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Structural phase stability in third-period simple metals
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Extensive phase-stability calculations for the fcc, hcp, and bcc structures of Na, Mg, Al,
and Si are reported both near 1 atm and under high pressure, where Si becomes a natural
member of this set of third-period simple metals. Calculations for each element have been

carried out by two entirely different first-principles techniques: the generalized pseudopo-
tential theory (GPT) and the linear-muffin-tin orbitals (LMTO) method. The two tech-

niques give results in good qualitative agreement for Mg, Al, and Si, and predict sequences
of high-pressure structural phase transitions for these elements which arise from the lower-

ing and partial filling of the initially empty 3d band under compression. Detailed analysis

shows that major trends in the phase stability of the third-period metals are correlated with

specific features both in the LMTO one-electron densities of states and in the GPT intera-

tomic pair potentials. Quantitative comparisons between the two theoretical techniques, as
well as with available experimental data and other recent calculations, are further used to
assess the accuracy of the approximations employed by these methods in calculating
structural energy differences.

I. INTRODUCTION

The study of crystal-phase stability in solids has
progressed dramatically over the last few years. Ex-
perimentally, advances in diamond-anvil technolo-
gy' have extended the accessible pressure range at
room temperature to nearly 100 GPa (1000 kbar)
and have led to a wealth of newly discovered high-
pressure structural phase transitions. ' At the same
time, theoretical studies have shown that rigorous
implementations of the Kohn-Sham local-density-
functional formalism, through such widely varying
first-principles techniques as the ab initio pseudopo-
tential (AP) method, ' generalized pseudopotential
th~fy (GPT), ' and the linear muffin-tin orbitals
(LMTO) method, 'c yield phase stability predic-
tions in generally good qualitative agreement with
each other and with experiment. This is a signifi-
cant accomplishment given the exceedingly small
energy differences between phases that must be cal-
culated, often 2 or more orders of magnitude smaller
than the cohesive energy.

Recent theoretical calculations have shed light on
many of the trends in crystal structure apparent
throughout the Periodic Table, both near normal
density and under high pressure. Of particular in-
terest has been the discovery that d electrons play a
critical role in determining the stable structures of
not only the transition metals but also of the
lanthanide, alkaline-earth, and group-IIB metals as

well. Trends which seem to be so explained include
the hcp~bcc~hcp~fcc sequence of structures
from left to right across the transition metals, "
and the hcp~Sm-type~dhcp~fcc sequence for
the lanthanides both with decreasing atomic number
and under pressure. ' ' The lanthanide sequence of
transitions has also been observed' in compressed
Y, corroborating the belief that f electrons are not
involved in determining this sequence. In the case
of the alkaline-earth metals, trends explained by the
presence of d electrons include the hcp~fcc~bcc
sequence observed with increasing atomic num-

ber, ' ' the fcc~bcc~hcp sequence observed' for
the heavier members under pressure, ' and the
temperature-induced fcc~bcc transitions in Ca and
Sr.' Finally, the high c/a axial ratios found in the
hcp group-IIB metals Zn and Cd have also been at-
tributed to the effects of d electrons. '

In a preliminary account of the present work, '

we reported on a series of OPT and LMTO phase-
stability calculations for the metals Na, Mg, and Al
over a wide range of volume. We demonstrated that
under compression the controlling influence of d
electrons is extended to even such simple metals,
leading to newly predicted sequences of high-
pressure structural phase transitions in each case.
Earlier phase-stability calculations for Al by Friedli
and Ashcroft' were not carried to sufficiently high
compression to detect these transitions. Our predic-
tions for Al, however, have recently been theoreti-

27 3235 1983 The American Physical Society



3236 A. K. McMAHAN AND JOHN A. MORIARTY 27

cally confirmed by the AP calculations of Lam and
Cohen. In this paper, we present a more detailed
description of our work on these third-period simple
metals, as well as extensive new results and analyses.
To better account for the effects of the d electrons in
the GPT, we have here applied the more appropriate
empty-d-band limit of that theory in place of the
simple-metal limit used previously. This leads to
generally better agreement with both LMTO and
AP results at high pressure. We include new LMTO
calculations for Na and a description of our tests of
the LMTO force-relation technique for calculating
structural energy differences, which was omitted in
the earlier work. We have also included new high-
pressure results for Si, which becomes a natural
member of this set of third-period simple metals
under compression.

