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The Ising model with random nearest-neighbor couplings is studied numerically and
analytically. The J’s are chosen to obey the probability laws P(J)~ |J | ~® with O<a <1,
—1<J <0 for AF, 0<J <1 for F, and —1<J <1 for SG. Here F means ferromagnetic,
AF indicates antiferromagnetic, and SG stands for spin-glass. The thermodynamic proper-
ties are evaluated for arbitrary temperature, magnetic field, and . The dynamics is defined
by a Glauber equation of motion with random hopping matrices T' *(J;,J; _1), T ~(J;,J;_1),
and I'*t(J;,J;_1)=T"'J;_,,J;). We use a continued-fraction method to evaluate the
quenched averaged magnetization with M as a function of time. We find that M has two
components: a fast one My that decays exponentially and a slow nonuniversal nonexponen-
tial one M,. A new type of clusters, named I clusters, are found to be responsible for the
existence of M,, as well as the fact that Py(J) should be a continuous function of J. In the
case for which the J’s take only discrete values, M,=0. This result is obtained analytically
and checked numerically via a Monte Carlo simulation of the model. The appearance of M,
is found to depend strongly on initial conditions. In particular for the AF case when all
spins are parallel initially M, =0. Hysteresis loops for the F, AF, and SG cases are also ob-
tained with the Monte Carlo method. We point out that our results for the AF case are
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qualitatively ~similar to the recent
tetracyanodimethanide complexes.

I. INTRODUCTION

A significant advance has been made recently in

the understanding of the static properties of magnet--

ic chains with random antiferromagnetic ex-
changes.!=> The model Hamiltonians studied are of
the isotropic Heisenberg form

H=2Ji§i'§i+1—zﬁ’§i . (1)
i i

Here J; is the nearest-neighbor random exchange
and h is an externally applied magnetic field. Two
distinctive limits can be studied depending on the
nature of the spin operators {S}. When the magni-
tude of the spin is “infinite” the operators are unit
vectors. This is the classical limit. The other limit
is when the magnitude of the spin operators is 5.
This is the quantum limit and the operators are the
Pauli-spin-% operators. A lot of the interest in

27

dynamic experiments on quinolinium-di-

studying these models has been due to the experi-
mentally realizable quantum limit found in charge-
transfer complexes.! One of the most striking recent
findings is that the random-classical and quantum
cases belong to different universality classes.”> The
definition of universality classes here is related to
the probability law for J;, P(J;). It was found that
the thermodynamics of the quantum case is in-
dependent of the form of P(J;). In contrast, in the
classical n-vector models and the s =% Heisenberg
random ferromagnet the results depend strongly on
P(J;).% The currently known members of the quan-
tum class are the model given in Eq. (1) together
with anisotropic (X-Y) Heisenberg antiferromagnet-
ic (AF) models. The quantum universality class pre-
dictions have been nicely confirmed experimentally
by Clark and collaborators.!

With regard to the dynamic properties of these
models almost nothing is known. One of the
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reasons for this is, of course, that dynamic studies
are more difficult than static ones. In this paper we
study the dynamic properties of one of these models:
the Ising model with singular P(J). The physical
motivation for taking P(J) singular will be given
later. For reasons of completeness and of furthering
our understanding of the dynamic properties of the
random Ising model we study the antiferromagnet,
as well as the ferromagnetic (F) and spin-glass (SG)
cases. Also in Sec. II we present a unified study of
the thermodynamic properties of these models for
arbitrary temperatures and magnetic fields that are
helpful in the dynamic studies. Some of these re-
sults are already known.

The dynamic model studied in Sec. III of this pa-
per is defined by the equation of motion

da:
%=—Qi+ri+9i+1+rfq"-1 . @)

This is just Glauber’s’ equation extended to ran-
dom J’s. Here g; is the thermally averaged on-site
magnetization. The new items introduced by the
random J’s are the hopping matrices I'* that are no
longer symmetrical. The I" functions depend on two
Js, e, J; and J;_;, and  satisfy
T+ (J;,J; _1)=T"(J;_1,J;). Their explicit form will
be given in Sec. III. We notice that Eq. (2) has the
same form as the Laplace transformed tight-binding
Hamiltonian equation of motion, studied in elec-
tronic problems with off-diagonal disorder. Here
the lack of symmetry of the I'’s makes the problem
somewhat more complicated. As we discuss in Sec.
IIIC in an intermediate-temperature region the
asymmetry is weak and the two disordered problems
are analogous. The tight-binding problem with off-
diagonal disorder has been studied extensively. It is
found that the density of states has a singularity at
the center of the band. This singularity, however, is
integrable and does not lead to any measurable
quantity in our problem.

