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The methods introduced in a previous paper under the name of "traveling-cluster approx-

imation" (TCA) are applied, in a multiple-scattering approach, to the case of a random

muffin-tin substitutional alloy. This permits the iterative part of a self-consistent calcula-

tion to be carried out entirely in terms of on-the-energy-shell scattering amplitudes. Off-

shell components of the mean resolvent, needed for the calculation of spectral functions, are

obtained by standard methods involving single-site scattering wave functions. The single-

site TCA is just the usual coherent-potential approximation, expressed in a form particular-

ly suited for iteration. A fixed-point theorem is proved for the general t-matrix TCA,
ensuring convergence upon iteration to a unique self-consistent solution with the physically

essential Herglotz properties.

I. INTRODUCTION

The development of efforts to apply and extend
the coherent-potential approximation (CPA} for ran-
dom substitutional alloys has followed two some-
what independent lines since the idea was first put
forward in 1967, in different but logically equivalent
forms, by Soven' and Taylor. On the one hand
there have been the more formal efforts, concentrat-
ing often on methods of graphical analysis, ' look-
ing for effective cluster-type approximations, and
finding a testing ground in simple models such as
single-band systems. On the other hand there have
been many efforts to work with realistic models,
starting with Soven's use of a CPA-type approxi-
mation for muffin-tin potentials (i.e., potential wells
confined to a spherical region inside each unit cell of
the lattice}, and leading to various ways' of calculat-
ing physica1 properties of real systems using an on-
the-energy-shell multiple-scattering approach, but
not going beyond single-site approximations for the
most part. We shall refer to this approach as the
"t-matrix CPA".

The purpose of this paper is to present a systemat-
ic multiple-scattering version of the "traveling-
cluster approximation" (TCA). The TCA is a for-
mal extension of the CPA developed by Mills and
Ratanavararaksa (hereafter referred to as MR)

which incorporates cluster effects in a way that
preserves the necessary analyticity properties re-
ferred to collectively as the "Herglotz property" (see
Sec. V). Such a multiple-scattering version of the
TCA, in the case of a muffin-tin potential, would
permit practical calculations using on-the-energy-
shell t matrices, in the spirit of the t-matrix CPA.
In the case of the CPA, the t-matrix approach
proves to be exactly equivalent to the formal ap-
proach, as is implicit in the work of Bansil et al. In
the general TCA, in contrast, the two approaches
are not equivalent, and we find that the t-matrix
version is preferable on several grounds. In the first
place, the formal approach, when reexpressed in
terms of scattering operators, cannot be satisfactori-
ly projected onto the energy shell, so that it is not
suitable for practical calculations, and in the second
place, when the t-matrix TCA is broken down into
modified-cumulant-average (MCA) graphs in the
manner of MR, it is found to include a few more
graphs than the corresponding formal TCA using
potential operators (see Sec. V). Off-shell com-
ponents are needed for the t-matrix TCA as well, in
order to calculate the mean resolvent and the spec-
tral density function, but these can be handled much
as in Faulkner and Stocks' by the use of single-
scatterer wave functions as shown in Sec. II. Practi-
cal calculational procedures are described in Sec. III,
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along with the results of a simple single-band calcu-
lation, which show only slight differences in the
density of states between the formal TCA and the t-
matrix TCA.

The t-matrix CPA can be seen as the single-site
version of the TCA, giving rise to forms that seem
to have some practical advantages over the standard
procedures, and that allow one to see that the
Faulkner and Stocks way of recovering the full
mean resolvent agrees exactly with the formal CPA.
This is discussed in Sec. IV.

The analysis of causality {related to the Herglotz
property) in the t-matrix TCA is complicated by the
following fact: The propagator in the multiple-
scattering formulation consists of the off-diagonal
parts of the electron Green's function, since the
site-diagonal parts are absorbed in the single-site t
matrix. Such a propagator lacks the Herglotz prop-
erty, which is crucial to the analysis, so that in order
to test this approximation for the causality condi-
tion, it is necessary to reduce it to an equivalent
form involving potential operators and the full
Green's function. This has been done, and the ap-
propriate fixed-point theorem proved, showing that
iteration of the equations for any complex energy
converges to a unique, Herglotz solution of the self-
consistent equations. This is described in Sec. V.