In the remainder of the paper, the GPT and
LMTO computational techniques are briefly
described in Sec. II and our calculated results on
phase stability are presented in Sec. III. In Sec. IV
we focus on the qualitative trends predicted and try
to gain some insight into the mechanisms determin-

ing phase stability in the third-period elements by
examination of the LMTO one-electron densities of
states and the GPT interatomic pair potentials.
Critical quantitative comparisons between the pre-
dictions of the two theoretical methods, as well as
with experiment and recent AP calculations, are

given in Sec. V, and our conclusions are given in

Sec. VI.

II. CALCULATIONAL TECHNIQUES

Our analysis of phase stability in the third-period
simple metals is confined to zero temperature and is
based on calculations of the total energy of each
solid as a function of atomic volume 0 and crystal
structure (fcc, ideal hcp, and bcc lattices). We have
found the total-energy differences between struc-
tures at fixed volume EE„t to be almost identical to
the Gibbs free-energy differences at fixed pressure
hG, and so we focus only on the former. This sim-
plification is a direct consequence of the fact that at
a given pressure, the atomic volumes amongst the
metallic structures we consider differ only slightly
(typically, EQ/Q is less than 0.01). As shown in
Ref. 15, the leading correction to EG=~t t for
two structures differing in volume by AQ is
—,QB(EQ/Q), where B is the bulk modulus. In the
present work, this term is generally about 2 orders
of magnitude smaller than EEt

We calculate the total energy (excluding zero-
point vibrational corrections) within the general
framework of the Kohn-Sham local-density forrnal-
ism by means of both the GPT and LMTO

methods. Zero-point energies have been obtained

separately with the GPT method, but, except in Na
near normal conditions, they are of negligible impor-

tance and are not included in our results unless

specifically noted. As applied here, the GPT and

LMTO methods employ slightly different forms for
the exchange-correlation potential in the Kohn-
Sham equations. The GPT uses a modified Hedin-

Lundqvist form appropriate for the unique require-

ments of that theory, ' ' while the present LMTO
calculations are based on the closely related
exchange-correlation potential of von Barth and

Hedin. Test calculations have shown, however,

that this difference is not significant relative to oth-

er differences in the two methods.

A. OPT method

The density-functional formulation of the GPT is
discussed at length in Refs. 6 and 7. In the present
work we utilize the latter optimized version of the
theory. For a d-band metal the essence of the

method is to work in an enlarged basis set consisting
of both plane waves

~

k ) and localized d states Pq,
and analytically develop the electron density and to-
tal energy in suitable expansions involving small

quantities. The ultimate expansion parameters are
the following: a pseudopotential w0 and a d-state
hybridization potential h„,~. The state of the art is
to calculate the electron density to first order in w0

and (lL„,~) and the total energy to second order in

these quantities. This provides internal self-

consistency while retaining the dominant structural
contribution to the total energy E„,. Moreover, in
such a development the small structural energy

E„,is isolated from the much larger volume con-
tribution E„,~,

Etot Evol +Estruc ~

Thus in obtaining the total-energy difference be-
tween two lattices at fixed volume only E„,enters
the calculation and a meaningful result can be ob-
tained no matter how small the energy difference.
For a perfectly periodic lattice E„,can be calculat-
ed from the simple expression

2
1.8—a@ 4&E„,= —,(Z~e)2 —g'

~
FN(G)

QGG

where Z* is the effective valence of the metal, a~ is
the electrostatic Ewald (or Madelung) constant of
the lattice (a~ ——1.79175 for fcc, 1.79168 for ideal

hcp, and 1.791 86 for bcc), S is the Wigner-Seitz ra-
dius (Q=4nS /3), and F~ is the so-called normal-

ized energy-wave-number characteristic. The second
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term in Eq. (2} is the band-structure energy and the
sum is over a11 nonzero reciprocal-lattice vectors G.
The quantities Z* and FN are volume-dependent but
structure-independent functions of wp and
which characterize the metal for an arbitrary ar-
rangement of the ions at fixed volume and can be
used to calculate essentially all structural properties
related to the total energy including phonons.