One of our main goals is to calculate the
quenched averaged magnetization M =[M(J,t)];.
The square brackets mean averaging with respect to
P(J). We choose the form of P(J) based on two
physically plausible conditions: randomly located

‘agnetic moments and interactions that decay ex-
entially with distance. These two assumptions
Al

(1—a)/Je. (3)

of J are bounded (0<J<1) and

ve complete discussion of this prob-

O ‘'ven in Sec. II. We use the
ethod to evaluate M (¢) analyti-

M (t) has two components, a

fast one, My, that decays exponentially with time,
and a slow nonexponential time decay. Here we find
first that there is remanence in all three cases
(AF,F,SG). The amount of remanence depends
strongly on the value of a, therefore on P(J). The
remanence is largest in the F case and smallest in
the AF case. At T =0 all models have remanence,
however, irrespective of the form of P(J) provided
P(J) is a continuous function of J. Specifically, we
find that

M, ~5—f(a)Tnt)—g(a)(Tn)¥ =4 ... |
@

with T'Int << 1. For 0 <a <0.5, the third term is ir-
relevant and the Tlnf dominates. However, for
0.8 <a <1 the dominant contribution is proportion-
al to (T'Int)*'=%). For intermediate values of a the
two (T In?) terms contribute and the explicit forms
of g(a) and f(a) are given in Sec. IIIL.

We also find that in the AF case the remanence is
strongly dependent on the initial conditions and is
zero if the initial state is fully magnetized. In Sec.
IV we give supporting arguments of why this is so
and confirm them via a Monte Carlo (MC) simula-
tion. There we start at high temperatures in the
presence of a field. Then we lower the temperature
in the usual MC way to reach the desired tempera-
ture and then turn off the field and observe how the
magnetization relaxes to zero. With the MC method
we are also able to calculate other quantities of in-
terest which seem much harder to calculate analyti-
cally. In particular we have looked at the hysteresis
loops. Their shapes are in agreement with the
changes in M, seen in the thermoremanent measure-
ments and the analytic results. We also compare
our analytic results with the numerical continued-
fraction results of Ref. 9.

In brief, Sec. II deals with the thermodynamics of
the three cases F, AF, and SG for arbitrary tempera-
tures, field, and a. This includes as well a discus-
sion of three different static correlation lengths that
can be defined in random systems. In Sec. III the
Glauber model is solved exactly at 7'=0 and ap-
proximately for low, intermediate, and high tem-
peratures. Here a new type of clusters named T
clusters is found to be responsible for the existence
or remanence in these models. In Sec. IV the Monte
Carlo method is used to help in furthering our
understanding of the random Ising model in the
presence of a field for different 7”s and a’s. Finally
in Sec. V we collect the main results of the paper
and discuss their possible relevance to the dynamic
experiments  performed on  quinolinium-di-
tetracyanodimethanide [Qn(TCNQ),] by Clark and
his collaborators.!” Part of the results of this paper
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pertaining to the AF case have been communicated
briefly elsewhere.!!!?

II. STATIC PROPERTIES

In this section we discuss the thermodynamic
properties of the Ising random chains defined in Sec.
I. The idea of clusters has been helpful and widely
used in the study of random magnetic systems.
Here we begin by discussing the properties of P(J)
itself. This leads to the definition of percolation
clusters associated with P(J). Then we go on to dis-
cussing the thermodynamic properties in the absence
of a magnetic field for the F, AF, and SG Ising
chains. Here we complete the analytic low-
temperature results for arbitrary temperatures by us-
ing a numerical evaluation of the partition function.
The thermal correlation length that leads to the de-
finition of thermal clusters and the “scaling” corre-
lation length are obtained in Sec. IIC. In Sec. IID
the magnetic field properties for small and large A
are obtained analytically and the intermediate region
numerically.

A. The probability law

The average strength of the J’s depends on the
value of a. For a small, on the average, the cou-
plings are stronger (J~1) than when a is large
where most of the couplings are weak (J~0). This
is easily seen from a computer-generated plot (Fig.
1) based on Eq. (3), for ¢ =0.3, 0.7, and 0.9. A
more quantitative description of the relevance of the
magnitude of the J’s comes from comparing them
with the temperature 7. The coupling between two
adjacent spins is considered strong if J > T and weak
if J < T. The probability that an arbitrary J is weak
is ~T'~® The probability of having a cluster of
L +1 strongly connected spins separated from the
rest of the lattice by weak couplings on both ends is

T2(l—a)eLln(1—T1"‘) .

On the average then, L adjacent spins are strongly
coupled if L <&,(T), where

£ '=—In(1—-T'-2) . (5)

We call &, the percolation correlation length. Of
course, this definition of cluster is the usual one,
which we call J clusters, and was first used for these
types of problems by Theodorou and Cohen.® Here
we want to compare &,(7) with the thermal correla-
tion length characteristic of the Ising model. Also
we will compare the J clusters with the I" clusters to
be defined in Sec. III, which depend on the relative
magnitudes of successive J’s, and are responsible for
the appearance of remanence in these models.