It is our intention that Secs. II and IV provide an
outline of the structure of the theory including its
implications in the single-site case. It is further our
intention that the more mathematical and calcula-
tional details be contained in Secs. III and V, and
the Appendices. For the sake of brevity the results
of MR and Kaplan, Leath, Gray, and Diehl~ (here-
after referred to as KLGD) are used extensively,
often with little comment.

r =R'+x, (r & U', x 6 U ), (2.3)

{V
—1 gO}—1 [( Vc) —1 gO] —1

(2.4)

where the overbar indicates a configuration average,
and V' is an effective scattering potential for the
system, defined by this equation. 6 is the free-
electron Green's function, given by

GO=(E H)— {2.5}

[In Eq. (2.4) and elsewhere, we use the compact ex-
pression (a ' b} —' to represent a(1 ba) ',—even
where a ' may not be defined. )

In any given level of approximation in the TCA
{see MR, Ref. 5, pp. 5296f) the effective potential
V' has the form [MR, Ref. 5, Eq. (4.5)]:

V'= V+ V'MV',

where

V= g u'= g (c„u'"+eau' ),

(2.6)

(2.7)

V =gu =ggcgcs(u —u ). (2.8)

The operator M is given by rather complicated ex-
pressions involving an augmented-vector space, with
basis vectors labeled by the different sets of sites on
which MCA lines are allowed to overlap, as
described in Sec. III, and in greater detail by MR.

To obtain the multiple-scattering form, we
separate 6;J into site-diagonal and nonsite-diagonal
parts:

where U' is the unit cell centered at R'. Note that
R is taken as zero.

The mean system scattering operator 7 is given by

II. FORMALITIES 60 60D+gO (2.9)

The Hamiltonian is

K=K'+ V, (2.1)

V= v', (2.2)

and v' is the random scattering potential, v or v',
which occupies site i with probability cz or c~,
respectively. Since we restrict ourselves to muffin-
tin potentials, each localized within a single cell, the
terms v' are nonoverlapping, and it is often con-
venient to characterize a point r by its site index i
and a local coordinate x to locate the point within
the ith cell. Thus

where V is a sum of random single-site scattering
potentials, centered at the sites R' of a Bravais lat-
tice,

where 6 has matrix elements only between an r
and r ' in the same cell,

(R'+x
~

G'D
~

R~+x')

(2.10)=5&(R'+x
i
G

i
R'+x'),

and g, only between an r and r ' in different cells,

(Z'+x
~

gO
~

Z 1+x')

=(1—51)(R'+x
i
6 ~RJ+x') . (2.11)

(V—1 gOD 0)—1

(T—1 0)—1 [(Tc)—1 0]—1

(2.12)

(2.13)

This immediately lets us recast the mean system
scattering operator [Eq. (2.4)] in the multiple-
scattering form:
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where T is the sum of random single-site scattering
operators,

fj (x}(R'+x
~

t'
~

R'+x'j)(x')dx dx'

=t, a=A, B (any i), (2.21}
T ( V

—1 GOD) 1—+ ti (2.14)
so that we can write

and T' is an effective local scattering operator
analogous to V' and related to it by

Tc [(Vc)—1 GOD] —1 (2.15)

Note the role of G in (2.15), in that while Vj is
not site diagonal, the propagation between one V'
and the next is localized within a single cell.

Since the potentials u' are assumed to be muffin
tins of radius c, and since g is nonsite-diagonal, the
latter can be expressed exactly in terms of on-
energy-shell wave functions in x and x', so that the
heart of the calculation takes place on-shell and in-
volves only the on-shell matrix elements of t'. It is
not necessary, however, to project r onto the energy
shell, and indeed this would lose some of the infor-
mation needed to construct the mean resolvent 6
[defined below in Eq. (2.23)].

The structure of (2.13) is identical to that of (2.4),
with T and g replacing, respectively, V and 6 . It
follows that the analysis of MR (apart from the
proof of uniqueness, convergence, and the Herglotz
properties} can be carried through directly, yielding
a form structurally the same as (2.6):

(R'+x
~

M
~

Rl+x') =j (x }MJj (x'), (2.22)

G=G +6 iG (2.23)

must be broken down into terms in which the initial
and final propagations 6 are within a single cell

(i =j) or between different cells (i+j) In t. he latter
case Eq. {2.19) can be used, while in the former case
we identify the initial or final scattering as being
from an A or a B site, and describe it by means of a
corresponding Schrodinger wave function. After in-

serting (2.9) into (2.23), and performing some ma-

nipulations, we end up with

6 GOD+ 6ODTcG OD

where M J has the same structure as M but is made

out of t and g&z. At this point the only things in T'
(2.16) that are not on-shell are the single-site opera-

tors t ' and t" that appear explicitly, and are easy to
deal with.

Our aim in this is to set up expressions for the
mean resolvent 6, so that we can calculate physical-

ly meaningful quantities like the mean spectral-
density function. The general expression,

T'= T+T'MT',
where

(2.16)

(2.17)

+(1+GODT')g(1+ T'GOD) .

