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New realistic semiempirical expressions for the two-center integrals and for the Slater-

Koster parameters (SKP*s) are constructed for group-IV semiconductors. These expressions

provide the explicit dependences of the SKP's on the atomic characteristics, on dielectric

constants in solids„and on interatomic separations. Contributions to the SKP's from the

three-center and higher-order integrals are taken into account by three parameters. These

expressions are valid for atomic separations as far as second-neighbor distances. The band

structures of Si, Ge, and a-Sn obtained using these new matrix elements are compared with

other theoretical calculations and experimental optical spectra. A set of identities relating

the eigenvalues at high-symmetry points under the second-neighbor approximation is also

presented.

I. INTRODUCTION

One of the most frequently used approaches in
describing the electronic structure of solids has been
the tight-binding method using the hnear combina-
tion of atomic orbitals (I.CAO) basis. In the Slater-
Koster' model, the set of nonorthogonal atomic-
orbital basis states is converted into a set of orthogo-
nal local basis states (OI.B). This can be done most
symmetrically by the method of Lomdin with the
transformation properties retained. The Slater-
Koster parameters (SKP's} are then introduced to
represent the Hamiltonian matrix elements evaluat-
ed in OLB. That thc nem orbitals are set up as a
hnear combination of the original ones suggests the
inclusion of some long-range interactions in an im-
plicit. way.

The proposal of the Slater-Kostcr model was in-
tended as an interpolative scheme. However, the
empirical fitting of the SKP's to the energy-band
structure encounters the question of how many
disposable constants are needed to represent the in-
teractions adequately. The inclusion of distant-
(third-and-farther-) neighbor interactions would in-
crease the number of' the SKP's. On the other
hand, calculations based on only the nearest-
ncighbor interatomic interaction present important
errors in the form of the conduction bands in semi-
conductors. ' Furthermore, the explicit functional
dependence of the SKP's on the atomic characteris-
tics once a suitable set of orthogonal functions is
chosen remains unclear. Thus, unlike calcula-
tions using the semicmpirical pseudopotential

method, a meaningful interpolation scheme for the
parameters from material to material is yet to be
devised. This is most unfortunate in view of the im-
portance of tight-binding cluster approaches for the
theory of defects and disordered alloys.

Our approach toward the problem is constrained
to plausibility and practicality. From a practical
point of view, the inclusion of distant-neighbor in-
teractions mould enlarge the number of the SKP's
and thus make the fitting process less manageable.
Even should this difficulty be removed, the increase
in the number of the SKP's makes it harder to deter-
mine both the modifications of the matrix elements
resulting from environmental changes and the inter-
polation of these elements between different atomic
pairs. It mould also increase the complexity in all
cluster-type calculations in the future. At the same
time, me are mindful that the existing results based
upon a limited set of parameters give a narrow con-
duction band and overestimate the band gap. '

Thus me try to stay within the limit of second-
neighbor interaction as the SKP's mere originally
proposed. '

In thc present mork, me arc able to obtain a sct of
the SKP*s which reproduces the energy bands of Si,
Ge, and O,-Sn with the correct band gaps,
conduction-band widths, and interband optical tran-
sitions. However, we propose to expand the analysis
from the mere inclusion of two-center integrals to
the possible contributions from three-center and
higher-order integrals. %e differentiate contribu™
tions from two-center integrals and those from other
integrals as a recognition of the considerable amount
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of work being done on the two-center integrals.
Based on the resulting sets of the SKP's and the in-

tuitively understandable nature of the two-center in-

tegrals, we then propose a simple realistic semi-

empirical expression for these integrals. This ex-

pression provides the explicit dependences on atomic
characteristics, on dielectric constants in solids, and
on interatomic distances. Our expressions differ
from Harrison's universal formula for the matrix
elements and are valid at even greater atomic separa-
tions.

In Sec. II, we shall describe the logic and the ap-
proach which lead to the final construction of the
empirical formulas for the two-center integrals. The
procedure for fitting the SKP's and the relationships
which exist among the eigenvalues at high-
symmetry points in the second-neighbor approxima-
tion are also presented. Section III gives our results

for the SKP's and for the parameters of the empiri-
cal formulas for Si, Ge, and a-Sn. Detailed compar-
isons of our results with the energy bands obtained

by other theoretical calculations and with experi-
mental optical spectra are made.