T T T T T T

10 a=03 b
os}- 1] |
00 t f } } t

1or a=07 7

5
o5t J-’ J
00 fﬂ"J-L t ’JL T t 1
1or =09 )
i LI
00— 0 26 30 20 50
SITE NUMBER

FIG. 1. Small portions of the lattices generated using
the probability distribution given by Eq. (3) with @ =0.3,
0.7, and 0.9.

B. Thermodynamic quantities

In zero field the thermodynamics of these models
are calculated straightforwardly for arbitrary P(J).
The specific heat is given by!3

Co(T)= [ PUNJ/T Ysech®(J/T)dJ , (6
whereas the susceptibility X at zero field reads

TX(T)=[1—po(T)]/[14p,(T)] (7)
with

pa(T)= [ P(J)tanhs /T dJ . 8)

The AF model is defined in terms of P(J) given
in Eq. (3). For the F case we take

PF=(1—a)|J|°, 9
with —1<J <0, and the SG case by
PS(N)=5(1—a)|J| %, (10)

where 0< |J| <1. We note that CAF=Cf=C36,
because C, is an even function of J. On the other
hand,

x5 =T x25 (1)), (11)
and for the SG case!*
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x5 =1/1, (12)

independent of a. At low temperatures
Co(T)~T'=% and [1—p,(T)]~T'~% which im-
plies that

XAHT)~T—. (13)

This behavior for X is also obtained for the s =—;—
Heisenberg AF but for arbitrary P(J) and with «a
weakly dependent on 7. Here the result is inherent-
ly related to the form of P(J). From Eq. (11) it fol-
lows that

xE(T)~T2-2, (14)

which is also divergent and an explicit function of
a. A result of this kind does not seem to have been
seen yet experimentally.

The region of validity of Eq. (13) can be found
numerically. We find that for temperatures smaller
than 0.1 the low-T result is essentially valid, as can
be seen from Figs. 2 and 3. It is essentially below
0.1 where we find remanent effects in the AF model
in Sec. IV. At high temperatures C, ~7 % and
X ~T ! as they should.

C. Static correlation functions

Another quantity of interest at zero field is the
thermal correlation length £r(a), which measures
the average distance at which two spins are correlat-
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FIG. 2. Specific heat given in Eq. (6) for different
values of « as-a function of temperature. This plot shows
a=0 ( ), a=03(-), a=0.7(—-—— ), and
a=0.9(—--—-- —). C, is the same for ferro-, antifer-
romagnetic and spin-glass cases.
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FIG. 3. Zero-field magnetic susceptibility, Eq. (7), for
(a) antiferromagnet and (b) ferromagnet. The curves for
different a’s are the same as in Fig. 2. The graphs are
given in a log-log scale.

ed. The quenched average spin-spin correlation
function between a spin at the origin and one a dis-
tance n away is

((SoS, )y =e "1 (15)
The correlation length is given by the equation
&7 (a)=—In(tanhJ /T), . (16)

Recently there have seen some suggestions that
the right quantity to average is not necessarily the
correlation function itself but the averaged loga-
rithm of (S,S, ).>'>16 In our case this becomes

(In{S,S, ));=n(IntanhJ /T); , (17)

which leads us to define the scaling correlation
length by

<'=—(IntanhJ /T); .

At sufficiently low temperatures £, (T), £7 '(a),
and £, except for numerical factors of O(1), go
like T'~%. At higher temperatures they differ in
behavior as can be seen from the plots of &,, &,
and £r(a) in Fig. 4. Here we are interested in the
low-temperature limit of the problem and therefore
conclude that using the average given in Eq. (15) or
(17) leads to essentially the same results, contrary to
what was found in the examples considered in Ref.
16. In particular, the fluctuation dissipation
theorem can be used to derive Eq. (7) with either of
the two averages. It is possible, however, that when
calculating the dynamic correlation functions this
equivalence will not hold and a representative aver-
age for the ensemble has to be found. In Sec. III we
define another correlation length related to the
dynamical properties of these models at intermediate
temperatures.
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FIG. 4. (a) Inverse percolation length [Eq. (5)] for T <1, (b) inverse thermal correlation length [Eq. (16)], and (c) inverse
scaling length. The classification of curves for different o’s is the same as in Fig. 2.