Here g is the multiple-scattering analog of 6:
[( 0}-1 Tc]—1

(2.24)

(2.25}

(2.18)

and where M is constructed in the same way as be-

fore, but out of t' and g instead of u' and 6 . In
Sec. III we shall exhibit the appropriate equations in
a form suitable for calculation.

At this point we expand g in on-shell free-
particle wave functions, in the usual fashion [see,
e.g., Ref. 10, Eqs. {2), (7), and (16)]:

(R'+x
~ g ~

R'+x') =i {x)g,i(»'» (2.26)

with

[{ 0)—1 Tc]-1 (2.27}

T~& ——fj(x)(R'+x
~

T'~ R~+x')j (x')dx dx' (2.2g)

which can be expressed in terms of on-shell wave
functions by the use of Eq. (2.19):

(R'+x
~

gO
~

R1+x')

= gi '(x)gLL'(R' R'j}'{x')— =t5)J+t'M~qt' . (2.29)

L,L'

=J(x)g IJJ(x'&

with

(2.19)
The definitions of t and t' are implicit in Eqs. (2.17),
(2.18), and (2.21).

Substituting (2.26) and (2.24) and taking every-

thing on-shell that we can, we get the relation

i'(x'=i' {x}=ii(~&Ix I
}I'I, (2.20)

The substitution of (2.19) into M has the effect of
replacing t', wherever it appears, by an on-shell t
matrix t:

G=G + gag,'M f'+ gg;g; (f"')f

with the following definitions:

(2.30)
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GD GOD+ GODTGOD

(R'+x ~G ~Ri+x')=5ipc, (x ~G +G t G ~x')

(2.31)

(2.32)

=5;J g c 1(i (x ( )P(x ) ), (2.33)

(R'+x
~
gi. )=5ig'(x ) =5;,Qcgcg[P(x ) —g'(x)],

(R'+x
~
pi)= f (R'+x

~

(1+G T') }R'+x')j(x')dx'

=5~ $1(x)+g(x)MJt',

((g() ~RJ+x}=5,if(x)+t'M, P'(x),

P(x)= gc g(x} .

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

Here 1(i and p are regular and irregular solutions, respectively, of the single-scatterer Schrodinger equation,
defined by

+Go
Oaves

~ +GOtoa ~

with asymptotic behavior:

(x ~i' )=j(x) i~Eh—(x)t ( ~x
~
&c),

(x
(
P)= i+Eh—(x) ( ~x )

&c),
h (x)=hi "(v E ix [ )Yt ~(x) .

(2.39)

(2.40)

(2.41)

(2.42)

In practice we work with the Bloch-Fourier transforms G(k), etc. , the lattice transforms appropriate to the
crystal symmetry of configuration-averaged quantities:

(x
~

G(k) ~x')= ge '~' (R'+x
~
G ~x') (2.43}

=(x
~

G ~x')+f'(x)M(k)g(x')+P(x, k)g(k)P+(x', k), (2.44)

g(k)=pe ' '" =[ '(k) ' T'(k)]- (2.45)

T'(k) =t+t'M(k)t' . (2.46)

Here n(E)= f p(k, E)dk, (2.50)

1(i'(x,k)= ge ' '"'(R'+x
~
$0)

=P(x)+g'(x)M(k)t', (2.47)

[g(x,k)]t= ge ' '"
(1(,' ~x)

l

=P(x)+t'M(k)g'(x) . (2.48)

The mean Bloch spectral-density function or "re-
duced spectral density function, " introduced by
Soven, ' '" and the mean density of states per site
are obtained from G(k):

p(k, E)=— Im f dx(x
~
G(k) ~x),

X (x
~

G(k)
~

x'), (2.51)

where k is the reduced-wave vector that relates p to
a reciprocal-lattice vector P„:

where the integration is made over the first Brillouin
zone (BZ), with volume Q. The regular mean
spectral-density function, for unrestricted momen-
tum p, is given by

p(p, E)= — Im f dx dx'e
UO

(2.49) p=P„+k . (2.52)
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III. PRACTICALITIES

The central part of the calculation is the kernal
M(k) which is found self-consistently via t'(k) and

g(k), the latter [Eq. (2.45)] being the effective propa-
gator that appears self-consistently in the intermedi-
ate "states" in M(k}. The calculation, following
closely the patterns of MR, gives M(k) as one cen-
tral submatrix of a matrix F&, whose rows and
columns are labeled by three indices, L, p, and 0. L
is the familiar partial-wave index, p is a local, or rel-

ative, site index, confined to a neighborhood of a lo-
cal origin at p=0, and cr labels the different ine-

quivalent (not translation-equivalent) MCA overlap
I

M(k) =F(~~(k) (3.1)

(a superscript 0 indicates the single-site set located
at i=0), where F„„(k)is a matrix of finite dimen-
sion, determined by

sets included in the family T defining the approxi-
mation. To see what this means, look at the inverse
Bloch transform F„„(R'gj}:i is a reference site
anywhere in the sample, i+ o (i.e., the set o dis-

placed by R'} is the actual overlap set, and i+ p
(i.e., the site at R +R&}is the actual scattering site.