II. METHOD

In their original proposal Slater and Koster' used
OLB and expressed the matrix elements for the dia-
mond structure in terms of eleven energy integrals

'

when first and second neighbors were included.
These energy integrals are now known as Slater-
Koster parameters (SKP's). The matrix equation
was then solved at high-symmetry points and the
eigenvalues there were expressed analytically in
terms of the SKP's. We found that these expres-
sions lead to the following set of identities relating
the eigenvalues of high-symmetry points:

c ~ v c v c v
—,(r» —r25+X3 X4) L3 L3

2(L' +L' L, —L, )—=r,'—r,'—r'„+r;,"+2{X —X ),
r,'+r =4{L,'+L', +I.;"+L )+8(L,'+L )—6(X,"+X', +X,'+X,') —3(r'„+r;,') .

{2)

(3)

Taking theoretically calculated eigenvalues at
high-symmetry points from other semiempirical ap-
proaches, we may use this set of identities as a sensi-
tive test for the compatibility of these various ap-
proaches with the second-neighbor approximation.
In this respect results from pseudopotential ap-
proaches, the linear augmented-plane-wave method
{LAPW), ' and recent calculations using the linear
combination of Gaussian orbital method" seem to
have gone effectively beyond the interaction among
second neighbors. For example, the results by Wang
and Klein" using the self-consistent linear combina-
tion of Gaussian orbital method and the results of
LAPW (Ref. 10) give the values for the left-hand
side(LHS) of Eq. (1),

—,'(r» —r25+X3 X4)=7.94 and 7.82 eV,

respectively for Si, but the values for the right-hand
side(RHS) of the same equation are

L3 L3 ——5.09 and 4.53 eV,

respectively. On the other hand, the first-nearest-
neighbor tight-binding calculation by Harrison
gives 7.01 and 6.73 eV, respectively, for the RHS
and LHS of Eq. (1). It is interesting to note that the
values of the LHS of Eq. (1) for these three calcula-
tions are nearly the same. The nearly-free-electron
approach gives the greatest deviation from the iden-
tities in Eqs. (1)—(3). Future experimental results,
especially on the high-energy eigenvalues L3 X3,

I

Lz, may thus give a direct indication of the validi-

ty of this second-neighbor approximation.
If we treat the potential energy in the Hamiltoni-

an as being the sum of spherical potentials located
on the various atoms, the contributions to the Ham-
iltonian matrix element can be divided into two-
center integrals, three-center integrals, etc. Slater
and Koster argued that three-center integrals should
certainly be smaller than the two-center integrals al-
though not necessarily negligible. When these
three-center integrals are dropped from considera-
tion, they are able to prove that two of the SKP's,

E (011)=E„,(011)=0,
while the remaining ones are related to eight two-
center integrals (I,l', m ). These integrals (l, l', m )

represent the interaction between an electron in the I
orbital of an atom and another one in the l' orbital
in the other atom through a spherical potential lo-
cated on the latter atom with I signifying the com-
ponent of angular momentum. Keeping in mind the
remarks of Slater and Koster that the contributions
from the three-center integrals might be present, we
believe their contributions to the SKP's must be sin-

gled out in our search for a semiempirical formula
for the two-center integrals. This is necessary if our
formula is to be meaningfully extrapolated.

We propose that the contributions from three-
center integrals can be added in the form of three
adjustable parameters A, B, and C. The resulting re-
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E (Oil)=C,

E~(110)=(spcr)2/V 2,
E ( —, —, —,)=—,(ppo)$+ —,(pp~)I+&/6,

1 1 1E ( —, —, —, )=(spa)i /v 3,
E ( , —, , )=—,(—ppo)—& , (pp—n)—& A/3—,

1 1 1E (-, —, —, }=(sso'}~,

(4)

where the subscripts 1 and 2 denote the nearest and
the second-nearest neighbors, respectively.