D. Field-dependent results

The equilibrium properties for h=£0 cannot be
evaluated exactly. In fact, there is a large body of
literature treating this problem with both h and J
random.!” Here we will be content with obtaining
asymptotic expressions for large and small h and
will connect both expansions numerically. In the
small-h limit the free energy is

[Fa(T,h)]J=[Fa(T,h =O)]J
— 3 X (T)h*+0 (h*) (18)

where X,(T) is given in Eq. (7). The next order
correction is more complicated and involves the
four-point correlation function calculation. The
high-A limit gives

(Fy)j=—h —[4(1—a)/Tle"2#=2/T4 ... |
(19)
which is valid for T << 1 and A >2. The intermedi-
ate region is calculated using a numeric evaluation

of the free energy as a function of h. Specifically,
we take a set of J’s chosen according to the probabil-



ity law given in Eq. (3). Then we evaluate a product
of N transfer matrices that gives [F,(T,h)];. This
free energy is numerically differentiated with respect
of h to obtain the equilibrium magnetization shown
in Fig. 5. These results are compared and used to
normalize the Monte Carlo results presented in Sec.
Iv.

III. DYNAMIC PROPERTIES

In this section the kinetic equation of motion with
random bonds is studied. We start by analyzing the
T =0 properties of the solutions. In this limit the
hopping matrices take numerical values that permit
an explicit solution of the equations in terms of the
new type of clusters called I clusters, which are re-
sponsible for the appearance of remanence. In the
I’y clusters the magnitude of successive J’s increase
whereas those of the I', clusters decrease as one goes
from left to right. The solutions are obtained for
the F, AF, and SG cases in this limit, and their
similarities and differences are discussed. Next the
quenched averaged magnetization is calculated at
finite but low temperatures. This is done using the
standard continued-fraction method to solve finite
difference equations. A discussion of the

1.0 T T T
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h
FIG. 5. Exact magnetization as a function of the field
h and temperature T for a 1001 spin lattice with @ =0.3.
The method of calculation is described in the text. The
dashed lines are the functions X 3(T)h, when X 3(T) is
obtained from Eq. (7).
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intermediate-temperature regime is also presented.
Here the equation of motion is essentially of the
type studied in the random electronic problem via
the tight-binding Hamiltonian with off-diagonal dis-
order studied by several authors. The high-
temperature limit is trivial and corresponds to
diffusive-type solutions for the magnetization.

A. Equation of motion

The Glauber equation of motion is a master equa-
tion with single spin flips induced by a thermal
reservoir located at each lattice site. From the de-
tailed balance condition we have

;(S;) 1—S; tanhE; /T
w;(—S8;) ~ 1+S;tanhE; /T’

where S;=+1, w; gives the probability of a single
spin flip, and E; =J; _S;_1+J;S; ;1. The equation
of motion reads

dg;(t
—%ﬁ—l= —g;+{tanhE, /T) . 20)

Here we have taken the same relaxation time for
all the spins in the chain, and equal to one. g; is the
thermally averaged on-site magnetization for a given
configuration of J’s defined by

g:({;}=3 S;R({S},{J},0),
{s}

with R being the probability density. The thermally
averaged tanhE; /T can be written immediately as
> [tanh(J; +J;_1)/T +tanh(J; —J; _;)/Tgi 11

(V3 )]

+ 5 [tanh(J; +J;_)) /T —tanh(J; —J; _)/Tlg;i_
(22)

which allows us to write (20) as

d _
zq:=—q.-+1“,~+qz+1+l“; gi_1>

where 't and '~ are the coefficients of g;,, and
gi—1 given in Eq. (21) and Eq. (22), respectively.
The Laplace transform of this equation gives

(14+8)G; =T} g 41+ 7 §i—1+4:(0) (23)
with
Gils)= [e"q(dt .
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B. T =0 solutions

Equation (23) acquires a simple form at zero tem-
perature because th? I functions take only the
values 0, +1, and . We start by considering the
F and AF cases and the SG case at the end. When
|J;| > |Ji_1|, Ti" =n, and T';" =0, with =1 for
F and —1 for AF. The region in the chain
ny<i<ny with [Jy | > [Jn,_ | > " > |Jy | has
I'"=n and I =0. We call this section of the
chain a Ty cluster. Similarly, if |J;| <|Ji_1],
I/ =0, and I =y, and for
|Jn2| < |Jn2_1 <= <Jn1 | with n;<i<n, de-
fine the r, clusters. 1 When
|Jn2' = IJn2_1 |=""+ |Jnl | F,~+=I‘,~_=71] and
this segment of the chain is called a T'; cluster. As
will be seen in this section the remanent properties
associated with the (I',I")) clusters are physically
different than those of the I'; clusters. In fact, the
I'; clusters do not lead to remanence. Also, because
the P(J) of interest in this paper is continuous, the
likelihood of having I'; clusters is smaller than that
for (I'},I"y) clusters and we study the latter type of
clusters first. Equation (23) at T =0 reads

€G;(8)=nG; 15(s)+¢;(0) . (24)

Here § =1 for a T'; cluster and 6 = —1 for a I'; clus-
ter, with e=s +1. Consider the sites n; <n <n,
such that the magnitude of the J’s are in ascending
magnitude for n;<i<n and descending for
n <i <n,. Equation (24) for i =n and n +1 can be
solved for g, ,(s) giving'?

