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Eigenvalues of two-dimensional harmonic systems with periodic structures
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A recent technique of amplitude analysis for one-dimensiona1 systems is generalized to a
class of two-dimensiona1 harmonic systems with nearest-neighbor interaction and periodic
structures. The characteristic equation for the eigenvalues is reduced to a set of polynomial
equations of order equal to the number of particles in the unit ce11 for finite and infinite
crystals. Most of the analytic solutions demonstrated cannot be readily obtained by other
methods. Numerical examples of precise eigenvalues and eigenvectors for some large but
finite lattices (15X 12, 15X21) can also be evaluated very accurately and efficiently. Ana-

lytic and numerical examples of several infinite strips are presented using both the fixed-end
and cyclic-boundary conditions.

I. INTRODUCTION

Recently a new technique was developed to
analyze the eigenvalue problem in one-dimensional
linear systems with periodic structures. ' A set of
low-order polynomial equations specified completely
by the structure of the unit cell has been constructed
to replace the overall high-order characteristic deter-
minant. Eigenproperties previously difficult to per-
ceive can be analyzed. It is natural to consider gen-
eralizing this formalism beyond one-dimension
analysis where traditional methods are limited.

Higher-dimensional systems are intrinsically rath-
er involved, both numerically and analytically. As a
consequence, explicit expressions for eigenvalues and
eigenvectors of finite systems and the density of
states (DOS} of infinite systems are not reported ex-
tensively in the literature. For infinite systems, an
elegant example of the DOS for the multidimension-
al simple "cubic" lattice can be found in an early
work by Montroll. Starting from the fundamental
work of Van Hove, various analyses of the singular-
ity structures of DOS have also been performed for
homogeneous crystals. Recently, Dy, Wu, and
Spratlin succeeded in generalizing the sequential
Green's-function method to a block-diagonal form.
Surface effects on the DOS can then be treated
analytically. It is, nevertheless, not possible to apply
these existing methods directly to mixed crystals
with complicated structures.

In principle, as long as the unit cells of an infinite
crystal exhibit displacement symmetry between each
other, a Bloch theorem should be imposed. How-
ever, a simple adoption of the Bloch theorem would
require the labeling of every element in the unit cell.
This can become impractical when the cell structure

is complicated, or when the concentration of any

species
becomes low. For example, a structure of

(~~ . } would require 6X6 matrices, and a 1%
concentration of 8 would require 100X100 ma-
trices. Neither the examination of the characteristic
equation nor the expansion of the sequential Green's
function is useful when attempting to take into ac-
count the full structure of the unit cell. It is there-
fore necessary to study the analytic structure of the
eigenvectors within a unit cell and their propagation
across the boundary between cells.

For finite systems with periodic structures, Hari
used a transfer matrix method in 1968 and studied
several simple physical systems. These included
one isotropic impurity at a single site, a whole-line
impurity, and an impurity on the boundary. There
have been very few further studies in this direction.
Besides analytic studies, nearly all numerical
analysis has been performed on finite systems. Both
large matrices and very-high-precision calculations
are often needed. Various techniques have been
developed to overcome these limitations. For exam-
ple, the classical negative eigenvalue counting
method of Dean ' counts the number of normal
modes in a given frequency interval without evaluat-
ing specific eigenvectors. The effective-medium
sequential Green's-function method of Wu' starts
from a small number of near neighbors and progres-
sively expands the boundary. Both methods are at-
tractive in disordered systems where periodic struc-
tures are absent. There is, however, no natural way
to impose symmetry explicitly, or to avoid repeated
identical calculation. Furthermore, as the size of a
system increases, an accurate evaluation of any sin-
gle eigenvalue is very time consuming. This makes
an evaluation of the associated eigenvectors even
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more difficult. The nearly singular secular equation
requires extreme care in order to project the eigen-
vectors without systematic errors. "'

Usually in the past, finite systems have been used
to understand the behavior of infinite systems which
can be approximately truncated in size. However,
recent advances in submicrometer physics and
biophysics are beginning to call attention to periodic
structures of finite microscopic extension. In these
systems, the boundary conditions lnay not be ignor-
able. In other words, without displacement symme-

try, the Bloch theorem is no longer applicable. De-
tailed analysis of finite but large periodic systems is
therefore increasingly desirable for its own sake.

The work we report here is a first attempt to ad-

dress this problem. Instead of examining individual
atoms, propagation and coupling of standing waves
are employed. By generalizing the previous formu-
lation of one-dimensional systems, the structure of a
"modulating matrix" which summarizes the propa-
gation of a standing wave across the boundary of a
unit cell can be analyzed. Factorization of the
characteristic equation can then be obtained even for
finite systems without evoking a Bloch-type argu-
ment. The evaluation of the eigenvalues and eigen-
vectors for a mixed system can be sufficiently sim-
plified to allow accurate numerical calculations.
These modulation matrices also provide a con-
venient ingredient in imposing Bloch properties on
an infinite or cyclic crystal.

In our formulation, the concluding relationship
that governs the standing-wave patterns are usually

simple. However, notations and intermediate rela-

tionships are often tedious. This reflects the intrin-

sic complexity of mixed crystals in general, and can-
not be completely avoided. Details of the steps not
essential to the flow of the derivation are therefore
deferred to an Appendix. In Sec. II we briefly re-

view the notation and the dynamical equations. In
Sec. III solutions corresponding to several kinds of
finite bitt large mixed crystals are worked out in

more detail. This enables us to demonstrate the gen-

eral approach without going into the full generality.
A straightforward numerical calculation with good
accuracy, using traditional methods, is nearly im-

possible in these cases. Section III also demon-

strates, among other properties, the factorization of
the characteristic equations. The analytic solutions
obtained here cannot readily be obtained through
other methods. Section IV deals with general prop-
erties of a mixed crystal. Explicit calculations are
represented for the properties of the DOS of several

specific systems in Sec. V. Both fixed-end and
cyclic-boundary conditions are used to determine the
use of the Bloch theorem. By restricting them to
the simplest cases, these results may be compared
with a more straightforward calculation using Bloch
properties without standing waves. Further study
on more complicated systems shall be reported in a
later work.

