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Quantized motion of three two-dimensional electrons in a strong magnetic field
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We have found a simple, exact solution of the Schrodinger equation for three two-

dimensional electrons in a strong magnetic field, given the assumption that they lie in a sin-

gle Landau level. We find that the interelectronic spacing has characteristic values, not

dependent on the form of the interaction, which change discontinuously as pressure is ap-

plied, and that the system has characteristic excitation energies of approximately 0.03e /ao,
where ao is the magnetic length.

Tsui, Stormer, and Gossard' have recently
discovered that the quantum Hall effect can occur at
the fractional value —,(e /h). Anoinalous behavior

in parallel conductance consistent with their obser-
vation has also been reported by Ebert, von Klitzing,
Probst, and Ploog. Unlike the ordinary quantum
Hall effect, ' in which the Hall conductance of a
two-dimensional electron gas is accurately quantized
to integral multiples of e /h, the new effect is
caused by the condensation of the system into a
macroscopic collective ground state reminiscent of
that of a superconductor, in that it can carry current
with diminished, or, conceivably, no resistive loss.
While occurrence of the effect within a spin-
polarized Landau level and at a particular electron
density preclude its being ordinary spin-pairing su-

perconductivity, there has been speculation that it
might be a form of Frohlich superconductivity. It
has been known for some time that the electron gas
under conditions present in the experiment is un-

stable to the formation of a charge-density wave
with a period comparable to the magnetic length

' i/2

eHp

where Hp is the magnetic field strength. It is intui-

tively appealing that a charge-density inhomogeneity
should be the relevant order parameter, since it is ef-
fective at separating the electrons and thus minimiz-

ing their repulsive Coulomb energy. On the other
hand, Yoshioka's recent Hartree-Fock calculations
of the charge-density wave, while yielding a conden-
sation energy of roughly e /ap per particle, has not

l
produced a significant reason for —, to be preferred.
The Hartree-Fock theory is a mean-field theory, and
thus has the usual mean-field difficulties in two di-

mensions, and can also exclude important physics.
However, the difficulty of obtaining a commensura-
bility energy from the Hartree-Fock ground state is
a sufficiently serious problem to have cast doubt on
the charge-density-wave hypothesis.

The purpose of this paper is to report the results
of calculations we believe shed some light on the na-
ture of this effect. We have succeeded in diagonaliz-
ing exactly the problem of three two-dimensional
electrons in a strong magnetic field. In contrast to
the Hartree-Fock solution of the same problem, we
find quantization of the interelectronic spacing in a
msnner independent of the interaction. We also find
incompressibility, and characteristic excitation ener-

gies of 0.03e /ap, both of which are consistent with
experiment. '

We consider electrons confined to the x-y plane
and subjected to a magnetic field H~. We have a
single-body Hamiltonian of the form

1 fi eH= —.V ——A
2m i c

eHp
fico, =R

mc
and the magnetic length

' 1/2

ap=

' 1/2

eHp

are 1. The eigenstates of H are

m

with the symmetric gauge vector potential given by

HpA= (yx —xy) .
2

(2)

We adopt energy and length scales in which the cy-
clotron energy

~
rn, n) = 1 &(&/4)(x +y ) ~a . a a . a+l

(2m+~+i~tn)nt) ~r2 a ay ax ay
-~ i/2N~'+y')e

27 3383 1983 The American Physical Society



3384 R. B.LAUGHLIN 27

with

H
~
m, n) =(n+ —, )

~
m, n) . (4)

~
m, n ) is also an eigenstate of angular momentum

with eigenvalue (m —n). The manifold of states
with energy (n+ —,) constitutes the nth Landau lev-

el. We shall be considering primarily the states of
the lowest Landau level, written more succinctly as

1 (2m)!
m m v2~,

r 22m+1(mI)2

which limits to 1/V'2m with large m.
The physical origin of the quantization of electron

separation in our picture is that particles of like sign
in a strong magnetic field do not repel one another,
but orbit about their center of mass with a speed
proportional to the Coulombic force between them.
We consider two electrons described by the Hamil-
tonian

'2
1 fi eH= —V ——A1 12m i c

m ) —=
I
m, 0) = z~e1

(2m +1~m ()1/2
(5)

with z=@—iy. These are described qualitatively as
states of cyclotron motion about the origin with an-
gular momentum m and orbit radius ~2m, since

(m
~

r2
~

m )=2(m+1) .