Tn+1(8)=~ [(145)gn +1(0)+714,(0)] .

(s +2)
(25)

The relevant pole in this equation is at s =0, be-
cause when Eq. (25) is inverse Laplace transformed
it leads to a constant when ¢— «, whereas the
s =—1,—2 poles lead to exponential decay with
time. Note that this result reveals an important
physical difference between the F and AF cases. In
the F case there will be remanence regardless of the
initial conditions {g¢;(0)} chosen, except, of course
{g:(0)=0} and ¢;(0)=(—1)’, which is an AF type
of initial condition. In contrast, in the AF case in
order to have remanence the set {g;(0)} should not
be the same for all i. In particular, the case of all
spins aligned by a strong magnetic field should lead
to zero remanence. These results are confirmed in
Sec. IV by an explicit Monte Carlo sampling evalua-
tion of the magnetization.

For a given i the residue of g;(s) at s =0 is given
by

Res[7;(s)]1=77"~"![g,(0)+71g, +1(0)] . (26)

It should be noted that the value of g;(s) for i <n;
or i >n, is not related to g;(s) for n; <i <n,. This
result implies that the chain may be divided into
clusters which we will refer to as (I'y+T',) clusters.
For example, the region n; <i <n, is such a cluster.
It is characterized by an increase in magnitude of
successive J values up to a maximum value, fol-
lowed by a decrease as we move from left to right
through the chain. From what we have just said,
successive (I'y+I',) clusters are uncoupled. This oc-
curs because each spin always tries to satisfy the
stronger of its two bonds at T =0. We believe that
these clusters are responsible for the observed
remanence. From Eq. (26), we also see that only
odd clusters will contribute to the remanence in the
antiferromagnetic case.

In the SG problem both positive and negative ex-
changes are allowed at random. We can again de-
fine coupled I' clusters in which the magnitude of
the J’s to the left of J, increases and the couplings
to the right of J, decrease in magnitude as well.
The equation of motion in this case can be solved as
in the F and AF cases. The differences can be seen
by considering the absolute value of the solution
given in Eq. (26),

| Resgi(s) | = | gn(0)+7gy 41(0) | , 27

where 7 =1 if J, >0 and = —1if J, <0. Because,
again, the residue depends on the stronger coupling
the signs of the J’s can switch to the right or to the
left of J, but the absolute value of the residue will
not change. The Resg;(s) itself will alternate signs
in an AF-coupling region and will remain with the
same sign in a F segment, however. Thus we see
that the physical reasons for the appearance of the
remancence in the three cases, F, AF, an SG is the
same. Note that the results at T =0 are independent
of P(J) provided the distribution is continuous for
each case.

Finally, we consider the I'; clusters at 7 =0. The
equation of motion in this case is

d
=0T G+ - (28)

This equation can be solved by different methods in-
cluding the one used by Glauber with appropriate
boundary conditions. A similar analysis to the one
given above, however, shows that the s =0 pole does
not appear and only exponential decays with time
within a given cluster are found. The results of this
section explain why calculations with discrete proba-
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bility distribution functions'® have very different
long-time properties.

C. Low-temperature regime

Armed with the understanding gained in the
preceding section we can proceed to calculate the
averaged magnetization at low temperatures. At
nonzero temperatures the remanent magnetization
decays slowly with time. The manner in which the
decay takes place can be found from the expression

for the averaged magnetization
|

Bt Bi—

1 ico+8'

=5 t
C 2w —iw+s'dsl,2k[Glyk(s)]JQk(O)p‘ .

(29)

Here i =V/—1 and Gy is the Green’s function
associated with Eq. (23). G, can be calculated us-
ing the standard continued-fraction method. At low
temperatures we are interested in the low-order pole
structure of Gj;. At T =0, G;4(s) has a pole at
s =0 as for the g; given in Eq. (25). Following Ref.
19, we find that the poles of G (s) occur when

s+1—

(s +1)— (s +1)—

(s+D+ -

where Bt =I'fT'[;;. In the asymptotic limit of low
temperatures, we may expand the f’s to lowest or-
der. Consider the following cases:

@ J_1>I>J141,
®) 1< >Ji41
) Ji_1>Ji<Jpyrs
(@) Jy_1 <y <Jips .