II. BASIC FORMULATION

Dynamic equations of the two-dimensional harmonic lattice can often be approximated by nearest-neighbor
interactions. Specifically, we shall consider a two-dimensional rectangular lattice composed of N XM parti-
cles located at the integer points (n m), l & n & N, l & m &M. The in plane vibration may be separated into in-

dependent motions in m and n directions. If a harmonic frequency co is assumed, the equations of motion in
either the n and m direction are the following:

2 I I
n, m n, m ll n, m;n, m —l( n, m —l nm)++n, m, ;n, m+l(Un, m+1 n, m )

+ll'gm;g —l, m (in —l, m Unm )++nm;n pl, m(Un pl, m Unm )

1&n&N, 1&m &M .

Defining the matrices

M(n)J k 5J k~n J

E'(n) =

with

I I
+n, 1;n,0++n, 1;n,2++n, 1;n —1,1++n, 1;n+1, 1

+n, 2;n, 1++n,2;n, 3+ n, 2;n —1l, 2++n, 2;n —1,2

0

0

(3)
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we can rewrite Eq. (1) in matrix form:

[K'(n) —CPM(n)]v(n)=K(n}v(n+ I)+Kr(n —1)v(n —1), n=1,2, . . .,N
where v(n } is a vector defined by

[v(n)]k =ii,,k .

We also impose the fixed-end boundary conditions

v(0) =v(N + 1)=0,
since

Vom=Vx+i m=0 for any m and Vno=~nm+i ——0 for any n .

The characteristic equation is a huge (N X M ) by (N X M) block-diagonal determinant,

det/ /S
/ /
=0,

with

(4)

(6)

S(a) )=

K'(1)—co M{1}

K(1} K'(2}—co M(2) K(2)

K(2) (8)

The above block-diagonal determinant is very
cumbersome to analyze analytically. In order to
proceed we shall follow the procedure of Ref. 1 and
introduce

A(n) =[K(n)] '[K'(n) —c0 M(n)] .

Equation (5) is now in the form

DAD '=A g,
with

Let u(n) =D v(n); Eq. (10) becomes

u(n+1)=A q(n}u(n) —u(n —1) .

(12)

(13)
A(n}v(n) = v(n +1)+v(n —1),

n =1,. . .,N
(10)

Since u(0) =0, it is clear that every component of
u(n} is in the form of a standing wave along the n
direction as in the following:

since K~=EC.

Depending on the structures of the species, the
matrices A{n} can be quite different for different
n's. For convenience, we shall consider one fre-
quently occurring structure of A(n} as the host ma-
trix A~ and the other A(n)'s as impurity matrix Aj.
Thus A(1)=A(2)= . . A(ni —1)=A~, until at line
site n, where A (n, ) =A~+AH. The matrices
A(ni+ I},. . . return to A~ until another impurity
line site n =n i +n2 is reached, where
A(n~+nq)&A~. In general, it is not necessary for
the impurity matrices to be identical to each other.
Analysis of Eq. {10)is analogous to the procedure in
Ref. 1 for the linear systems.

We shall first diagonalize AH through an orthogo-
nal transformation D, so that

uj(n)=uj '(n)=C& 'sin(n4j), n &ni

with

4j=cos '(aj/2) .

At the line site n =n &+ 1, we get instead

u(n i+ 1)=(AI —AH )u(n, )

+[A~u(n, ) —u(n, —1)]
(o)

=hu(n~ )+ u (n&+1),
where

{14)

{15}

(16)

D(A~ —A~ )D

It is important to realize at this point that Eq. (16)
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represents interferences between the original undis-
turbed set of standing waves u' '(n) and a new set of
standing waves u '(n) generated by the deviation of
AI from A&. The net effect can be reexpressed as a
new set of standing waves differing both in magni-
tudes and phases from the original u' '(n~+1).
More specifically,

(0)u(n~+1)=u'(n~+1)+u (n~+1},

where

u z (n ~ + 1}= g hjk Ck 'sin(n
~ 4k )

k sin@J.

&(sin@J'—aj 'sin@J. .

CJ sin(% J ) =CJ sin(7f24)+ II ~ ) . (24)

In general, the structures of A at the discontinuous
line site can be different from site to site (see Fig. 1).
(This is analogous to linear systems with more than
two kinds of species. '

) (Cj~ ",%&~ ") can now be
identified as the amplitude and phase of the jth
component of u'~'(s} prior to a discontinuous line
site, n=n&+n2+ . +n~ and the (CJ'~', %~~'} are
the corresponding quantities after the wave pro-
pagates through this line.

In order to continue our analysis, it is most con-
venient to linearize Eqs. (23) and (24} in terms of
C&~'cos(VJ~') and CJ'~'sin(VJ~'), j=l, . . .,M. Defin-
ing

(0)
Using the u (n+ 1) expression explicitly with

(0)
uj (n~+1)=CJ sin(n&+1}@J.(0) ~

=C,' 'sin(n~@J )cos@J.

+CJ 'cos(n ~4)sin@J.

in Eq. (17},we get

uj(n~+1)=[a& '+CJ 'cos(n~4)]sin@&

+CJ 'sin(n ~@&)cos@J.

=C'"sin(4 +4'"),
where

tan+J~ "=CJ 'sin(n, 4~)

&([aj( '+CJ 'cos(n&4~)]

CJ "sin%&"——Cz 'sin(n ~4&) .