We observe also that

with x, —iy, =re '~ and

1 dR 1dR m

2 dr r dr r

——R+—R+ R =ER, (12}2 8 v2r

where E is the energy eigenvalue. This is the radial
equation of a two-dimensional harmonic oscillator
with an added repulsive core of strength e . If this
core is sufficiently weak, the eigenstates are approxi-
mated by the free-particle states

~

m ), and we have

H;„„~)~m) {E + —, ) ~m), (13)

with

(14)

This approximation, which improves with increas-
ing m, is extremely good under the conditions of the
experiment. In Fig. 1 we compare a numerical solu-
tion of Eq. (12) for m=1 with

~

I) for the case
e /ao ——%co, . We find a difference of 20% in the
position of the peak in 4 and 7% in the energy
eigenvalue. If we assume a value of 13 for the
dielectric constant of GaAs and an effective mass of
0.07, we find that this corresponds to an experimen-
tal magnetic field of 6 T, which is a representative
value. ' Thus we have a physical picture in which
the particles orbit one another at distance r, as they
would in the absence of the Coulomb interaction,
but with a negative binding energy e /r. Landau-

'2
1 fi- e e+ —.V2 ——A2 +

2m i c r12
(8) 0.20

J

where V i denotes differentiation with respect to the
first coordinate and A& denotes the vector potential
evaluated at the position of the first particle. This
problem separates in the usual way: We adopt
center-of-mass and internal coordinates given by

Zi +Z2 Zi —Z2Z—
2 2

Zg

and obtain a Hamiltonian for the internal motion of
the form

0.18—

0.16—

0.14—

0.12
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0.04
'2

1 fi - e- 1
Hinternal ~ Va Aa +

2m i c V 2r~
(10) 0.02

0
0

The potential conserves angular momentum, and
thus, with m odd to comply with antisymmetry, the
eigenstates take the form

qi{x,y )=R (r)e

r/ ao

FIG. 1. Comparison of the free-particle state
~
1)

(solid line) with the correct nodeless solution of Eq. (12)
for m = 1 (dashed line).
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level mixing is a small perturbation. Also, restric-
tion of the wave function to the lowest Landau level

turns an otherwise effective one-body problem into a
zero-body problem7 in that the free-particle solutions
diagonalize H;„„,1. We know, therefore, that the

I

three-particle problem will reduce to an effective
one-body problem. This is the reason it can be
solved simply.

We now consider three electrons, described by the
Hamiltonian

2
1 fi e- 1H= —.V1——A1 +

2m l c 2m

e-—V2 ——A2
c

'2
e2 e2 2

—.V3——A,
l C F12 f23 F31

(15)

As before, we separate H with a center-of-mass coordinate transformation, givenby

z1+z2+z3
Z—

3

Z1+Z2
Z, =(-, )

2
Z3 7 (16)

Zb—
1

2
(zi —z2) .

The internal Hamiltonian becomes
'2

1 R- e- 1
HInte~ = —.V a

——Aa +
2m i c 2m

fi - e-
—.V ——A
l C

b b

2

e 1

v3——zb+ z
2

v3
Zb Z

2

(17)

The antisymmetry condition is that the wave function be odd in zb and symmetric under rotation by +120 in
the a-b plane. A complete orthonormal basis which satisfies these conditions is given by the functions

~!m,n)= 1

[26m P4n P i(3m +n ))n)+] i/2

(z, +izb) (z, izb—)™—
2l

—(i/4)(
)
z

)
+

) zb )
)

(z. +zb )"e

Orthonormality is most easily verified if the coordinate tranformation

Z + lZb Z+ —lZb
zi ~ p zi— (19)

is first performed.
~
m, n) is an eigenfunction of total angular momentum, with eigenvalue M=3m+2n.