For each of these four cases B;° is given approxi-
mately by

—J_=I)/T —(Jy_ =y /T
P I A e e A L

o~V /T =0 =0y /T

- ’ 31)

e —(JI+1+JI—I-2JI)/T
o~ =IT_ == )T
respectively. Then using these expressions and ex-
panding Eq. (30) to lowest order, in exponential
terms in T, we find that for the case of a (I';+T',)
cluster containing between 3 and 5 spins Eq. (30) has
a solution, near s =0, of the form
—=I /T = =J /T
se~—(e e 2, (32)

where [l;=I—1 and I,=I+1 for a two-spin
(T'1+T,) cluster with J; the maximum exchange in
the cluster, /;=I/—2 and l,=I+2 for a five-spin
cluster,and I, =] —1,l,=1+2o0rl;=1-2,l,=1+1
for a four-spin cluster. For larger clusters, the ex-
pression for the pole which occurs near s =0 is more
complicated, involving more than three J’s, but it is
unlikely that such large clusters will occur, as is evi-
dent from Fig. 1.

When substituting Eq. (32) into Eq. (29) we obtain

BI-‘:i—l - BI_—z
(s+D+

=0, (30)

ts(Jp,J; ,J; )
MO~TL [ [PUe " dsdr, (33
k
where the product over k extends to the values of k
corresponding to a given cell. These types of in-
tegrals appear often in the study of metastability in
random problems.?’ To see how they are evaluated
we rewrite
=gy )—AlT
IS(JI,JII,J12)=—7(9 !
+e —[gz(lll,le)—A]/T)

Here g, and g, are the exponents of the exponentials
in Eq. (32) and

A=TInt.

We see that in the low-T limit the two exponen-
tials have two extreme limiting values with a narrow
intermediate region in between. If (g,,g,) <<A then
t|s|>>1, and when (g;,8,)>>4, t|s| <<1. Thus
we can approximate

e '~0(g, —A)O(g,—A) .

This facilitates the evaluation of the integrals con-
siderably. Physically, this approximation means
that metastable states with barriers larger than A
cannot decay, whereas those with barriers smaller
than A4 can decay and therefore contribute to M (t).
The integrals in Eq. (33) can then be evaluated expli-
citly. Care has to be taken with regard to the singu-
larities in P(J). The integrals in Eq. (33), valid in
the SG and F cases, are of the same form as those
obtained previously for the AF case.!? This implies
that the remanence found in the SG and F cases is
also due to the existence of I' clusters in these
models. Of course, quantitatively they are different,
i.e., there is more remanence for the F than for the
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SG cases and less for the AF model, as will be seen
in the next section. A direct analytic evaluation of
the proportionality constant in Eq. (33) is, however,
beyond the scope of this paper. Using the step-
function approximation plus the explicit form for s
given in Eq. (32), we obtain the remanent magneti-
zation as'?

1 2(1—a)’
M(t)~——=—"4
0 3 2-3a
(1—a)X(1—2a) ,,
_—___A
* 1-3a

I'2—a)l'(3—2a)

_ i —a)
(3—4sin’ra)(4—3a)

This result is valid for a;é%,%. For these values
an explicit expansion in A gives the appropriate con-
vergent answers.!? The explicit expansion for M (t)
given above represents one of the central results of
this paper. The decay of M (¢) to zero is not surpris-
ing for a one-dimensional model. The difference
from the nonrandom problem is that the decay is
nonexponential. We can think of this as the ex-
istence of a spectrum of relaxation times. In this
section we have found that there is remanence in the
three cases considered, AF, F, and SG. Kumar and
Stein’ have also studied the characteristic time de-
cay of the magnetization for the SG and F cases
with uniform probability laws. Their method of
analysis uses the continued-fraction approach nu-
merically. They find that there is a T Int-type decay
to M,. This agrees with the leading contribution to
our analytic calculation taking a =0.

An apparent point of disagreement between their
results and ours is that they interpret their numeri-
cal results as saying that M, =0 for all T>0 in the
F case. As we have seen above, and also shown by
the Monte Carlo calculations of the hysteresis loops
of Sec. IV, there is metastability also in the F case.
The appearance of remanence in our analysis is re-
lated to the s =0 pole in the continued fraction.
From looking at Fig. 6 in Ref. 9 we seem to see also
that the density of states has a pole s =0, at the
lowest temperatures considered. It is possible that
our results are valid only in the T—0 limit, which
may be outside of the range considered by Kumar
and Stein.

D. Intermediate temperature regime

In this regime the equation of motion (2) can be
written as

Gi=—q;+Yidiy1+Yi_19i 1 +0(°), (34)

where we have defined

FIG. 6. T =0.1 hysteresis curves for: (a) antiferromag-
net, (b) spin glass, and (c) ferromagnet, generated by the
Monte Carlo technique described in the text. The same
501 spin lattice was used for the calculations with only
the signs of the couplings changed appropriately. The ar-
rows indicate the direction in which the field is changing
along the curves.

y;=tanhJ; /T . (35)

Here vy is always smaller than one. Then Eq. (34) is
a good approximation to the equation of motion (2)
at intermediate temperatures, where the correlation
between the J’s is negligible. When the temperature
is high enough such that {y}~O0, the dynamics are
purely diffusive, characteristic of independent Ising
spins.