In the GPT there are several natural limits or
forms of the theory depending on the nature and fil-
ling of the d bands. For the third-period simple
metals up to about fivefold compression, the two of
interest are the so-called simple-metal limit and the
empty-d-band limit. In the former, all d states are
implicitly treated as free-electron-like and in that re-

I

gard are not distinguished from s and p states. This
situation well characterizes Na, Mg, and Al under
normal conditions (QiQp ——1.0). As we found in
our preliminary work, however, the initially empty
3d band above the Fermi level lowers, narrows, and
eventually hybridizes with the valence s and p states
below under compression. This hybridization effect
is missed in the simple-metal limit but is explicitly
taken into account in the empty-1-band limit. In ei-
ther case, however, the net effect of the d states is
embodied in the characteristic functions Z and FN.
The empty-d-band Fz turns out to be expressible in
the same mathematical form as the simple-metal re-
sult with a modified Z» and an effective pseudopo-
tential

& k+q
I ~-ilk &&41~-il k &

k+q
I

w
I

k = k+q
I
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I

k +
d (e~ Eg' }—

where

(3)
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In Eqs. (3) and (4), u is the full (single-site) self-
consistent potential, e-„=A k /2m, and E,"" and
E~" are the (volume-dependent} energies of the
inner-core states P, and d states Pz, respectively.
Equation (3) represents an optimized choice of pseu-

dopotential with the zero of energy in E,""and Ed"
taken at the bottom of the valence band. The d-
basis states P~ used in the present work were con-
structed according to the universal prescription
adopted in Ref. 7.

Other quantities of interest here may also be ob-
tained within the general framework of the GPT.
Pressure, for instance, can be calculated by direct
numerical differentiation of E„,(Q). Elements of
the band structure, useful for comparison with the
LMTO method, may be simply related to matrix ele-
ments of wp and 6„,&. In this regard, two of the
most revealing states are the Xi and X4 levels in the
fcc structure. The former is a d-hybridized state
and in a two-plane-wave approximation is given (rel-
ative to the bottom of the valence band) by

e(X, }=—, I(A+Eg' } [(A Eg") +8B]'——

ko I
~ 0&16&&41~0] I ko&

d

with kp ——2~/a. The unhybridized X4 level, on the
other hand, is pure p-like and is given to the same
approximation by

E(X4 )=Ep+ ( k'o
I

wo I
ko& —( —ko I wp

I
kp &

Finally, phonon spectra and zero-paint vibrational
energies E~h can be calculated from Z» and Fz by
standard procedures. This has been done in the
present work for the fcc and bcc lattices at each
volume considered. In addition, whether or not
imaginary phonon frequencies are obtained provides
useful information on the mechanical stability of
these lattices. Corresponding information on the
mechanical stability of the ideal hcp structure has
been obtained by calculating E„,as a function of
the c/a axial ratio between 1.5 and 2.0 in each case.

B. LMTO method

where

A =e'k + & "o
I wp I

ko&+& —ko I wo I
ko&

(5) The LMTO method has also been described in de-

tail elsewhere. ' ' In the present calculations, as
previously, ' ' we have employed the atomic-sphere
approximation, according to which each Wigner-
Seitz polyhedron is approximated by a sphere in
which the electron density is spherically averaged.
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All electrons have been treated self-consistently and
all but the 1s electrons have been treated in a band
mode. The 3s, 3p, and higher-lying states were gen-
erally sampled with 505, 252, and 506 points in the
irreducible wedges of the fcc, hcp, and bcc Brillouin
zones, respectively, while coarse sampling was used
for the filled narrow 2s and 2p bands. These choices
insure convergence of the total energy to better than
0.1 mRy per atom, which is the dominant numerical
uncertainty in our LMTO calculations. Except as
indicated otherwise, calculations were carried out in-

I

eluding s, p, and d components in the angular-
momentum basis. Test calculations including f
components showed only slight changes in the
structural energy differences at the highest compres-
sions considered. All LMTO calculations reported
in this paper include the combined-correction term
to the atomic-sphere approximation used in the
LMTO method.

The total energy (per atom) has been evaluated by
the expression

E„,=—pe; 2n. —dr r p(r) + V(r)+v„,(r) —2e„,(r)
1 ~

q Ze
0 T

(7)

where e; are the one-electron eigenvalues, p(r) is the
spherically averaged electron density, V(r) is the to-
tal one-electron potential, and v„,(r) and e„,(r) are
the exchange-correlation potential and energy densi-

ty, respectively. The index i is intended to run only
over occupied states and includes core as well as
valence levels. Equation (7) may be viewed as aris-
ing from the usual muffin-tin expression for the
total energy in the limit that the muffin-tin radius is
extended to the Wigner-Seitz radius. In this ap-
proach, however, one obtains an additional term
which has been variously called the muffin-tin or
Ewald correction to the total energy in the LMTO
method,

1 1.8 —aE
—,[p(S)Qe]i

Although this correction is clearly the analog of the
electrostatic contribution to the GPT structural en-

ergy in Eq. (2), it differs importantly from the latter
in that p(S)Q is structure dependent while Z» is not.
We have not included the correction Eq. (8) in our
LMTO structural-energy-difference calculations as
it worsens LMTO agreement with the present OPT
results as well as with AP calculations for Si.'