The equations determining M(k) are as follows:

[F '(k)]p„«AP —— Tq„(k—),
T„„=5 5„„[tg(pEo )+tg(p Eo )]+e' ' t'5(0;o p, o' ——v},

A =[I+T'g]+[g ]+[I+gT']+—[T'+T'g T']~ .

(3 2)

(3.3)

(3.4)

[cf. MR, Ref. 5 Eqs. (7.32), (7.31},and (7.7)]. Here
8(S) is a truth function for the statement S, equal to
l if S is true and to 0 if not:

5(p;o, o'}

=8(o&o ')[8((p Uo) =o')+8((p Uo') =o )],
(3.5}

t and t' are defined in Sec. II, and

I

single-band tight-binding model, where the calcula-
tion closely resembles the TCA using potential
strengths worked out by MR. Results for the t ma-
trix and potential form of the TCA for a linear
chain with nearest-neighbor hopping are shown in
Fig. 2. It is evident that the differences in the two
approaches are indeed slight. A comparison of the
potential TCA calculation given in Fig. 2 with exact
results can be found in Fig. 5 of Kaplan et al.

t =cqt" +c„t~ . (3.6) IV. THE SINGLE-SITE APPROXIMATION

In Eq. (3.4), the quantities are all matrices in iJ; the
square brackets with subscript "+"denote a pro-
jection onto the subspace o, i.e., a restriction to
i=pEcr+, j=vEo+, and 0 and 0+ are sets related
to 0 and defined by

(3.7)

(3.g)

It is shown by MR (Ref. 5} that the single-site
TCA, in the formal version using potentials, is ex-
actly equivalent to the formal CPA. It also turns
out that the t matrix and formal versions of the
TCA are equivalent in the single-site approximation,
since the extra terms in the r matrix TCA (discussed
in Sec. V} do not occur in that case. So the single-
site t matrix TCA provides an alternative formula-

In the expression p Ucr, p represents the single-site
set [p); o is the complement of o. One could think
of cr+ as a "neighborhood" of o., and extension of cr

to include the sites one might add to cr without go-
ing outside the family of sets T that defines the ap-
proximation (MR, Ref. 5, p. 5297). For the
nearest-neighborhood pair approximation on a two-
dimensional square lattice, the different sets 0., o,
and o.+ are illustrated in Fig. 1. The bracketed ex-
pressions in (3.4) can be evaluated by means of
Bloch transforms. The choice of an initial form for
T' to start the iteration procedure is discussed at the
end of Sec. V.

The t-matrix TCA can be applied readily to the

~ . ' ~, ~

~ .~ ~0 1 ~ ~

~ ~ ~ .. ~

~ ~ ~ ~

~ rO ~ ',
'

~

~ ~ ~ ~

/ 8

', I~:.'iOI ~

(o) (c)

FIG. 1. The inequivalent overlap sets o for the
nearest-neighbor two-site TCA in two dimensions, with
the associated sets 0. and 0+. The site at the origin is in-

dicated by an open circle. The dashed line encloses 0, the
dotted line encloses cr+, and the sites between the dashed
and dotted lines comprise 0. In cases (b) and (c), where u
is a two-site set, o =0, the null set.
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t'= t +t'Mt', (4.1}

where M, by the procedures of Sec. III, turns out to
be

M =(goo +t' —t } ' . (4.2)

To see this, note that the t and t' terms in (3.3) van-
ish in this case, while from (3.7}, o is just o, a
single-site set, and all four matrices in (3.4) projected
onto o.+ are 1 X 1. So A &„and T&„reduce to

g00

T00=t .

(4.3)

(4.4)

This statement of the t-matrix CPA is completed by
the equation for g00.

goo
———f dkg(k),

1
(4.5)

g(k) = [go(k) ' t']— (4.6)

0.4—

V)
LaJ
I— 0.3—
I—
V)

O 0.2—

tion of the CPA, which has some advantages over
some conventional procedures. In the first place,
the fixed-point theorem discussed below guarantees
convergence on iteration, for any complex value of
the energy, to the self-consistent Herglotz solution.
In the second place, the TCA provides an explicit
expression for t' at each iteration, as contrasted with
the implicit expressions that arise from the standard
CPA approach.