Our choice of the constants A and B is guided in
part by the arguments advanced by Anderson et al.
that the interaction between per orbitals (ppcr), is re-
lated to that between pm orbitals (ppm ). Specifically,
(ppcr)/(ppm)=2. This condition also reduces the
number of independent two-center integrals in this

I

lationship among the SKP's, the two-center in-

tegrals, and the proposed adjustable constants are
given in the following equations:

E (110)=(sso)2,

E (011)=(pp~)q,

E (110}=—,(ppo)g+ —,(ppn )2,

E,Y(110)= —,(ppo )2 ——,(ppn )p —B,

problem to six. As shown in the expressions above,
these two-center integrals may be divided into two

groups: those due to the nearest neighbors and those
due to the second-nearest neighbors. Since the in-
teractions among these two groups differ only by the
interatomic distances, it is plausible to expect the
same functional dependence for both groups. This
assertion makes our results very much different
from those of Harrison and those of Anderson et
al. Harrison used only the nearest neighbors and
arrived at an expression with an inverse-square
dependence on interatomic distance for all integrals.
Anderson et al. used the muffin-tin method and
showed their results to be equivalent to a two-center
integral approach with a long-range interaction. We
find that an algebraic functional dependence inverse-

ly proportional to the power I+I'+1 of the intera-
tomic distance seems to give the best fit, where I and
I' characterize the two-center integrals in the stand-
ard symbols (tl'm ). Furthermore, to emphasize the
limited range of interactions, an exponential func-
tional dependence on the atomic distance is intro-
duced for ss and sp interactions. Our final expres-
sion for each of the two-center integrals contains
only a single adjustable scaling parameter a0
characteristic of the specific element in question.
The expressions for all two-center integrals are given

as follows:

(sso }= —a~ (1 Ple) e—xp[ —1.235@~(R —L)]/[(1 s)(R /L )]—,
(spo) =a,z~(1 P/e) e—xp[ —1.235@,z(R L)]/[(1 s—)(R /L ) ]-,
(ppo)=a~~ (1—P/e)/[(1 sNR/L) ]—, (ppn)= ——,(ppo) .

Here P=0.902, e is the dielectric constant of the
crystal, R denotes the interatomic distance, and

L =(3/32m )' a,
p„=(2mE, /fP)'~,

terms of the free-atom term value difference, and
Eq. (11) is the requirement that the valence-band
edge is set at zero. With the previously imposed
condition

(pp o ) /(ppn)= 2, .

y,,p [m(E, +Es)ll——]'~,
s = exp( —pR )(1+pR +y ~R /3), (9)

Eq. (11) reduces to

E (000)=4E (-, —, —, ) .

where a is the lattice constant, E, and E~ are free-
atom term values, and s is related to the overlap of
the electron wave functions.

Finally, the self-energies in the SKP's, E~(000)
and E (000) for each material, are chosen from the
following two relations:

(10)

Equation (10) expresses the s-p energy differences in

E (000)—E~(000}=(Eq E, }(1 P/e), — —
E(I 25) =E (000)+8E (110)+4E (011)

1 1 1—4E ( ———, ) =0.
2 2 2

III. RESULTS

The SKP's are determined for Si, Ge, and a-Sn by
fitting the available data on the energy gaps, inter-
band optical transitions, etc. Their values for Ge
and a-Sn are tabulated in Table I. In the case of Si,
the SKP's determined in the present work and the
existing SKP's given by other calculations are listed
in Table II for comparison. In fact, the calculation
in Ref. 3 includes the SKP's for the third-neighbor
interactions as well. However, we list only their
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TABLE I. Slater-Koster parameters for Ge and a-Sn
expressed in eV.

a-Sn

E~(000)
E (110)
E~(011)
E (110)
E ( ———)

1 1 1

2 2 2
1 1 1E ( ———)2 2 2

E (000)
E (110)
E (011)
Ew(110)
Ew(011)

1 1 1E ( ———)2 2 2
1 1 1E ( ———)2 2 2

—6.226

0.0249

0.0414

0.0229
—1.67

1.215

1.33

0.233
—0.466

0.0493

0.0
0.333

1.574

—5.228

0.014
—0.0717

0.0171
—1.227

1.169

1.33

0.222
—0.443

0.085

0.0
0.333

1.396

first- and second-neighbor SKP's in Table II for the
purpose of comparison.