While this may seem inconsistent, it is to be noted
that Eq. (2) appears in a rigorous perturbation ex-
pansion while Eq. (8) is derived from a muffin-tin
approximation which itself needs further electrostat-
ic correction. It is probably not the form of Eq. (8),
but most likely the appearance of the effective
charge as p(S)Qe which is suspect and causes more
harm than good when Eq. (8) is used in LMTO
structural-energy-difference calculations. To put the
matter in perspective, however, only at the largest
volumes we consider does Eq. (8) affect the LMTO
calculated structural energy differences by as much
as 25%%uo.

Pressure has been evaluated using the Pettifor-
Liberman surface integral expression. The

I

muffin-tin or Ewald correction affects the calculat-
ed pressures by more than 5% only for Al and Si in
the few Mbar range and below. We have included
this correction in our pressure calculations, however,
since our experience has been that it generally yields
improved agreeinent with experiment in the case of
the pressure-volume curve. Also in this regard, our
LMTO-calculated pressures appear to be more accu-
rate than those derived from the GPT method due
to the neglect of third- and higher-order total-energy
terms in the latter. For this reason, and also to es-
tablish a universal scale for converting volume to
pressure, we have used LMTO pressures in our
analysis below, except as noted.

C. LMTO force-relation technique

Calculation of structural energy differences using
Eq. (7) requires a separate self-consistent calculation
of the total energy for each lattice being investigat-
ed. One must then subtract these huge all-electron
total energies to get the small energy differences be-
tween phases. The force-relation technique offers
an elegant way of circumventing both the need for
performing multiple self-consistent calculations as
well as that of subtracting very large and nearly
equal numbers. It is based on the result, rigorous
within the local-density approximation, that the net
change in total energy caused by a distortion of the
lattice is given to first order by

1~«.T= ~8+& +~EM ~

l

The change in one-electron eigenvalues e; and in the
electrostatic Madelung energy EM is to be computed
by a restricted variation 5 in which the total one-
electron potential is rigidly shifted but not otherwise
changed by the lattice distortion.

The meaning of the restricted variation is particu-
larly simple for the LMTO method. As dictated by
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the atomic-sphere approximation, all lattices are
treated by a neutral Wigner-Seitz sphere within
which the one-electron potential is defined. One
thus uses the same potential to calculate several sets
of eigenvalues according to different boundary con-
ditions at the sphere surface appropriate to the vari-
ous lattices under consideration. Only one self-
consistent calculation is required (to get the poten-
tial), and only the valence eigenvalues enter the sum
in Eq. (9), provided the core eigenvalues are unaf-
fected by changes in boundary conditions at the
sphere surface. (In the present work, changes in the
2s and 2p energy levels are small but not negligible,
and they should be included at least for Na and Mg. }

Furthermore, 5EM =0 within the atomic-sphere ap-
proximation since the electrostatic Madelung energy
is approximated by that of the neutral Wigner-Seitz
sphere (aE ——l.8},which is unaffected by the change
in structure.

The essential question posed by the use of Eq. (9),
as, for example, in Refs. 9, 11, 13, and 16, is wheth-
er or not a change in structure from, say, fcc to bcc,
qualifies as a "first-order" distortion of the lattice.
We have carried out extensive tests of this question
for the fcc, hcp, and bcc phases of Na, Mg, Al, and
Si over the full range of atomic volumes considered
in this work. We have generally found the structur-
al energy differences calculated from Eqs. (7) and (9)
to agree within 2/o, or for the smaller differences, to
within 0.05 mRy/atom. It is apparent, therefore,
that changes from one to another of the fcc, hcp,
and bcc structures do indeed qualify as first order in
the sense required by Eq. (9). In these cases the
force-relation technique offers an excellent approxi-
mation to the correct structural energy differences
obtained by fully self-consistent calculation of the
total energy for each lattice. While the principal
LMTO results reported here were obtained using

Eq. (7), this fact permits us to interpret these results
in terms of just differences in the one-electron densi-
ties of states for the various structures. This has
long been assumed in rigid-band approaches to
phase stability, but now receives more rigorous justi-
fication through Eq. (9).