Specifically, ~T& [Eq. (2.28)] is site-local in the
single-site approximation, so that T'(k}=r' is in-

dependent of k, and is given at each iteration, by Eq.
(2.46):

The Bloch-transformed mean resolvent G(k) is
given directly by Eq. (2.44).

The forms (4.1) and (4.2) are quite similar to those
used by Bansil et al. , as is the procedure for obtain-
ing the full mean resolvent. The two methods have
the same self-consistent solution, but do not corre-
spond to the same iteration procedure, since the M
of Eq. (4.2) differs from their expression [Ref. 9, Eq.
(2.33}]by terms that vanish only when t' (in our no-
tation) has its correct value.

It is also possible (but not very illuminating) to
show that the t-matrix CPA derived here is
equivalent to the version of Faulkner and Stocks,
which requires an additional ansatz [their Eq. (2.41)]
in order to obtain the nonsite-diagonal components
of the mean resolvent. Again, while their equations
and the single-site TCA have the same self-
consistent solution, the iteration procedures are not
equivalent.

V. FIXED-POINT THEOREM

We now wish to show that the t-matrix TCA
equations have a unique analytic solution. As men-
tioned in the Introduction, a straightforward
analysis is hindered by the propagator g, which
fails to satisfy Img (0; as g is not Herglotz, the
proofs used for the potential equations are not
directly applicable. In order to circumvent this dif-
ficulty, it is shown in this section that the multiple-
scattering equations have an equivalent expression in
terms of potential operators (Eq. 5.10) in which the
full Herglotz' Green's function appears. Some
algebraic manipulation of this equation yields a
form (Eq. 5.30) for which the analyticity proof in
Kaplan et al.' can be repeated almost verbatim.
This latter part of the argument is relegated to Ap-
pendix B.

For the discussion in this section, it is convenient
to be able to express the Hilbert space, 4, of the
single-electron system as a product space, based
upon the separation of Eq. (2.3):

I—

Vl
Z 0
LIJ
O with the natural bases I ~

i ) j and I ~

x ) j:
(5.1}

0.0 I I I

-6.0 -4.0 -2.0 0.0
ENERGY

I

2.0
I

4.0
I

6.0

FIG. 2. The electronic density of states for a single-
band tight-binding one-dimensional A-8 alloy with
nearest-neighbor hopping; site-diagonal energies,
v"= —2.5, v =2.5, hopping integral equal to 1.0, and
c~ ——0.3. Comparison of the t-matrix (solid line) and po-
tential (dashed line) forms of the TCA in the pair approxi-
mation. For a comparison of this calculation with exact
results see Fig. 5 of KLGD (Ref. 5).

fR;+x)= /i) /x) . (5.2)

where VJ, for given i and j, is an operator on %0, the
space of functions over U .

In the formal TCA, self-consistent propagators

We deal explicitly with the site-index space, 4,
which is all that is relevant here, so that we can
write, for example,

(5.3)
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Zo =PO TcPP (5.5)

From Eq. (2.15) we have

Z =P ( VC 1 GOD) 1P

po( Vc —I GODpo+ GODpo )
—Ip& (5 6}

where P,J 5,Je(i——6o+) and 'obviously, P
+P =I. Now, by the properties of P as a projec-
tion, one finds that

P (A GP ) 'P—

[(PoA IPo )
—I GODI]

and thus, from (5.6) we see that

Zo
I [p&( Vc — GODPo+) —IP&]—I GODII—

(5.7)

(5.8)

Now it turns out (see Appendix A) that Z and W
obey the same form of scattering equation as T' and
V' [Eq. (2.15)],namely

are defined which are specified by conditional self-
energy operators W [see MR, Ref. 5, Eqs. (5.1) and
(7.3)] given (in current notation) by

W =P V'P (5.4)

where Pz 5,JO——(iC&) and &=o+ [see Eq. (3.7)].
Now the t-matrix TCA can be recast in terms of po-
tentials by the use of Eq. (2.14), in which case it
takes exactly the same form as the formal TCA, ex-
cept that W takes on a different value, which we
now determine.