The complete band structures of Si, Ge, and a-Sn
obtained using the SKP's in Tables I and II are
shown in Figs. 1—3. The eigenvalues at high-
symmetry points are displayed in Table III. A no-
ticeable difference exists among the present calcula-
tion and those in Refs. 7, 9, and 11 in the relative
position of L3 and L3 . The discrepancy can be
traced to the nature of second-neighbor approxima-
tion as explained in Sec. II. Since the shoulder in
the optical spectra' beginning at 5 eV (5.20 eV} for

Si (Ge} can be attributed to the transition b, q ~hz,
and no sharp structure near that shoulder was ob-
served experimentally, it is not definitive that the

L3 ~L3 transition should be near that shoulder
as other calculations imply. Therefore the validity
of the second-neighbor approximation remains to be
probed by future experimental work on the band
structure along the (111}direction. Our band struc-
ture for Si does give the correct critical-point struc-
tures for I z5 ~I 2 at 2.88 eV, X4—+Xi at 4.75 eV,
and 65~5& at 5.0 eV. The indirect band gap be-
tween I and 6 point is 1.13 eV. Unlike the band
structures calculated by other workers for Si our
I z5 ~I 2 transition does not correspond to a Mo
critical point and can therefore be identified with
the first peak structure in the optical spectrum. '

The critical-point structures for Ge also agree with
experiment for I 25~I i5 at 2.66 eV, X4~X~ at
3.98 eV, and 65~62 at 5.20 eV. The first peak
structure in the spectrum may correspond to the
A3~A& near the L point at 2.8 eV. The indirect
band gap between I and L is 0.62 eV. Comparison
of the experimental optical spectrum' with the
present calculation is not made for a-Sn because we
have not included the large spin-orbit interaction for
Sn in our calculation. We shall only remark that the
observed transition at 3.65 eV coincides with our
calculated X4~X~ gap and the E& doublet struc-
ture at 1;37 and 1.85 eV should correspond to transi-
tions between the spin-orbit split-off valence band at
L and the lowest conduction band at L.

The parameters A, B, and C for the effective
three-center integral, along with the scaling parame-
ters aII for the two-center integrals are finally

TABLE II. Comparison of Slater-Koster parameters for Si expressed in eV.

Present work

Papaconstantopoulos

(Ref. 3)

Pandey and Talwar and

Phillips (Ref. 4) Ting (Ref. 12)

E (000)

E~(110)
E (011)
E~(110)
E ( ———)

1 1 1

2 2 2
1 1 IE ( ———)2 2 2

E (000)
E (110)
E~(011)
E y(110)
E~(011)

1 1 1
( ———)2 2 2

1 1 1E (———)zP 2 2 2

—5.176

0.0357

0.02

0.0282
—1.906

1.274

1.33

0.239
—0.478

0.05

0.0
0.333

1.653

—3.953

0.001
—0.196

0.033
—1.916

1.509

1.512

0.316
—0.583

0.084
—0.034

0.276

1.407

—4.19

0.0
0.0
0.0

—2.08

1.224

0.20

0.24
—0.10

0.34

0.0
0.43

0.947

—4.45

0.0125
—0.05

0.025
—2.125

1.232

1.53

0.283
—0.536

0.005
—0.015

0.4125

1.719
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FIG. 1. Energy bands of Si.
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FIG. 3. Energy bands of a-Sn.

determined from the SKP's in Tables I and II, using
Eqs. (4) and (5). Their values are listed in Table IV.

It is interesting to point out that for group-IV
semiconductors, the detailed variations from ele-
ment to element for the parameter A, which fur-
nishes the corrections to the SKP's among the
nearest neighbors, would not yield substantial
change in the energy bands and eigenvalues at the
high-symmetry points. The variations of B and C
from element to element are noticeable within the
order of magnitude of the SKP's among the
second-nearest neighbors. The aI~ change mono-
tonically from Si to Ge to a-Sn. They are all nearly
equal to 1 Ry. It is plausible that the intuitively
proposed expressions in Eqs. (4) and (5) with 6
empirical parameters can simultaneously give the 12
SKP's for each of the group-IV semiconductors.