It is easy to see that for s & n,
(1)

uj(n)+s}=uj. (s)

=CJ "sin(s@J +'(IIJ") .

(19)

(20)

(21)

and

x~ (q}=CJ's'cos( +J~'), q =0, 1,. . . ,0

yJ (q) =CJ ~'sin(VJ~'),

we get

x(q) 1 P(q) C(q) —S(q)

y(q) 0 1 S(q} C(q)

where

x(q —1)
X 7

y(q —1)

O

P~;k(q)= . 4),k(q)
1

sin J

[D(A~ A~)Dr]J k, —1

(25a)

(25b)

(26)

(27a)

The same matching procedure, Eqs. (16)—(21), can
be repeated at the new discontinuous site
n=n&+n2. The only difference is that in u' '(n) an
additional phase 4&" is present. The resultant set of
standing waves will then take the form

(2)
uj(n~+n2+s)=uJ (s)

=C' 'sin(s@ +4' '), (22)

il gl

with the matching condition being

tan%' '=C'"sin(n 4 +4'")
X[a'"+C'"cos(n 4+qI'")]

(23)

(0,0)
rg

(N, O)

FIG. 1. Two-dimensional lattice; lattice sites without

marks are occupied by an atom with mass Mq. Lattice
sites with marks are occupied by an atom with mass Mq.
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C~ k (q) =5~ kcos(N~PJ ), (27b) where

Sj k(q) =5J ksin(Nspj ) . (27c)

Stated in terms of the Xj(q) and y J(q), the fixed-end
boundary conditions become

y(Q) = y(0) =0 (28)

In order to understand the underlying implica-
tions of the above equations, we shall first study a
few relatively simple examples in the following sec-
tion. This enables us to demonstrate the general ap-
proach without going into the full generality.

III. EXPLICIT SOLUTIONS
ON SIMPLE EXAMPLES

A. Reduced formulation

The general formulation in the preceding section
is rather tedious. Emphasis on the indices tends to
obscure the underline structure of the equations.
We shall therefore restrict ourselves in this section
to a class of two-dimensional systems. In this sys-
tem only one kind of impurity line structure is re-
peated along the n direction. The periodic structure
in the m direction need not be restricted. In this
case all the p, C,$ matrices in Eq. (27) are identical.
Several transformations are now in order. First, let

y'(q+1)=$ 'y(q),

p=2C+A, =2C+PS,

p —I
0

(31)

y '(Q) =(T&)»x '(0) =0 . (32)

Thus the characteristic eigenvalue equation is ex-
pressed as

det
I
(7 ~)&11 =o ~ (33)

Equation (33} is considerably simpler than the
overall characteristic equation of Eq. (8). Since the
detailed structure along the impurity line site is not
specified, Eq. (33) still contains in itself a large class
of interesting two-dimensional systems with periodic
structures. The only remaining question is how to
evaluate the off-diagonal submatrices ( T(1}ii.

First, within the matrix T, all submatrices com-
mute to each other. Matrix products can therefore
be evaluated as if p in Etl. (33) were scalar, and can
be factored in exactly the same manner as that of
the corresponding equations of the linear chains. In
the latter case, the characteristic equations are
known to be

The fixed-end boundary conditions now become

y '(Q) = y '(0)=0, (28')

leading to

x(q+1)

y '(q+1)
C+pS —S +pCS x{q)

1 S 'CS y '(q)

q~
p=p& =2cos q=O, . . .,Q —1 . (34)

Since

SC=CS,
we may then introduce

and get

(29)

Equation (33) can therefore be factored as

Q —1

g (p —peal)x '(0)=0,
q=0

i.e.)

det
~ p —p, 1

~

=0, q=O, . . .,Q —1.

(35)

(36}

r

x (q+li
y '(q+1)

x '(q)=T-,
y '(q)

(30)

x(q+1} C+A, A, C+C' —1 x(q)

y '(q+1) I — . y '(q)

If we now introduce x '(q }=x(q)+Cy '{q), Eq. (26)
is in the form

The complicated characteristic equation [Eq. (8)J
(which is a NXM degree polynomial in co ) is now

factored into polynomials of order No)(M,
No ——N/Q.

To analyze further the contents of Eq. (35), it is
necessary to use the explicit expressions for the
eigenvalues and eigenamplitudes of the host line site.
In the following, three typica1 numerical solutions
are given.

B. Numerical solutions of a simple mixed grid

In this example we shall study the situation corresponding to Fig. 2. Here at the host line sites all atoms are
the same, while at the impurity line sites a second kind of atom is located periodically, i.e.,
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M~, 1= integer X Np, k= integer X Mp

Mq otherwise .

(D), )= 1

MpP

1/2 j1
sin

p

(38)

Note that we can always reverse the order of
treatment of N and M. Thus the characteristic
equation (8) can also be factored into polynomials of
co of order N )&Mp. Together this implies that Eq.
(8) can be factored into polynomials of order

NOXMo (the number of atoms in the unit cell).
This is a pleasant surprise. The factorization is

achieved for finite crystals, where the Bloch-type ar-

gument cannot be involved. As we shall see in the

explicit evaluation, Eq. (33) indeed factors in this

manner.
At the host line site, A~ can be diagonalized by

eigenamplitudes of a homogeneous linear chain.

The orthogonal transformation is

(h)J g
=—EJ I

2(M„—Ms )r0

P —1
sin (j —l)n

2P j—l
cos 7T

2
1

sin (j l)n—
2P

(40}

This can be summed up explicitly. After some alge-

bra, Eq. (40}becomes

(Mg —Mg )co

jl M PK

with the diagonal matrix elements of A~ being

oi =2 co+1 —(I~ —I ) (41)

1, 2, l+
2K'+2K —m mz —2K'cos

K MpP

Substituting Eq. (38) into Eq. (17},we get

(39)
The following properties of 5j l are obvious:

~jl ~lj s

EJl ——0 if j= integer XP,

~),l =~),2P+l

(42a}

(42b}

(42c)

(42d)

(0,0)

n

!
I

I j
I

!