Since H;„„1conserves M, one need consider only matrix elements of the Coulomb interaction between states
of the same M. We evaluate these numerically by first expanding the polynomials in the manner

(20)
[2 + "+'(3m +n)!n!m ]'

and then applying Eq. (7) term by term, to obtain1, , 1 277
m, n m', n' =

~zb ~

'
2 (3m+n)!(3m'+n')!n!n'

-1/2
M

(m „) ( „), (2k)!(M—k)!
2 ki

(21)

Invariance of the wave functions under rotation by
+120' in the a-b plane causes the Coulomb matrix
element to be 3/V2 times this number. The matrix
elements

1 I I
m, n m, n

are tabulated for M &22 in Table I. For small M,
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TABLE I. Coulomb matrix elements across the states
~
ni, n ) defined by Eq. (18) in units of (3/V 2)/(e /ao). Quan-

tum numbers m, n are indicated in parenthesis. M=3m+2n is the total angular momentum. There are no states of
M=O, 1, 2, or 4.

M=3
M=5
M=6
M=7
M=8
M=9

M =10
M =11

M =12

M =13

M =14

M =15

M =16

M =17

M =18

M =19

M =20

M =21

(1,0)
(1,1)

(2,0)
(1,2)
(2, 1)

(3,'0)

(1,3)
(2,2)
(3,1)

(1,'4)

(4,0)
(2,3)
(3,2)
(1,5)

(4, 1)

(2,4)
(5,0)
(3,3)
(1,6)
(4,2)

(2,5)

(5,1)

(3,4)
(1,7)
(6,'0)

(4,3)
{2,6)
{5,2)
(3,5)

(1,8)
(6,1)

(4,4)
(2,7)
(7',0)
(5,'3)

(3,6)
(1,9)

5.679 0797X 10
4.978 3743 X 10
4.201 1726X 10
4.471 2999X 10
4.032 3072 X 10
3.401 7834 X 10
1.306 1401X 10
3.868 3028 X 10
3.327 5419X 10
1.9954144 X 10-'
2.927 5434 X 10
8.4104645 X 10-'
3.256 0275 X 10
2.485 1395X 10
2.878 7081 X 10
1.424 1563X 10
2.609 2388 X 10
5.0642663 X 10-'
9.232 9895 X 10
2 833 3270X 10
1.926 8913X 10
2.572 6473 X 10
9.043 9649X 10
1.805 9974X 10
2 3768325X10
3.2649505 X 10-'
5.9590829 X 10
2.538 6185X 10
1.283 0525 X 10
2.734 2388 X 10
2.348 0284 X 10
5.982 0064 X 10
1.259 3072 X 10
2.1974229 X 10
2.266 4334 X 10
3.284 2353 X 10
8.049 7269 X 10

1.3061401X10 2

4.087 2620 X 10

1.995 4144 X 10
3.784 8378 X 10
8.4104645 X 10-'
3.7146562 X 10
2.485 1395X 10
3.539 2739X 1o
1.4241562X 10-'
3.572 9604 X 1o
5.064 2663 X 10
3.1867162X 10
2.836 9523 X 10
1.926 8913X 10
3.443 0872 X 10
9.043 9649 X 10
3.1195955 X 10
3.090 5383X 10
3.264 9505 X 10
2.790 5413X 10
2.354 6263 X 10
1.283 0525 X 10
3.054 7790X 10
3.273 1460X 10
5.982 0064 X 10
2.749 7763 X 10
2.715 2470 X 10
2.266 4334X 10
2.506 7438 X 10
1.6354641X 10-'
3.658 0450 X 10

9.232 9895X 10
2.836 9523 X 10
3.335 0100X10-'