With these parameters and the expressions in Eqs.
(4) and (5), one should be able to interpolate the
two-center integrals as the distance between the
atomic-pair changes due to lattice distortion or
atomic dislocation.

While our approach has been decidedly empirical

TABLE III. Eigenvalues calculated in present work for
Si, Ge, and a-Sn at I, X, and L points (in eV). Symbols
in parentheses are symmetry labels.

a-Sn Si

—9.96 (rl)
—0.15 (r,')

0.0 (r,', )

2.66 (I 15)

—12.61 (I 1)

00 {I25)

0.75 (r,')
2.66 (I 15)

—12.37 (I 1)

00 (I p5)

2.66 (I 15)

2.88 {I")

in nature, the great success of our energy-band re-

sults and the simplicity of the two-center integral
expressions suggest that other first principles or less

empirical tight-binding methods may also be recon-
structed to give less complicated formalisms on the
one hand and equally accurate results on the other
hand.

In conclusion, we have obtained for the first time,
universal empirical expressions for the two-center
integrals and the SKP's parameters in the group-IV
semiconductors. These expressions give the explicit
dependence of the SKP's on the atomic characteris-
tics, on the dielectric constant of the solids, and on
the interatomic distances. The novelty and the im-

mediate application of the present results can be

IO —
3

8— 1

6—
4—

—z- g 1

gp 0—
:2—

1-6—
-8—
-IO-1~ '

l2—
X W

L,
25'

d"

FIG. 2. Energy bands of Ge.

l5
2
25I

X —8.67 (Xl)
—2.48 (X4)

1.17 (X1)
8.69 (X3)

—9.09 (L2)
—7.15 (L1)
—1.79 (L3)

0.11 (Ll )

5.12 (L3)
6.98 (L2)

—9.60 (Xl)
—3.10 (X4)

0.88 (Xl)
9.49 (X3)

—10.55 (Lp)
—8.20 (L 1 )

—2.28 (L3)
0 62 (L 1 )

5.34 (L3)
7.55 (Lp)

—9.19 (Xl)
—3.37 (X )

1.38 (X, )

9.85 (X3)

—10.06 (L' )

—8.09 (LI)
—2.44 (L3)

1.71 (L, )

5.50 (L3)
7.95 (L' )
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TABLE IV. Adjustable constants for Si, Ge, and a-Sn.

a (eV)
a (eV)
C (eV)

a~~ (Ry)
a,~ (Ry)

a~~ (Ry)

Si

1.995
0.666
0.020
0.960
1.2114
0.878

1.995
0.65
0.014
0.914
1.233
0.839

a-Sn

1.995
0.58

—0.072
0.737
1.266
0.756

summarized as follows:
(1}Unlike previous universal expression of intera-

tomic matrix elements, the present expressions are
valid for atomic separations as far as second-

neighbor distances. Thus, using the present result,
the important second-neighbor interactions can easi-

ly be incorporated into any tight-binding calculation
of electronic properties involving lattice reconstruc-
tions on surfaces or bulk phase transitions. Recent

application of the present result to the problem of
Jahn-Teller effect of vacancy defect in Si has been
accomplished. '

(2) With the scaling parameters arr determined
here for each like-atom pair of the group-IV ele-

ments, the a~I for different-atom pairs of group-IV
elements can be taken as the average of the aI~ for
corresponding like-atom pairs. The construction of
the new SKP's will then follow. This information
makes the studies of group-IV binary alloys and
group-IV impurity in other group-IV host crystal
feasible.

(3) Eventual extension of the approach to hetero-

polar semiconductors will ensure even greater appli-
cations. For heteropolar semiconductors, the gen-
eral form of Eq. (5} will also include the ionicity ef-
fect between the two ions in a unit cell while the
scaling parameters aII change in a systematic way.
Such an investigation is currently underway.
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