D. Comparison of OPT, LMTO, and AP methods

Beyond the local-density equations themselves,
the principal approximations in the GPT method
are (i) the small-core treatment (i.e., as atomiclike
rather than bandlike) of the inner-core 2s and 2p lev-

els, which is implicit in the construction of the pseu-
dopotential wo, and (ii} the neglect of higher-order
terms in the electron density and total energy.
Direct tests of the small-core approximation by
LMTO calculations suggest that it is probably ade-

quate up to at least fivefold compression in the
third-period simple metals, and it is roughly up to
this point that our GPT calculations have been car-
ried out in each case. The all-electron LMTO
method does not suffer this restriction, and in the
present work LMTO phase-stability calculations
have been done to tenfold compression.

Also with regard to the small-core approximation,
the GPT core states, and hence the bare (unscreened)
pseudopotential, are allowed to be properly volume
dependent. That is, our small-core approximation is
not a frozen-core approximation as is implicit in
most other pseudopotential approaches including the
AP method. In the latter the bare-ion potential in
the metal is replaced by a rigid bare pseudopotential
constructed from the free atom. While this is a
somewhat more restrictive pseudopotential approxi-
mation than is used in the GPT, tests have shown
that it has negligible affect on the calculated
structural energy differences in Si at least up to
about twofold compression. '

With regard to phase stability the more signifi-
cant approximation in the case of the GPT method
is the neglect of higher-order structure-dependent
terms. Intimately connected with this approxima-
tion is the choice of pseudopotential wo and d basis
states Pq. This choice is intended to be optimum in
the sense of minimizing the importance of these
terms. The available evidence both here and else-

where suggests that this is indeed the case near nor-
mal conditions and under modest pressure. Beyond
twofold compression, however, somewhat less local-
ized d basis states may be required to achieve an
equivalent quantitative description, at least in the
case of Al, as will be discussed below. Both the
LMTO and AP methods, on the other hand, are
nonperturbative and thus implicitly retain the
higher-order terms omitted in the GPT.

The principal approximation employed by the
LMTO method is the atomic-sphere approximation,
which has no counterpart in either the GPT or the
AP method. According to this approximation,
boundary conditions imposed at the Wigner-Seitz
sphere surface are chosen to guarantee Bloch func-
tions of the correct crystal symmetry; however, a
spherical average of the resultant charge density is
used in constructing the self-consistent one-electron
potential as well as the total energy. Such an ap-
proximation should be best for the close-packed fcc
and hcp structures where the correct Wigner-Seitz
polyhedra are more nearly spherical, but less good
for the more open-packed bcc structure with a less
spherical Wigner-Seitz polyhedron. The atomic-
sphere approximation should also be most effective
in cases where shape-dependent electrostatic correc-
tions [i.e., Eq. (8)] are relatively unimportant to the
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FIG. 1. Relative total energies of the bcc, hcp, and fcc
structures of Na vs volume as calculated by the (a) LMTO
and (b) GPT methods.
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FIG. 3. Relative total energies of the bcc, hcp, and fcc
structures of Al vs volume as calculated by the (a) LMTO
and (b) GPT methods.

structural energy differences. In the present context,
this is basically the case for Mg, Al, and Si, al-
though not for Na.

With the exception of the pseudopotential approx-
imation used in the AP method and possible concern
about its continued accuracy under large compres-
sions, the AP method appears to exactly solve the
local-density equations. Both the GPT and LMTO
methods make other approximations, as discussed,
which leave them potentially less accurate in
structural calculations than the AP method.
Nevertheless, it should be noted that the compara-
tive virtues of the GPT and LMTO techniques lie in
vital areas. These include great computational
speed, analytic separation of the tiny structural ener-

gy from the total energy in the GPT, and the ease
with which the all-electron LMTO method can treat
solids at any compression.