I

I

(N, O)

P —1
sin (j—1 hr

1
sin (j —l)w

j—l. 'cos ~ = —1.
2

Thus

MpK

EJl ——0 if j—l= Odd integer,

and for 0&!j—1!&2P,j I= even integer, —

(42e}

(42f)

FIG. 2. Two-dimensional lattice; lattice sites without

marks are occupied by an atom with mass Mq. Lattice
sites with marks are occupied by an atom with mass Mz.

~j!=0 if o& lj I
I

&2P . — (42g}

The above properties can be summarized easily with

a rearrangement of the index j (and I) in the order
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j =g(p)=(p, 2P p—,2P+p, . . ,2.$P p—,2(P+p, . .., ), 1&p &P

so that j is of the order

j =1,2P —1,2P+ 1, . . . ,2, 2P —1,2P+1,. . .,P, 2P, . . .,MpP) .

(43)

5 can then be blocked among those j and I sharing
the same p, so that

~(V») f~n) EN'

n =0, 1,. . .,N 1.—
N

In terms of co, we get

(50)

~ ~ (M„—Ms)co

0

0, p=P

~g(p), g(p') 0 s I+I
i.e.,

E 0 0 0

(44a)

2K'+ 2K —co Mz —2K'cos m
1, 2, M

0

n=2 cosf~ ——2 cos—1T,
N

i.e.,

co Mz ——2K 1 —cos n +2K 1 —cos—m
2 m n

Mp N

0 E 0
(44b)

with

0&M &Mp —1, 0&n &N —1. (51)

0 0 e ~ o 0

To take advantage of this, we shall first rewrite Eq.
(36}in the form

det
~
X(q)+4~ =0,

where

(45)

X(q) =s(2C —p~ I)S

with

(46)

(s)~ k =5J ksinpj .

Since X(q) is a diagonal matrix, after rearranging its
indices in the same manner as 4, X(q) remains diag-
onal, i.e.,

For these types of solutions, a set of node lines
passes through m =Mp, 2M2, . . ., where the second
kind of atom is located. These solutions are there-
fore identical to those of the corresponding homo-
geneous lattice.

Since the specific order between N and M should
not be important, Eq. (1) can be treated as M lattice
lines each of length N. Equation (51) implies that
there is another set of solutions where the node lines
pass through n =Np, 2Np, . . ., with the eigenvalues,
so that

n n
co M =2K' 1 —cos—m +2K 1 —cos—m.

A N

0&m &M —1, 0&n &Np —1. (52)

X(q) =

H(q, p = 1}

0

0

0

H(q, p =2)

0

0

0

H(q, p =P)

(47}

This set of eigensolutions is implicitly hidden in
Eqs. (30) and (35). With q=0, we get A,p ——2.
(2C —Ql)~ I and (S)~ I can both vanish for a given n

and 1. Equation (35) can then be satisfied. This re-
quires

Npfi =nm, l, n any integer,

Equation (36}is now reduced to

det
~
H(q, P)

~

=0

and

det
~
H(q, p&P)+E

~

=0,

(48)

(49)

and Eq. (52) follows.
Other solutions of Eq. (47) depend on both M~

and Mq and are naturally more complicated. Since

1 —1 1

p 1$ ~ ~ ~ pP 1

The solution of Eq. (48) is

q =O, . . .,Q —1.
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TABLE I. Numerical solution corresponding to Fig. 2 with m&/m~ ——4, k'/k=0. 05 with

Mo ——5, P=5, No ——3, Q =4, and co =2.96.

U'
J

—2.115 2.178 —2.227

19

2.578

21

—2.667

'Other UJ's are identical to zero.

the determinant can be evaluated explicitly as

MpE
g[Hg(p), g(p)(p q}] '+

p=l, . . . ,P 1, q=—l, . . .,Q —1.
(53}

Each of the terms H~(p) g(p) is a ration between a po-
lynomial of degree (No —1) and another polynomial
of degree N(),

' Eq. (52) is indeed a polynomial of
Np )(Mp degree in co . While Np &(Mp is the nurn-

ber of atoms in the unit cell, the order of the overall
characteristic equation (8} is a polynomial of N XM,
the total number of atoms in the whole lattice. This
possibility of factorization of the overall characteris-
tic equation to lower-order polynomial equations
(determined by the dimension of the unit cell) is not
restricted only to the specific example worked out
here.

As long as a structure is repeated along a specific
direction, factorization can be expected through the
phase analysis along that direction. Since factoriza-
tion may be achieved in more than one direction in-

dependently, an overall reduction of the secular
equation follows. Note that this argument does not
invoke a Bloch-type argument, and is therefore ap-
plicable to both finite and infinite lattices.

To further illustrate the procedure, we present
here a numerical solution corresponding to
mz/m~ ——4 and k'/k=0. 05 with Mp=5 P=3,

No 3, an——d Q=4. The solution in Tables I and II
belongs to a choice of p =q =1 in Eq. (53}. Simple
numerical search of this equation indicates a zero
position at co =2.96. Equation (35) is then used to
determine x '(0) and x(0) (given by Table I). A ro-
tation D applied to x(0) leads to v(1). Since
v(0)=0, all v(n)'s can be found iteratively using
Eq. (5). Indeed, the value v(N+ 1) is found to be
zero. Furthermore, our solution exhibits symmetry
with respect to both middle axes along N and along
M, although these symmetries are not explicitly built
in our solution. Specific values of the eigenvector

V~ k with j &12 and k &6 are listed in Table II.
Thus a correct eigenvalue is established without
solving the secular equation, which is a 180X180
determinant. Also, the eigen vector is obtained
without inversing a 180X180 matrix. The solution
we outlined here required very little memory storage
and computing time.