Since the formal TCA and the t-matrix TCA are
identical in structure [Eq. (2.4} vs Eq. (2.13)], it fol-
lows that self-consistent propagators of the same
type as g [Eq. (2.25)] for the t-matrix TCA are
determined by analogous self-energy operators Z
given by

approximation, V' is diagonal, and thus Eq. (5.10)
reduces to Eq. (5.4}, showing that the formal and t
matrix CPA calculations are the same. In the
development of the TCA by MR, self-consistency
did not arise in a natural way, as it does in the n-site
CPA, where the logical structure is just like that of
quantum-field theory and one replaces G by G in

the process of summing only over "irreducible self-

energy graphs. " In the TCA, as explained by MR,
Ref. 5, Sec. V, as many graphs were included in a
conditional effective potential as could be managed
without overcounting or violation of the Herglotz
property. The analysis of the t-matrix TCA shows
that in the formal approach, a few graphs that
might have been included were missed, and that
these are in fact included naturally in the multiple-
scattering version. An example of such a graph is
shown in Fig. 3, in the graphical notation intro-
duced by MR, with the dots representing potential
operators U. The bracketed subgraph is an improper
subgraph in terms of potentials, but arises as a prop-
er subgraph involving operators t (the two successive
scatterings from v J in this case) within the t-matrix
formulation. The return to the site j in the inter-
mediate state of the self-energy subgraph does not in
fact cause overcounting, as explained by MR, in
connection with Fig. 8.

Since the form of Eq. (5.10) is rather different
from that of Eq. (5.4), we must now cast it into a
form more amenable to analysis. To do so, we re-
quire the augmented-space notation (with minor
changes) found in KLGD. Our discussion here will
be as brief as possible; we ask the reader to see the
above-mentioned paper for a more complete presen-
tation. Note that the main change from KLGD is
that now the self-energy (here called V') is defined
relative to the free-particle Green's function, and not
the virtual crystal.

The Hamiltonian for the problem is an operator,
given by Eq. (2.1), on the Hilbert space %. The con-

Z o
( pro I G 0DI )

—I—
and therefore Eq. (5.8) implies that

lVo p&( Vc —I GODpo+ }
—Ip&

(5.9)

(5.10)

W kl

This is the desired result, in that it expressed the t-
matrix TCA in terms of a new definition of the con-
ditional self-energies W .

The additional terms that are included in the t-
matrix TCA and not in the formal TCA are a conse-
quence of the extra term G P in Eq. (5.10), as
compared with Eq. (5.4). The difference between
the t-matrix TCA and the formal TCA thus lies in
the details of the conditional self-energy operators
W used in the calculation of M(k) to describe the
effective environment. However, for the single-site

FIG. 3. A typical self-consistent self-energy subgraph
8'q~ included in the t-matrix TCA but not in the formal
TCA. The overlap set cr is [i,jI.
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figurationally averaged Green's function is given by

g [(gO}—1 Vc]—1 (5.11)

The augmented space is 0=%'e, with an ortho-
normal basis in 4e, the part we deal with explicit-
ly, being denoted by ~if ), where i is a site label
and u is any finite collection of sites; if o =8, the
null set, we write ~if ), and we normally use o to
represent sets other than 8. On 0, there is a "Ham-
iltonian" H=H + Vsuch that

G J =(if
~

( EI K) '—
~jf), (5.12)

where I is the identity on Q. We now write our
augmented-space operators as operator-valued ma-
trices, with rows and columns labeled by f and fo,
and components which are operators on %. In block
form,

Here the subscript T denotes the subsets of sites
which define the approximation; Pz is the projection
onto all vectors of the form

~
if ) such that i Go+

and cr&T, i.e.,

(PT)ij =5''Pij 0(o E T) . (5.24)

The expression [X j r, where X is an operator on
ql for each o, represents the operator g ~rX Po,
where P is the projection onto all vectors of the
form

~
if ), and finally, the conditional propagator

is defined as

go [(gO}—1 pro] —1 (5.25)

For the t-matrix TCA, W is given by Eq. (5.10),
and combining this with Eq. (5.21) we have

W =P f(V+K FK") ' GP —) 'P

K=( E Ho)I V—=—E" E

where [cf. Eq. (3.3)]

$7

yR y

(5.13)

(5.14)

(5.26)

For diagonal disorder, which is the case we are con-
sidering, K" is an operator which maps ~if ) onto

if;) (with a matrix element u'), and K maps

if; ) onto
~
if ). Denote by J" the operator which

maps
~
if ) onto

~
if; ) for all i, with matrix element

1, and let J be its transpose. We can write

Vi =(if
~

V ~jf ) =v'5,15; = V;",

Vtj ——(if
~
V~jf

(5.15)
and

E =v'J

JLJR

(5.27)

(5.28)

=5 (UPJ. +vPJ )+5;~u'5(i;o, o'') . (5.16)

v=gc u (5.17}

Here v, v', and v represent operators on %0, with the
obvious definitions [see Eqs. (2.7), (2.8), and (3.6)]:

where I is the identity operator on 4. Thus,

V+KLFK"=J ( uI+O'Fv')J", (5.29)

where I is here the identity on e. From Eqs.
(5.26)—(5.29}we see that

V'=QCgCR(v" —U ),
A B

V =CBV

+CATV

v =(i /v' /i), a=A, B (any i) .

