-
tpons are actually able to cycle through the reduced

Brillouin zone. The K-space distribution function is
symmetric at zero electric field, but becomes an-
tisymmetric as the electric field is increased in the
low-field region. However, the continuing increase
of the field results in the reversion of the distribu-
tion function once again to a symmetric form. The
cause of the functional dependence of the distribu-
tion on the electric field is associated with Bloch os-
cillations. The velocity-autocorrelation function
displays definite oscillation peaks periodically
placed in time. The period of the peaks is at ap-
proximately 2trf't/DeF (the titne taken to cycle once
through the reduced zone), thus again alluding to
the physical cause for such behavior.

The NDM region is important in the respect that
oscillations and large- and small-signal amplifica-
tion can occur if such a region is present. An exten-
sive amount of literature exists on velocity-field
curves with similar shape to that exhibited
here. The commonly called Gunn-Hilsum ef-
fect ' is one of the more notable phenomena
reproducing this velocity-field curve. Much of the
circuit analysis carried out for the Gunn-Hilsum ef-
fect applies also to the performance to the LSSL.
Although the physical processes causing the NDM
are widely different, it is the velocity-field curve
that is required in most of the circuit operation.
Since the velocity-field curves are similar, the circuit
operation will therefore be similar. It should be
remembered though, that because the physical
causes of the NDM are different there will be modi-
fications to some device performance.
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