In Tables III and IV we present a similar solution
associated with a slightly different set of constants.
Mq/M~ ——4.0 and k'/k=0. 25 with p=1 and q=2.
Numerical searching indicates a solution of Eq. (35)
at co =3.60. The corresponding eigenvector is simi-
larly calculated Again. the vector V(N+ I } is iden-

tical to zero. This eigenvector is antisymmetric with
respect to the middle axis along the N direction, but
symmetric with respect to the middle axis along the
M direction. The amount of computing is about the
same as that of the previous example.

TABLE II. Values of eigenvectors VJ k corresponding to Fig. 2 with co =2.96, M~ ——1.0, M~ ——0.25, k'=0.05, k=1.0,
Mo =5 P= 5 No =3, and Q =4.

—0.00
0.00
0.00

—0.00
—0.00

0.00

0.00
—0.00
—0.00

0.00
0.00

—0.00

—0.03
0.02
0.01

—0.02
—0.00

0.02

0.13
—0.01
—0.20

0.17
0.11

—0.29

—1.96
1.70
0.46

—1.06
0.46
0.65

0.13
—0.01
—0.20

0.17
0.11

—0.29

—0.03
0.02
0.01

—0.02
0.0
0.01

—0.05
0.03
0.02

—0.04
—0.00

0.03

0.21
—0.02
—0.33

0.27
0.18

—0.46

10

—3.16
2.76
0.74

—1.72
0.74
1.05

0.21
—0.02
—0.33

0.27
0.18

—0.46

12

—0.05
0.03
0.02

—0.03
0.00
0.02
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C. Further example

In this example we shall present a numerical solution with a somewhat more complicated impurity line
structure. The periodic structure is shown in Fig. 3. There

Mz, j=integer)&NO, k =integer)&MD+1

Mz otherwise .
I

(54)

The numerical solution given in Tables V and VI corresponds to a set of constants of Ma =7, P =3 Np =3,
and Q =5. Instead of discussing the properties of matrix 6 of Eq. (40}, we shall simply outline its numerical
value. Under a similar relabeling of indices, 6 is block diagonal.

In terms of the sequence

j=(1,17,7, 11,13,5,9; 2, 16,8, 10,14,4,20; 3, 15,9;18,16,12),

E 0 0 0

(55)

0 E 0 0
OE' 0 (56)

0 0 0 E'

where

(—)jk ~j —k[ pl (57a)

e =(2.00, 1.85, 1.25,0.45, —0.45, —1.25, —1.80),

and

0.8 1.36 1.69
E '= 1.36 2.44 3.05

1.69 3.05 3.80

(57b)

Although Eq. (53) is no longer true, the eigenvalue
equation

(58)
s;k (»n0, )8j,k .

Since the impurity lines may occur at different in-
tervals, and the line structure may also be changing,
the matrices p(q), C(q), and S(q) are changing
within one complicated unit cell. The same overall
structure shall, however, repeat itself from cell to
cell. First, it is convenient to symmetrize the matrix
P(q) through a scaling transformation,

~( )
~

0 —1/2 ~( )

det
~
X(q)+4

~

=0 (46')
Then

can still be evaluated in a straightforward manner.
For example, with q =1 a zero of the determinant of
the first block occurs at co =3.495. The corre-
sponding value of x(0) is given in Table V. Again
the iteration relation of Eq. (5) leads to all the other
v(n}'s. Not only v(N+I} thus obtained is zero,

VJ k is also symmetrical with respect to reflection
along the middle line of the N and M axis.

IV. GENERAL SOLUTIONS

x(q} x(q —1)
=L(q)

with

where

]I. 5(q) C(q) —S(q)
0 I S(q) C(q)

5(q) =s '/2[D(A~ A~ )DrLs—

(59)

(61)

To consider a more general mixed two-
dimensional crystal, we shall start with Eq. (26).

UJ' 0.580 1.746 —0.580

19

0.742

21

—1.607

'Other UJ's are identical to zero.

TABLE III. Numerical solution corresponding to Fig.
2 with M~ /Mg ——4, k'/k =0.25 with Mo ——5, P= 5,
NO=3, Q=4, and co =3.60.

Instead of P in Eq. (27a), 5 is now symmetric, i.e.,

5(q) =5(q) .

x(q =0)
=F

y(q=0) nthcell
(62)

y(q=0) (n+1)thcell

where

Applying Eq. (59) repeatedly within a unit cell, we
now get

x(q=0)
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TABLE IV. Values of eigenvector Vj k corresponding to Fig. 2 with co =3.60, Mq ——1.0, M~ ——0.25, k'=0.25, k=1.0,
Mp =5, P= 5, Np= 3, and Q=4.

0.29
—0.46

0.40
—0.06
—0.37

0.56

0.61
—0.74

0.37
0.13

—0.43
0.52

0.02
—0.26

0.46
—0.23
—0.35

0.66

0.33
—0.09
—0.42

0.38
0.21

—0.59

—1.10
0.98
0.16

—0.58
0.28
0.22

0.51
—0.37
—0.17

0.34
—0.02
—0.24

0.40
—0.72

0.69
—0.15
—0.61

0.98

0.63
—0.90

0.65
—0.01
—0.65

0.92

0.49
—0.52

0.14
0.18

—0.24
0.20

10

—0.68
0.61
0.10

—0.36
—0.18

0.14

0.03
0.23

—0.50
0.27
0.36

—0.71

12

—0.36
0.29
0.06

—0.22
0.05
0.08

~j,k ~25—j,k = ~j,12—k.