1.805 9974X 10
3.090 5383 X 10
3.161 7842 X 10
5.9590829 X 10
2.354 6263 X 10
3.324 2217X 10
2.734 2388 X 10
3.273 1460X 10-'
3.012 5463 X 10
1.259 3072 X 10
2.715 2470 X 10
3.215 3298 X 10
3.284 2353 X 10
1.635464X 10-'
2.332 3702 X 10
3.403 7984X10-'

8.049 7269 X 10
3.658 0450 X 10-'
3.403 7984 X 10
2.882 2825 X 10

the angular-momentum degeneracy is often 1, and in
this case

~
m, n) is an eigenstate. However, even

when the degeneracy is not 1, the largest off-
diagonal matrix elements are typically 10 times
smaller than differences in the diagonal ones. Thus
the

~
m, n ) tend to be good approximations to the

eigenstates generally. For completeness we list all
the energy eigenvalues for M & 39 in Table II.

The first degenerate angular momentum is M=9
which is 3 times the minimum value of M=3 and
thus corresponds roughly to a packing density of —,.
In this case, as is typical when there is degeneracy,
the energy difference between the states of the same
M is much greater than the smallest difference be-

tween states of adjacent M. This is because the n
quantum number is energetically very unfavorable.
In Fig. 2 we compare plots of charge density for the
states

~
3,0) and

~
1,3), given that the center of

mass lies at the origin and that one electron lies at
y = —3. Fixing the position of one electron is neces-
sary because the absolute charge densities are
cylindrically symmetric. The evident tendency of
the n quantum number to force charge onto the
fixed electron can also be seen at other values of M.

The positive eigenvalues we calculate can be inter-
preted as binding energies if we apply pressure to
the electrons by placing them in an external poten-
tial of the form
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TABLE II. Eigenvalues of the Coulomb matrix in units of (3/t 2}/(e /ao }.

3387

M=3
M=5
M=6
M=7
M=8
M=9
M =10
M =11
M =12
M =13
M =14
M =15
M =16
M =17
M =18
M =19
M =20
M =21
M =22
M =23
M =24
M =25
M =26
M =27
M =28
M =29
M =30
M =31
M =32
M =33
M =34
M =35
M =36
M =37
M =38

0.567 907 97
0.497 837 43
0.420 11726
0.447 12999
0.403 230 72
0.337773 90
0.386 830 28
0.325 271 55
0.291 865 70
0.311 161 52
0.285 062 93
0.260 442 18
0.277 753 97
0.255 586 18
0.237 408 16
0.250 144 23
0.233 829 64
0.219565 91
0.229 94005
0.216764 99
0.205 223 87
0.213732 63
0.202 957 58
0.19336901
0.200 526 82
0.191485 29
0.183 356 81
0.189477 23
0.181758 76
0.174754 55
0.18006460
0.17337643
0.167259 62
0.171922 12
0.166055 14

0.411 13063

0.385 966 42
0.372 354 27
0.368 368 62
0.360 103 92
0.297 089 52
0.349 887 45
0.284 13189
0.270 397 53
0.272 767 39
0.263 329 82
0.244 18964
0.256 759 49
0.237 837 59
0.225 839 85
0.231 324 74
0.221 635 21
0.210503 23
0.217432 57
0.207 095 89
0.19796042
0.203 51363
0.195287 54
0.187362 26
0.192539 15
0.185 155 47
0.178286 78
0.182 867 74
0.17643722

0.355 563 79

0.345 684 63
0.341 353 86
0.337 682 77
0.334 153 98
0.263 142 95
0.327 998 95
0.255 195 80
0.250 786 81
0.248 671 01
0.245 43048
0.224 951 86
0.240 655 51
0.218 967 32
0.213 329 26
0.213 531 94
0.209 404 16
0.199760 91
0.257 71205
0.195 881 88
0.189749 77
0.191978 23
0.186957 84