III. RESULTS

In this section we summarize our major predic-
tions relating to phase stability in Na, Mg, Al, and

Si. Our calculated zero-temperature structural ener-

gy differences for these materials are presented in

Figs. 1—4, respectively. Each figure gives both (a)

LMTO and (b) GPT results for the hcp and bcc to-

tal energies relative to that of the fcc phase as a
function of reduced atomic volume 0/Qp. Except
for Si, Qp is the experimentally observed 1-atm
volume of each element. The stable 1-atm structure
of Si is, of course, the semiconducting diamond
phase (Qo ——135 a.u.). However, in order to stress
the simple-metal behavior of this material at high
pressure and to put Si on a comparable footing with

Na, Mg, and Al, we have chosen the smaller volume
Op=97 a.u. for Si. This value is the LMTO theoret-
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FIG. 2. Relative total energies of the bcc, hcp, and fcc
structures of Mg vs volume as calculated by the (a)
LMTO and (b) GPT methods.

FIG. 4. Relative total energies of the bcc, hcp, and fcc
structures of Si vs volume as calculated by the (a) LMTO
and (b) GPT methods.
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ical equilibrium atomic volume for the bcc struc-
ture. The corresponding zero-pressure volumes of
the higher-energy fcc and hcp structures differ from
this value by less than 3%%uo.

There is excellent qualitative agreement between
LMTO and GPT predictions for both the normal-
density (0/00 ——1.0) stable structures in Na, Mg,
and Al and the sequences of high-pressure structural
phase transitions in Mg, Al, and Si, as indicated in
Figs. 1—4. In the latter elements there is a one-to-
one correspondence of all qualitative features ob-
tained by the two methods throughout the region
(0/Qo&0. 15) where both methods have been em-

ployed. In this regard, the small region of bcc sta-
bility seen in the LMTO results for Si at the far
right in Fig. 4(a} occurs in the GPT calculations
beyond the volume range plotted in Fig. 4(b). Only
for Na, where the structural energy differences are
nearly 2 orders of magnitude smaller than those for
Mg, Al, and Si, is there significant qualitative
disagreement between LMTO and GPT predictions
under compression, as can be seen in Fig. 1. This
discrepancy will be discussed in Sec. V.

The GPT results given in Figs. 1—4 are those ob-
tained from the empty-d-band limit of that theory.
The importance of the d-state hybridization includ-
ed in this limit increases with atomic number across
the third-period elements and beyond twofold
compression results in significantly improved agree-
ment with our LMTO calculations in Al and Si as
well as with the AP results of Lam and Cohen in
Al. This is shown directly for Al in Fig. 5 where
both simple-metal and empty-d-band GPT energy
differences are compared with the LMTO and AP
results.

The predicted GPT and LMTO phase transitions
implied by Figs. 1—4, as well as corresponding AP
results in the cases of Al (Ref. 20} and Si (Ref. 5),
are summarized in Table I. Also given in that table
are the calculated transition volumes and pressures.
The pressures listed are all LMTO-derived values at
the stated volumes except for the AP Si pressures
which are based on the work of Yin and Cohen. In
the case of the GPT-predicted hcp~bcc transition
in Na, corrections for the zero-point vibrational en-

ergy have been included in Table I. The basic effect
of the zero-point contribution is to lower the open-
packed bcc energy relative to the close-packed fcc
and hcp energies. This eliminates a tiny pocket of
otherwise fcc stability in Na near 0/Qo ——0.82 and
causes the bcc energy to drop below the hcp energy
at 0/00=0. 86.

For completeness we have included in Table I the
diamond~p-tin transition in Si as calculated by
Yin and Cohen using the AP method. This
semiconductor-to-metal transition has been observed
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FIG. 5. Comparison of (a) bcc-fcc and (b) hcp-fcc
total-energy differences for Al vs volume as calculated
from the simple-metal and empty-d-band limits of the
GPT (dashed and solid lines, respectively), the LMTO
method (long-short dashed line), and the AP method (Ref.
20, dotted line).

experimentally at 12.5 GPa. Our extrapolation of
the Yin-Cohen results suggests a further p-tin~hcp
transition at 41 GPa, by which point contact is
made with the results in this paper. This p-tin

~hcp transition bypasses the small region of ap-

parent bcc stability at the right of Fig. 4(a}. Howev-

er, if Si should behave like another group-IV ele-

ment, Sn, 3 a bct (body-centered-tetragonal} phase
would have lower energy than this bcc structure,
leading to the sequence p-tin~bct~hcp. In either
case we are primarily concerned here with the
simple-metal behavior of Si, which it seems reason-
able to assume has become well established by the
time Si has transformed into the hcp phase.