F=L(Np) L(2)L(1) .

At the boundary of the last cell,

(63) be reduced considerably, thanks to the unique form
of F. As is discussed in the Appendix, the diagonal-
ization matrix E of the transformation F satisfies

x{q=0) x(q =0)—FQ
y(q=O) (Q+1)thcell y(q=O) firstcell

(64)

FE=EFd,
with

U 0

(66}

The boundary condition equation (28) now takes the
form

(67}

(F&)2 ix(q=O)=0. (65)
U being diagonal, and

Usually F cannot be transformed into the specific
block-diagonal form of Eq. (31). One is required to
evaluate products of noncommuting matrices. Fac-
torization such as Eq. (36) is extremely difficult and
perhaps too much to anticipate. (A detailed study
of the eigenvalue equation for linear systems with
more than two species is planned to be reported else-
where. ' Since Eq. {65)addresses quite general two-
dimensional mixed crystals, it is desirable to carry
the analysis as far as we can. Indeed, Eq. {65) can

0 1 0
TE =E

In terms of Eq. (66},Eq. (65}becomes

[E(Fg)&E]2 ix(0)=0 .

Substituting the explicit form

~&2E—
equi

into the above equation, we get

( U&r U& r)z =0, —

(68)

{69)

(70)

(7&)

O
{0.M} where

—1r =e22 ~2& (72)

Z

z =ei2 x(0, first cell) .

The eigenvalue equation is now

det
~

U&r U& r~ =0 . —

(73)

(74)

FIG. 3. Two-dimensional lattice; lattice sites without
marks are occupied by an atom with mass M&. Lattice
sites with marks are occupied by an atom with mass Mz.

In most cases, the ratio matrix r itself may still be
block diagonal. Equations (71)—(74) can then be
further factored into matrices with reduced dimen-
sions. The nonlinear scattering of the standing
waves of Eqs. (23) and (24) are now fully equivalent
to the linearized equation of Eqs. (71) and (74).
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TABLE V. Numerical solution corresponding to Fig. 3 with M&/Mz ——4, k'/k=0. 25, with

Mp ——7, P= 3, Np ——3, Q= 5, and co =3.495.

U'j —0.613

17

4.049 1.493 —0.740

13

0.985 4.799

19

—1.366

'Other UJ's are identical to zero.

V. DOS CALCULATIONS

A. Density of states of a double chain 1.e.,

G(1u )dp =G(q)dq,

In this section we shall discuss explicitly the lim-
iting procedure leading to the DOS of a double
chain. In this case, each atom is linked to its nearest
neighbor in the same chain by a force constant k,
and its nearest neighbor in the other chain by a force
constant k'. One of the chains is populated with
atoms Mq ——l only (homogeneous chain}. The other
chain is populated with Mz except for a periodic re-
placement of M~ by Mn at sites Np 2Np, . . . (cyclic
chain}. Equation (53}is now replaced by

tu=p (pi ), j=l, . . . ,Np . (78)

G(tu)= — e(4 —p )e(}M) . (77)
1 2 2

77 (4 2)1/2

However, co is now a multivalued function of p.
With any given value of co, there may be Np values
of p. The DOS therefore possesses Np components.
A convenient procedure is to calculate p in terms of
co so that

2 cos(Npgj ) —pz
—1

1—=0
7l

(75)

Since 1M is always in the range
~

1u
~
(2, a given co

may be in the band gap of some components. In
terms of Eq. (79), the overall DOS can be calculated
easily through

where

and

pq =2 cos qm

2 costi 2
———(2k'+2k —pi M„+k'),

k

7}= (Mg —M21 )pi /(2k),

(76)

(34')

G(pi')= QG(pj)
J

(7&)

In Fig. 4 we have plotted G corresponding to
Np =2. Mg /Mg =0.5 and k'/k =0.1. To under-

stand the essential feature of this spectrum it is
worthwhile to write down the explicit solutions of
the individual uncoupled chains (k'=0). For the
well-known homogeneous chain,

This equation shall be obtained alternatively using
the Bloch theorem in Sec. V B.

As Q tends to infinity, }us tends to a continuum.
The DOS in terms of q and pq should be

GH(co )=—1 1 e(~')e(4 —~') .
[(4 2) 2]1/2

(g0)

TABLE VI. Values of eigenvectors Vjk corresponding to Fig. 3 with co =3.495, M& ——1.00, Mq ——0.25, k'=0.25,
k= 1.00 Mp =7 P= 3 Np=3, and Q=5.

2.013
—2.184

0.595
1.073

—1.521
0.962

—0.277

0.722
—1.735

2.076
—0.568
—2.086

3.359
—1.640

2.055
—2.099

0.352
1.226

—1.342
0.569

—0.071

—0.507
0.465
0.016

—0.355
0.246
0.026

—0.067

—1.898
2.210

—0.857
—0.861

1.678
—1.387

0.505

—0.777
1.756

—2.001
0.499
2.065

—3.237
1.585

—2.034
1.909

—0.199
—1.381

1.056
—0.322
—0.201

1.236
—0.427
—1.406

1.572
0.544

—2.276
1.308

—1.176
0.475
1.219

—1.429
—0.408

1.973
—1.135

10

1.549
—1.634

0.368
0.871

—1.096
0.595

—0.139

Vj,k V21-j,k Vj, 15—k
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In our formulation it can be easily obtained by sub-
stituting p =2cosg into Eq. (79) or equivalently by

The spectrum of the alternative chain is also well
known. This can be rederived with '

1u=pH(co ) =cos(2$),

where

cosg= 1 —r0 /2 .