In this form, the equation of motion is analogous
to the equation of motion resulting from a tight-
binding Hamiltonian with off-diagonal disorder.
Most studies of this problem have centered on the
behavior of the density of states at the center of the
band. Theodorou and Cohen?! first found that the
density of states diverges at the center of the band.
A more detailed study of this divergence was given
by Eggarter and Riedinger.”? In order to see if the
divergence has consequences in our problem we cal-
culate the configurationally averaged on-site mag-
netization. Following ER we define

A =i _1Gi _1(s)/q;(s) . (36)

To obtain Eq. (36) we have taken {g;(0)=0} and
g;(s), as before, is the Laplace transform of ¢;(¢).
From the requirement that the evolution of A,; be a
diffusive type we get the following [see Eq. (18) in
ER]:

Gi +1(8)=0(y;,7i 4+ VG (s) , 37)
where
O(Yi’7i+l)=7’i/[€/2+%(62—4’)/;4_1)1/2] ,
(38)
The solution of Eq. (37) averaged over the J’s is

[ =TT10(,yj+01s - (39)
J
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Here we have assumed that g,(¢) is frozen to only
one value qo(¢)=1. The configurational average in
Eq. (39) is not easy to carry out because of the corre-
lation between the different y; s in Eq. (38). Howev-
er, at sufficiently high temperatures, such that
vi =J; /T, the configurational averages can be car-
ried out giving

[g,(s)]y ~e " InTe+O0n/eT?) (40)
This result has been obtained in the limit of high
temperatures. The leading term in Eq. (40) is in-
dependent of the particular form of P(J) but the
corrections are dependent on its form, as well as the
proportionality constant that depends on (J);. A
“dynamic” correction length can then be defined as

Epyl=InTe , 41)

which can be added to the different types of correla-
tion lengths we defined in Sec. II. The form of the
leading term in Eq. (39) is directly integrable and
leads to an essentially exponential decay with time
for [q;(2)];, together with its exponential decay in
space. It should be pointed out that the result in Eq.
(40) is independent of the signs in the J’s insofar as
the form of the diffusion equation for the A’s is
dependent only on y2.

From this result we see that the singularity in the
density of states, which is related to the form of &,
does not have a physically significant influence in
the magnetization. Although we have only calculat-
ed the decay on space and time of the single site
g;(1), it is easy to see that similar results are obtained
for the total magnetization.

IV. MONTE CARLO SIMULATION OF DYNAMICS

In order to strengthen our belief in the results of
Sec. III, as well as to further our understanding of
these models, we have carried out a Metropolis
simulation of the time-dependent properties of these
models. This method allows us as well to calculate
other quantities harder to estimate analytically. Our
method follows the standard procedure (see
Binder?’): We select spins at random, allowing them
to flip. If the energy change AE is smaller than zero
the flip is accepted. If AE >0 the flip is accepted
only if exp[ —(AE /T)] > X, with X a uniformly dis-
tributed random number between zero and one.?*

The lattices used in the MC simulations have the
same set of J’s used in Sec. II. The calculations
were done for N =501, 1001, and 2001 with small
differences in the results. Thus most of the results
presented here correspond to a N =501 spins lattice.

Rather than wait for the system to reach equili-
brium, we required nearest-neighbor spins to satisfy

the exact correlation function in equilibrium,!*

(S,-S,~+,)=——tathi/T .

As we saw in Sec. III at T =0 the model has me-
tastable states that are independent of the form of
P(J), provided P(J) is continuous. When the tem-
perature is increased the particular form of decay
for the remanent magnetization depends on P(J)
essentially for values of a >0.5. In Fig. 6 we show
the hysteresis curves for @ =0.3, in the AF, F, and
SG cases. As expected the widest hysteresis loop
corresponds to the F case followed by the SG and
AF cases, respectively. The width of the hysteresis
loops decreases as T increases, as expected (Fig. 7).
This is related to the smaller energy barriers, to flip
whole clusters of spins, with respect to the thermal
energy. These calculations were done isothermally
as follows: The system is started in equilibrium at
h =0. The field was then increased by 0.1 every 600
MCS/spin (Monte Carlo steps per spin). The aver-
age magnetization of the new field was calculated by
averaging over the time the field was on. This pro-
cess was continued until saturation was reached.
Then the field was decreased by 0.1 every 1x10°
MCS/spin, until saturation occurred in the opposite
direction. Finally the procedure was reversed.