(5.18)

(5.19)

(5.20)

pro po[[JL( VI+UrFvi}JR] —1 gODpo+] —1po

=poJ [( V++V FV )
1 GODpo+] 1JRpo—

(5.30)

In any given approximation, E is renormalized to
include self-consistency, as discussed below. Using
Eqs. (5.11) and (5.12), we find

yc y+ELFER

F=E
(5.21}

(5.22)

F=[[(G ) ']T Pr VPr]— (5.23)

[Note that V as defined by Eq. (5.13) and (5.16) is
different from the V in KLGD.] In both the formal
TCA and the t-matrix TCA, self-consistency can be
expressed by the use in Eq. (5.21}of a renormalized
F:

where P =J"P~ J~. This equation is close
enough in form to Eq. (A7} of KLGD so that the
proof of analyticity, with appropriate modification,
does work. The details can be found in Appendix B.

The theorem assures that, for any choice of the
family T that defines the approximation, the self-
consistent equations have a unique Herglotz solution
for V' to which the iterated solution converges re-
gardless of the initial choice of V', provided only
that it is Herglotz. How to choose initial forms of
T' (Sec. III) that are consistent with a Herglotz V'

[Eqs. (2.15) and (2.28)] is not quite obvious, but the
choice T'=0 is certainly all right.
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VI. DISCUSSION

The t-matrix traveling-cluster approximation pro-
vides a form of the approximation developed by MR
which is appropriate for muffin-tin random alloys.
The fixed-point theorem guarantees physically
reasonable solutions and good behavior on iteration.
In addition the single-site TCA gives a convenient
form to the coherent-potential approximation, and
ties together some of the different approaches to the
CPA that have been presented previously.
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V V 0 0
V+W — " + 0 WV V

(A3}

where Vis given by Eq. (5.14}and

W=[W ],= g W.P. , (A4}

with an appropriate choice for W . Substituting
into Eq. (A2) gives

r=[(V+ W)-' —G']-'

[(V+ W)
—1 GOD 0]—1 (A5)

We now wish to determine W by comparison with
the t-matrix equations. In the manner of Eqs. (Al)
and (A2), we recast Eq. (2.13) into the form

&=if I&If)=&f1(T ' g') 'I—f&,

T T 0 0
+ — Tg T+0Z (A7}

z= gz p. , (A8)

so that

where T is the augmented-space operator corre-

sponding to the random operator T of Eq. (2.14).
Analogously to Eqs. (A3) and (A4), T is renormal-

ized to the form

r=[(T+Z} ' —g'] '. (A9)
APPENDIX A: JUSTIFICATION

OF EQUATION (5.9)

Equation (5.9) gives the relationship between the
conditional operators W of the formal TCA and
the conditional operators Z of the t-matrix TCA,
in the case that the formal TCA has been modified
to give the same answer as the t-matrix TCA. In or-
der to establish this result, we employ the
augmented-space notation briefly introduced in Sec.
V, and more fully explained in KLGD. As in Sec.
V it is implicit that all matrix elements are operators
on the Hilbert space of electronic states.

Corresponding to the scattering operator ~, there
is an augmented-space operator r such that [see Eq.
(2.4)] the mean scattering operator r is given by

Comparing this with Eq. (A5},we see that

(T+Z) '=( V+W) ' —G' (A10}

or

V+ W= [( T+Z ) '+ G'D] ' . (A 1 1)

V+ $y ( 7 +GOD) —1+(Z —1+GOD) —1 (A12)

Now it follows from the definitions of T and Z that
T }if ) is zero unless i Eo+, while Z ~if ) is zero
unless i C & (=o+). Thus T and Z act on orthogo-
nal spaces, and the right side of Eq. (All) can be
separated out to give

T=[(V') ' —G ] '=(f p~ f ) (A1)
But the relation (2.14) between T and V implies the
same relation between T and V,

(V —1 GO) —1 (A2) —1 OD —1 (A13)
where V is the augmented-space potential operator.
In both the formal TCA and the potential formula-
tion of the t-matrix TCA, the renormalization ex-
pressed in Eq. (5.23) is equivalent to replacing V [us-
ing the notation of Eq. (5.23}]by

so that

or

PD (A14)
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Z=(W-' —6")-'
the promised result [Eq. (5.9}].