(81a)

(81b)

p =p, (aP) =—[2cos(2$) +P sin(2$)]

= —m'co +2(1+m')co —2,
leading to

(82}

Gc(ro )=—1 2 dp, e(4-~ )e(~ )
2 2

(4 2)1/2 d 2

(83)

~

1+m' m'r—02 ~, (j&r02&2, acoustic band or 2/m'&a1 &2/m'+2, optical band
(4 2)1/2

0 otherwise .

1u~
——a+(a 4b)'/2, —

where

(84)

a =cos(2/1)+cos(2/2)

+ (Cos((}1+COS((12)k,

b =cos(2/1)cos(2((12}

+ [cos(2/1)cos$2+ cos(2/2)cosf1]5,
I

N
2

When the coupling k is present, individual eigen-
values are perturbed by the interaction. This
changes the form of GH and Gz. More specifically,
1MJ can be evaluated from Eq. (79) with

In examining Fig. 5, first we note the existence of
the band gap at co =0, with its width roughly 2k'.
This can be readily understood. Usually two nearly
degenerate eigenvalues repulse each other under in-
teraction. At co =0, however, co cannot become
negative. Thus both eigenvalues move to a larger co

region. Physically, the standing wave of the homo-
geneous chain is incompatible with the standing
waves of the cyclic chain in the long-wavelength
limit. The linkage of k' makes it impossible for the
double chain to satisfy its boundary conditions.
Secondly, near the other band edge of the acoustic
band (co =2), the interaction k' mixed part of the
sharp rise of the DOS of the original acoustic band
Gc(co ) to the homogeneous chain GH(co }. A nar-
row band gap also developed near co =2. The
spreading of the optical band into the shorter-
wavelength region is expected. As can be seen, this
spreading is again of the order 2k'.

90

Al

6—

30—

W /W 0

FIG. 4. DOS G(co ) of a double chain, see Eq. (79).
The constants are No ——2, Mz ——I, M~ ——0.5, and
k'=k=1. DOS of each component is superimposed with
the total DOS.

W~/ Wo~

FIG. 5. DOS G(co ) of a double chain, see Eq. (79).
The constants are No ——2, M~ ——1, M~ ——0.5, k'=0. 1, and
k=1. DOS of each component is superimposed with the
total DOS.
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In the limit of small k', the above features may be
realized approximated through perturbation expan-
sion of Eq. (84). We then get

]I (co )=(2—co +2k')2 —2+O(k'2)

therefore work out several examples demonstrating
how such conditions are adapted in our formulation.

In order to satisfy the cyclic-boundary condition,
Eqs. (28) and (65) are replaced by

=pH(co' —2k'}+0 (k'),
and similarly,

(85} x(q =0)
(F vq 1 ) — =0,

.y(q =o}. (87}

p+(co ) =pc(co —2k')+O(k'} . (86)

Therefore, in the region co2 & 2k', both p+(co2} and
]]c (co ) vanish up to the second order of k'.

It is also natural that a band gap should develop
in the p (co } component at co =2. With]]c =]MH,
the divergence of G(]]czar) is canceled exactly by the
zero in

~
d]]cH/dco ~, leading to smooth behavior of

G(co ) at the middle of the band, co =2. The can-
cellation is not complete with p, not exactly p~.
A band gap arose in the region near co =2. In a
sense, the springs k' attached to the homogeneous
chain amount to a small added mass at alternative
sites. The development of a small band gap in this
region is therefore expected.

In Fig. 5 the spectrum of the DOS is plotted with

No =2 Mg /Mz ——0.5, and k '/k = 1.0. Generally,
the dependence is not very different from the earlier
case. Properties such as the mixing of the different
bands and the development of the band gap, particu-
larly at co =0, is common to double chains with
more complicated structures.

B. Deasity of states of cyclic strips

So far, we have always concentrated on finite lat-
tices with a fixed boundary. As the size of a system
increases, distribution of the eigenfrequencies be-
comes less sensitive to a particular choice of the
boundary condition. A common DOS may be ob-
tained with any type of boundary. One commonly
used alternative is the cyclic condition. We shall

I

where

v& ——exp(2eiq/Q), q =0, 1, . . . , Q —1 .

Naturally, the label identifying specific unit cells is
no longer present. The simplest example corre-
sponds to a strip with one single-segment structure
repeating Q time before cycling. Equation (87} then
reads

C+PS —v 1 —S+PC
=0.C —vq I y

Eliminating x in terms of y, we get

[s(2C—]Mal)S ]+](]l]y=0, (88)

1
where a real parameter p~= —,(v~+1/ve) enters.
For example, the previous example (~zz .'. '. }of Sec.
V A corresponds to

and the previous eigenvalue equation [Eq. (75)] can
easily be rederived.

As a second example, we shall treat a slightly
more complicated type of cyclic double chain with a
two-segment structure. With the use of (z) as the
host and (z ) as the impurity, each segment is in the
form (~ .

'
. '. ]]). The corresponding modulating ma-

trix F=L(2)L(1) is more tedious. After a fair
amount of algebra, Eq. (87) may be written as

C]C2 —7J(C]$2 +C2S] ) + 2
']} (C ]$]2$22+C2$ ]]Sp]+$]]S]2+$2]sp2+$]$2)+ ~ 7j ps($]]$22 +$]2S2] )=0

~

1

(89)

where

1

c~ =cos(l]]+]]p)]t]j ])Lcq

sj ——sin(]) ]+g2)PJ /singj,

Ssj =sinnkgj /singj.

with PJ. given by Eq. (76). Given a value ]]ce, the
above equation is a polynomial of m with degree
2(n&+nq). All branches of the DOS can be found
when pq approaches a continuum. These density

functions are somewhat more complicated than
those explicitly demonstrated in Sec. VA. But the
essential features are quite similar and need not be
further discussed.