The mechanical stability of each of the predicted
high-symmetry stable phases against distortion has
also been tested by the GPT method, as described in
Sec. IIA. In all but one case the predicted stable
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TABLE I. Predicted T=0 structural phase transitions in the third-period simple metals by
the LMTO, GPT, and AP methods. Also compared are the atomic volume (0) and pressure
(P) at the indicated transitions. Significant volume change across a transition is denoted by
two values for 0 separated by a comma. Qp is the observed 1-atm atomic volume except as
noted.

Qp

Element (a.u.) Transition

0 (a.u. )

LMTO GPT AP

P (GPa)

LMTO GPT AP

Na

Mg

A1

Si

255.2

156.8

112.0

135.1

97.0'

hcp~bcc'
bcc~hcp
hcp~fcc
hcp~bcc
bcc~fcc
fcc~hcp

hcp~bcc
diamond ~P-tin

P-tin~ hcp

hcp~fcc
fcc~bcc

42

88

63

65

57

67

21

219
71

91

37

48

41

65

24

54'

46'

125,97

82,76'

435

57

180

120

200

76

360

1

104

50

790

360 240'

560 420'
10'
41'

80

250

'GPT predicted only.
LMTO predicted only.

'Reference 20.
4Reference 5.
'Based on our extrapolations of the total-energy results of Ref. 5. Does not take into account
the possibility of an intermediate bct structure (see, for example, Ref. 30).
LMTO-predicted P=O volume of the bcc phase, the most stable amongst the fcc, hcp, and
bcc phases at this pressure.

phase was indeed found to be mechanically stable.
The exception is the ideal hcp phase of Si for
0/Qp )0.67. Our GPT calculations predict that
the stable c/a axial ratio should be slightly higher
than the ideal value of 1.633 in this volume range
(e.g. , c/a =1.67 near the point of the possible lt3-tin

~hcp transition), although this difference is not
sufficiently large to compromise the hcp Si results
reported here. In regard to the higher-energy struc-
tures, we also find mechanical instability for the bcc
phases of Mg, Al, and Si for 0/Qo & 0.88, 0.55, and
0.34, respectively. This behavior is most pro-
nounced in the case of Si and is consistent with the
possibility of a lower-energy bct phase in this ma-
terial at large volumes.

IV. ANALYSIS OF THE PHASE TRANSITIONS

The physical origin of the various structural
trends predicted above for the third-period metals
can be analyzed both in terms of the electronic band
structure and in terms of the real-space pair poten-
tials between atoms in the metal by the LMTO and
OPT methods, respectively. We proceed with this
analysis here before returning to discuss the quanti-
tative significance of our results in Sec. V.

A. Relationship to electronic structure

Rather than discuss the phase transitions in each
element individually, it is more illuminating to
create a nearly equivalent generalized phase diagram
appropriate to all. The LMTO force-relation tech-
nique offers the means of simply creating such a di-
agram if one varies both the number of valence elec-
trons as well as the crystal structure, while using in
all cases the same (e.g., fcc Al) set of self-consistent
potentials. Figure 6 was obtained in this manner
and illustrates regions of fcc, hcp, and bcc stability
as a function of reduced atomic volume and number
of valence electrons. Note that the sequences of
phase transitions implied by Fig. 6, which has been
obtained from model calculations with the use of
only the Al band structures, are in complete qualita-
tive agreement with the full LMTO predictions for
compressed Na, Mg, Al, and Si seen in Figs.
1(a)—4(a), respectively. 3' The LMTO-predicted
phase transitions in the third-period metals must
therefore follow, at least qualitatively, simply from
lattice-dependent differences in the one-electron
band structure and the placement of the Fermi level
(i.e., number of valence electrons). This is, of
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FIG. 6. Generalized phase diagram for the third-
period simple metals as calculated from LMTO eigen-
value sums with the use of only the Al band structures.
Stable phase is shown as a function of the number of
valence electrons and atomic volume. Predicted transi-
tions in this figure are in complete qualitative agreement
with the full LMTO predictions in Figs. 1(a)—4(a).
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course, the essence of a rigid-band model of phase
stability.