0.330983 45

0.325 248 04
0.322 667 16
0.320 258 19
0.317992 78
0.243 223 76
0.313851 62
0.238 559 04
0.236 399 25
0.234475 98
0.232 591 27
0.208 728 78
0.229 165 28
0.20455725
0.202 282 39
0.200 936 58
0.19912205

0.315 862 53

0.311950 78
0.310149 52
0.308 439 81
0.306 81394
0.230 845 36
0.303 788 06
0.227 580 88
0.22606400
0.224 621 08
0.223 239 86

0.305 265 36

0.302 376 77
0.301 026 69
0.299 733 52
0.298 493 37

I'= —{
I
zi

I

'+
I zz I

'+
I
z3

I

')
2

=-, ~
I
z I'+ —{ Iz. I'+ Izb I') (22)

pressure, the lowest energy state has n =0. Also in
Fig. 3 we plot the root-mean-square area of the elec-
trons. The area of the triangle whose vertices are
the positions z&, z2, and z3 is an operator given by

Disregarding the center-of-mass binding, we have

mn —(
/
z.

/

'+, /
zz

/

'& m'n'I,
=5 ~5„„a(M+2) . (23)

Z1+Z2
A = —,Im —z3 {zi—z~ }"

2

{z,zb zbz, }, —4. a a (24)

Thus, the form of pressure has no effect on the wave
functions, but lowers the small-M states energetical-
ly relative to those of large M. In Fig. 3 we plot the
total angular momentum of the ground state as a
function of 1/a. We see discontinuous jumps to
successive integral multiples of 3 as the pressure is
lowered. Multiples of 3 occur because at any given

with matrix elements given by

(m, n IA I
m', n') =0 (25)

(m, n IA
I

m', n')=5 5„„—,[(3m} +(M+2)] .

(26)
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FIG. 2. Comparison of the charge densities associated

with states of the same angular momentum (M=9),
given that the center of mass lies at the origin (6) and

that one of the electrons lies aty= —3 (X). Contours lie

at integral multiples of 0.1 times the maximum charge

density given the two constraints.

Thus the expected area also changes discontinuously
with pressure. We interpret this as meaning that the
cluster is incompressible. As this is due in part to
the finiteness of the cluster, it is difficult to predict
whether the property will persist as the number of
particles is increased. However, if it does, it could
enable the macroscopic ground state to flow past
obstacles without generating collective excitations.

FIG. 3. Total angular momentum and reduced areas of
the electron cluster as a function of inverse pressure 1/a.
Units of a are +3/2(e /ao) and the units of A are ao.
Area operator is 1/V 3 times that defined by Eq. i24i.

We wish to thank P. M. Platzman, P. B. Little-
wood, P. A. Lee, B. A. Halperin, P. W. Anderson,
R. M. Martin, and C. N. Herring for helpful discus-
sions. We would also like to thank the Aspen
Center for Theoretical Physics, where part of this
work was performed, for its hospitality. This work
was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore ¹

tional Laboratory under Contract No. W-7405-Eng-
48.



27 QUANTIZED MOTION OF THREE TWO-DIMENSIONAL. . . 3389

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys.

Rev. Lett. 48, 1559 (1982).
K. von Klitzing, private communication.
K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev.

Lett. 45, 494 (1980).
4R. B. Laughlin, Phys. Rev. B 23, 5632 (1981); B. I.

Halperin, Phys. Rev. B 25, 2185 (1982), and references
therein.

5H. Fukuyama, P. M. Platzman, and P. W. Anderson,
Phys. Rev. B +1, 5211 (1979).

D. Yoshioka and H. Fukuyama, J. Phys. Soc. Jpn. +4,

394 (1979); 50, 1560 (1981).
7Note that since Eq. l2) is linear, A and V transform as

co- and contravariant vectors, respectively, under the

transformation described by Eq. (9), e.g.,

-+ HD pi —gp x& —xp Ho
A, = 2— y = (yx —x y).

2 2 2 2

Note also that this transformation has a Jacobian dif-
ferent from 1.