The general solution of Eq. (89) cannot be readily
obtained by any traditional method. One might
therefore evaluate a particular case with n i

——1 and
n2 ——2 corresponding to (&zan~

. - ). This is also a
good example of a more complicated one-segment
cyclic chain. %'ith the identification of the host and
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the impurity interchanged and n=3, Eq. (88) may
also be used. Diagonalization of the host structure
is now

—&x+n &r—~R=
~ay &~ ~ &}+~ '

where y=(k' +g )'~. The rest of the algebra is
straightforward, leading to an alternative expression
exactly equivalent to Eq. (89}. In either expression,
the factorization of the secular equation is demon-
strated explicitly. We shall not explicitly reexpress
Eqs. (88) and (89) as polynomials in co2. Although
rather tedious, both are identical to the solution ob-
tained with a standard Bloch method. Obviously, in
this case, it is just as easy to label every element and
solve the secular equation directly. But Eqs. (88)
and (89}already contain other situations not readily
obtainable without a standing-wave formulation.

More specific discussions of other infinitely ex-
tended mixed crystals depend on direct extension of
analysis in Sec. III. One also needs general solutions
of one-dimensional mixed crystals with any struc-
tures, which we shall report in future papers.

VI. CONCLUSION

In this work we have analyzed the eigenvalues and
eigenvectors of a class of finite and infinite two-
dimensional mixed crystals. By generalizing a tech-
nique of phase analysis, the eigenvalues are obtained
without explicitly solving the secular equation. Al-
though the total number of atoms in the finite two-
dimensional mixed crystals can be large, in our ex-
amples the eigenvalues are obtained through polyno-
mial equations of the order equal to the total num-
ber of atoms in the unit cell. Since there is no need
to store big matrices in the computer, and the sys-
tematic errors are reduced (because the overall secu-
lar equation is factorized analytically), numerical
calculation is very fast and accurate. A traditional
numerical evaluation of the eigenvectors of these ex-
amples is very time consuming and nearly impossi-
ble.

Generalization of the phase analysis to two-
dimensional crystals with an arbitrary cell structure
is very difficult. This is reflected in the noncommu-
tating algebra of the modulating matrices.
Nevertheless, the nonlinear coupling of phases can
also be reduced to linear equations. With any given
crystal structure, explicit analysis can be done to
factorize the characteristic equations.

In the limit of infinite strips, both the fixed-end
boundary condition and the cyclic-boundary condi-
tion lead to the same DOS. In some of our numeri-
cal examples of double strips, interesting properties
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APPENDIX

The transformation matrices in Eq. (26) are
unusual in the sense that they are not orthogonal
transformations. Their specific forms call for a
transformation defined in the following manner: Let

—11 —12X X
X=

X21 X22
(Al}

then

T T
X22

X21 X11
(A2}

i.e.,

X=R X'R-',
with

—1 0 (A3)

and XT being the transpose of X. As in the tran-

spose transformation, when X=X2 X1,

X=X2X2 . (A4)

Note that using this transformation for matrices in
Eq. (60),

C —S
S C

C —S
S C

Z 5

0 I 0

since all the submatrices are symmetrical. Thus

L(j)=L(j) (A5)

common to strips of more complicated structures
can be observed. These simple solutions can also be
compared with the traditional extension of Bloch
solutions without using the language of standing
waves. Analysis on mixed two-dimensional infinite
lattices can be further developed using explicit prop-
erties of the eigenvectors for one-dimension sys-
tems' and shall be represented in a planned future
work. We are also currently working on a simul-
taneous diagonalization technique which would al-
low us to include symmetry properties along dif-
ferent directions more effectively.
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By applying this transformation to product F of Eq.
(63),

F=L(1) . L(NQ)=L(1} ' L(ND)
\i.e.,

since

E—1

with

—21—e -'G-'
—e 22'G

e

e 'H~ 12
(A14)

F F—1 (A6) —1 —1

C 11e 21 e 12~ 22

This in turn implies uncommon properties of the
eigenvalues and eigenvectors. Let E be the diagonal-
ization matrix, so that

—1 —1e 22~ 12 e 21e 11

(A12) implies

FE=EFd,
where

U 0
F=

(A7)

(A8}

—1~ 1 T
821 G =e 22,

—1r 1 Te 22 G e 21

Thus

—1 e 21e 22 e 22 e 21

(A15a)

(A15b)

with diagonal U and V. Transformation of Eq. (A7)
then leads to

EF '=FgE,
i.e.,

so that G ' is symmetrical, i.e.,

G=GT.

Similarly, H is also symmetrical. Substituting

(A16)

FE-'=E -'F -' (A9} L =EFgE (A7')

where
into the eigenvalue equation [Eq. (65)], we now get

V—1

—1F
0

U —1 i.e.,

[E(Fd) E]2ix=0,

Thus U ' and V ' can also be identified as the di-

agonalized submatrix of F. Choosing the ordering
of the eigenvalue properly, we may then arrange the
eigenvectors (column vectors of E) so that

(e zi U&e 22
—e 22 U equi )x =0 .

This can be rewritten as

(U&r U& —rr)z=0, (A17)

V=U-'.

Equation (A9) now becomes

FE '=E 'Fg .

(A 10)

(Al 1)

with

—1r=~22 e21

and

(A18)

By comparing (A7) to (All) it is obvious that we

may also choose the normalization of individual

column vectors of E and set

T
~ 22e 21X '

Furthermore, using Eq. (A15a},

E=E (A12)

Tr =e 21G 8 21,

In order to take advantage of the above relationships
to the eigenvalue equation of Eq. (65}, it is now

necessary to write down explicitly

we find

Equation (A17}now takes the final form

(A19)

E=
~ 21 e 22

(A13) (U&r U&—r)z=0. (A20)
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