Next we turn to the calculation of the remanent
magnetization. We started with the sample at high
temperatures in the presence of a magnetic field.
The temperature is lowered until the desired tem-
perature is reached. At this point the field is turned
off and the system is allowed to relax at zero field
and fixed temperature. This magnetization is
known to experimentalists as thermoremanent mag-
netization. Our specific calculations started at
T =10 in the presence of a desired field. The sys-
tem was cooled with AT =1 every 1x10°
MCS/spin for T>1. Below T =1 the cooling is
done at a AT =0.1 rate every 1x10° MCS/spin un-
til the final temperature is reached. After the field

FIG. 7. Antiferromagnetic hysteresis curves for (a)
T =0.2 and (b) T =0.3. The lattice used here is the same
one used in Fig. 6.
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is off we save the spin configurations for future
reference. The system is left to evolve for another
1 10* MCS/spin. Averages are taken of M every
40 MCS/spin starting after 60 MCS/spin (corre-
sponding to the fast decay). This procedure is re-
peated 19 times and the average value of M, with its
standard deviations, typically look as in Fig. 8, for
a =0.3 with final temperature T =0.05 and h =0.5,
1.25, and 1.85. Note that at low initial fields the
remanence is of the order of 0.08 per spin, while at
larger fields it decreases towards zero. In fact, when
the initial state had all the spins oriented in one
direction M, was essentially zero in agreement with
the continued-fraction argument of Sec. IIL.

Our MC simulations were made in the range
T =0.05—0.5 for a =0.3, with initial fields n =0.5,
1.25, and 1.85. As expected large a calculations
reduce the remanence and are therefore more diffi-
cult to study numerically. This made it difficult to
extract the 431~%) contribution to M, for a >0.7.
For a=0.3 the remanence is larger and it decays
consistent with a T Int behavior. However, again,
because of the error bars a quantitative comparison
was not attempted. Essentially the MC calculation
shows qualitatively the trends expected from our de-
tailed analysis. In Fig. 9 the behavior of M,, after
the initial exponential decay, is shown for different
values of a vs T Int.

V. CONCLUSIONS

We have presented a comprehensive study of the
thermodynamic and dynamic properties of random

04 T T T T

FIG. 8. Time-dependent behavior of the remanent
magnetization after the initial exponential decay vs T Int.
We have factored out the unknown prefactor multiplying
the magnetization, which depends upon the preparation
of the samples. The value of a for the different curves is
the one given in Fig. 2.
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FIG. 9. Thermoremanent magnetization ¢t =0 corre-
sponds to the instant # =0. The error bars measure one
standard deviation in the data (20 runs for each value of
h). All three experiments were conducted at T =0.05
with initial magnetization fields: (a) 0.5 (diamonds), (b)
1.25 (circles), and (c) 1.85 (triangles). For the sake of clar-
ity the h =1.85 points have been set 20 MCS/spin to the
right of their true positions.

Ising chains. This included the spin-glass and the
ferro- and antiferromagnetic cases. The analysis
was done using different numerical and analytic
techniques, to consider arbitrary ranges of tempera-
ture and an external magnetic field applied. The re-
sults are mostly dependent on the probability law
P(J) used. The form of P(J) was chosen on physi-
cal grounds to be singular. Also, we took P(J)
singular to simulate, to some extent, the asymptotic
fixed-point probability law derived in the studies of
the AF Heisenberg S =% model. From our static
results we see that the susceptibility at low tempera-
tures is singular in all three cases but only in the AF
and F cases is it nonuniversal, i.e., dependent on
P(J). Insofar as the dynamics properties are con-
cerned our main result is that the two-time decay
previously found in the SG case also takes place in
the AF and F cases. Previously, however, from a
numerical continued-fraction study of the F case it
was believed that no remanence appears in this
case.’” At low temperatures, where the appearance
of remanence is dominant, we calculated analytical-
ly, starting from Glauber’s equation of motion, the
remanent magnetization. Adding a magnetic field
complicates the study of the equation of motion
analytically. Thus we have calculated the hysteretic
properties of the three cases using the METROPOLIS
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sampling technique. There it is seen clearly that the
remanence is larger in the ferromagnetic and small-
est in the AF case.

The appearance of remanence in Ising models is
traced down to the existence of a new type of clus-
ters called I' clusters. These clusters have the prop-
erty that the magnitude of the exchange constants
within a cluster have to be in ascending or descend-
ing order. When the J’s are all of the same value
within a cluster the contribution to the remanence is
zero. This explains why the discrete probability
laws lead to very different properties to continuum
probability laws in Ising systems.

Although the appearance of the I' clusters seems
to be exclusive to Ising model systems, the appear-
ance of remanence may be a general property of ran-
dom chains. In Ref. 12 we have pointed out the
similarity of our results for the AF case and the ex-
periments in Qn(TCNQ),. There, a Heisenberg
S =% model is believed to be the relevant model. A

two-time decay for the recovery magnetization is ob-
served that is similar to the one found here. This
behavior is seen at relatively low temperatures
(<0.1 K), such that a small ion anisotropy could
drive the spins into Ising-type configurations. Fur-
ther experiments are needed to find out if the two-
time decay seen in Qn(TCNQ), is related to
remanence effects.
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