(A15)

APPENDIX 8: PROOF OF CONVERGENCE

The additional terms (as compared with the for-
mal TCA) in Eq. {5.30) do not alter the basic struc-
ture of the analyticity proof in KLGD. Substituting
the expression (5.30) for W into Eq. (A4), we have

W=I W IT
——[P J [(vI+u'Fu'}

60DPa+] —1JRP& j

fixed point. To prove this, the following assump-

tions are required. The variable E is restricted to a
compact subset D of the upper half-plane, and

6 (E) is a Herglotz function on D F.urthermore,
for any EED, Im[(go) '] is uniformly bounded

away from 0, (i.e., Im{[6 (E)] '}&y&0, while

ImG &0. By the compactness of D it then follows

that ImG & —g, with g & 0 a constant. We

also assume that V is a bounded, Hermitian op-

erator, independent of E; thus V and u' are Hermi-

tian.
We first show that ImP ( W) &0 if Im W & 0. Let-

ting

—:P(W) . (Bl} I'= [{uI+ u'Fu') ' —6 P ]

For a suitable starting guess W, iterating Eq. (Bl)
produces a sequence which converges to the required

I

and 5=(vI+ v'Fu') ' we have (using the dagger to
denote the Hermitian conjugate}

ImP(W)= —IP J (I —I' )J"P jT
2l

I
p&J r r[(Ii goDp ~+ }t (g GoDp~+ )]rtJRpn j

27

[P J r{b—t b, )r"J"P j—T+[P J I'Im(G )P rtJ P j
2l

The second term is negative definite because ImG &0, so we now look only at the first term:

—fP J r(ht 6)r J P—j =—[P JLI b[(uI+v'Fu') (uI+v'F—v')t]btrtJRP j
27 21

=—IP J rbv'(F Ft)v'dr'J —"P j
2l

=[P J~rbu'F( —Im[(G ) ']jTF"v'6 1 J"P jT,

(B2)

(B3}

and this term is also negative definite.
We now show that W( W) is bounded; that is, for all W for which Im W &0, there is a constant y such that

I IP ( W)
I I

& y. Using
I I
J

I I

=
I I

J"
I I

= I and Eq. (5.7) we find

Il~(w)ll= pllP J IJ"P II= pIIJ p rp J"II= pllp rp II

=supllP [( V+u'Fu') ' G I+G —P ] 'P
I I

=supll IP [ V+u'Fu') ' 6 I] 'P—
(B4)

where P ~ =J~P~J L. From Im W & 0 and
ImGO —i&0 it follows that ImF '&0; applying
Kato's theorem, ' we obtain in succession IIF& 0,

Im( V+u'Fu') ' &0,
and finally,

ImP [( V+u'Fu') ' G I] 'P & &0 . —

Since ImG & —g, the operator in curly brackets in
(B4) has a negative definite imaginary part, bounded
above by —g. Hence,

as desired. If we defined the set D of augmented-
space operators by

Ix j T, lmx &o IIX II &yj

(85)

then we can summarize the above results as showing
that&: D~D.

We next prove that the sequence 8'"+'=P (8'")



3262 ROBERT MILLS, L. J. GRAY, AND THEODORE KAPLAN

Let

=[P J'r„S„uF„(SW„,)F„,
Xu'LL„,I „,J"P } (86)

is a Cauchy sequence. Let LES'„=8'"+'—8'"; then
using the same manipulations as above,

5W„=W( W")—3 ( W" ')

and S„ is a partial isometry from the range of L„
[equal to the range of Y„CP=P„' see just below

Eq. (5.24)) to the range of Y„. In the same manner,
Y„' =S„' L„' . Since L maps P into P, Eq. (87) be-
comes

EW„=IL„' jr. (S„' ) b, W„, S„
gn gn-1 r

g„=Im[I (G ) '] "r —Pr &Pr]

=Im{G '}PT—ImI W ] "T &y
XIL. i]T (89)

~n-i
T

Since g„ is positive definite, there is a positive-
definite square root ~g„, and we have

EW»= {Y'„} EW»
1 1

gn gn-i
A„= (S„' ) dW„

1 1

g» gn i-S„ i, (810}
. T

By defining Xn = [ L„]T, X„' =
I

L„' ] r and

where

Y„=~g„F„u'S„r„J"P,
Y „' =~g„F„u'E„I'tJ"P

{87)

(88)

we can write hfV„=X„A„X„&,and substituting
this back into (810) we find

gn gn-i r
[In KLGD this part of the proof is not done correct-
ly because the transpose (+ ) was interpreted as con-
jugate transpose. One must define separate opera-
tors for the left- and right-hand side of the expres-
sion in Eq. (87), as is done here. ] Let Y„=S„L„be
the polar decomposition of Y; L„=[(Y„)Y„]'

(811)

This equation is in exactly the same form as Eq.
(A17) of KLGD. The remainder of the proof fol-
lows precisely as in that paper, and will not be re-
peated here.
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