Downward movement of the initially empty 3d
band under compression plays a critical role in
determining the high-pressure transitions seen in
Fig. 6. To illustrate this movement, the fcc Al band
structures at Q/Qo ——1.0 and 0.135 are shown in
Figs. 7(a) and 7(b), respectively. Note in particular
the two dotted-line segments, which are parts of the
two lowest branches (X& and X3, respectively) of the
3d band, and also one predominantly p-like region
indicated by the dashed-line segment. At
0/Qo ——1.0 [Fig. 7(a)] the bands are basically free-
electron-like, predominantly s and p in character
(the sd-hybrid X~ branch is mostly s-like here), and
both dotted lines are seen to lie above the dashed
line. Significant downward movement of the 3d
band begins for compressions beyond about
0/Qo ——0.5, until by 0/0O ——0. 135 [Fig. 7(b)] it can
be seen that both d-like dotted-line segments have
moved below the p-like dashed-line segment. One
consequence of this evolution, due in part to the
symmetry-allowed interchange of the dashed and
1ower dotted segments in their connections with the
rest of the band structure, is the appearance of a
sharp dip in the fcc Al density of states at the inter-
section of the Q~ and Q2 branches in Fig. 7(b). As
this point corresponds to two-electron occupation it
is not surprising that our calculations show that fcc

~el'

2

~ ~ ~ ~ ~ ~

X W 0 L K X

FIG. 7. LMTO band structure for fcc Al at (a)
Q/Qo ——1.0 and (b) Q/Qo ——0.135. Dashed and dotted
segments of the bands show particular regions of predom-
inantly p and d character, xespectively, as discussed in the
text. Fermi level eF for Al is indicated.

Mg is a semimetal in the range Q/Qo ——0.10—0.15
for pressures from 2.4—6.2 TPa. Such semimetal
behavior is not uncommon for divalent fcc nearly-
free-electron metals under compression.

'

The increasing distortion of the band structure
caused by the lowering of the 3d band appears, in
fact, to be responsible for all of the high-pressure
phase transitions predicted in Fig. 6 (and hence in
the full LMTO results of Figs. 1—4). This has been
demonstrated by performing LMTO calculations
with the d character removed from the angular-
momentum basis. We find in such calculations that
Na, Mg, Al, and Si maintain hcp, hcp, fcc, and hcp
stable structures, respectively, throughout the whole
range Q/00 ——0. 1—1.0 shown in Fig. 6, i.e., there
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would be no phase transitions in these simple metals
in the absence of d electrons. '

Further insight into the structure in Fig. 6 is pro-
vided by examining the LMTO one-electron densi-
ties of states &(e) plotted in Figs. 8(a) and 8(b) for
Al at Q/Qo ——1.0 and 0.135, respectively. Results
for the fcc, hcp, and bcc phases are given, all ob-
tained from self-consistent fcc Al potentials. Fermi
energies eF for 1 through 4 electron occupation are
marked at the top of the figures. Visual inspection
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FIG. 8. LMTO density of states for Al at (a)
0/00 ——1.0 and (b) 0/00 ——0.135 for the fcc (solid lines),
hcp (dashed lines), and bcc (dotted lines) structures. Fer-
mi energies eF for 1 through 4 electron occupation are
shown at the top of each plot. Only in (b) is there signifi-
cant dependence of eF on structure.

of the &(e} is most instructive for the smaller of
the two volumes although some insight is gained at
the larger as well. For example, the free-electron
character at larger volumes is easily seen in Fig. 8(a)
at Q/Qo ——1.0 as the rough overall e' shape of the
curves. The nearly-lattice-independent structure of
these &(e) up to and slightly beyond one-electron
occupation also shows why the structural energy
differences for one-electron occupation (Na) are so
small (-0.1 mRy) in comparison to those for Mg,
Al, and Si. By two-electron occupation (Mg), how-
ever, the differences are O(1 mRy} and it can be
seen why the hcp phase of Mg is favored at the
larger volumes. Note the peak in the hcp &(e}near
e'=0 35 Ry. in Fig. 8(a) and the dip near @=0.45 Ry.
These features, in comparison to the &(e) for the
other two phases, result in generally lower-energy
hcp eigenvalues and give the hcp phase the lowest
two-electron —occupation eigenvalue sum of the
three lattices. However, this dip, combined with
another hcp peak near @=0.55 Ry, works against
the hcp phase when a third electron is added (AI).

Consider now the S'(e) in Fig. 8(b) at
Q/Qo ——0.135. The dramatic differences between
these curves appear to simply explain the regions of
pronounced fcc and bcc stability seen in Fig. 6 near
and above two-electron occupation. The mathemati-
cal argument is the same as given above. Thus it is
the fcc peak in the range e-3R4—3.8 Ry combined
with the fcc semimetal dip near e=3R9 Ry which
gives the fcc phase the lowest eigenvalue sum at
two-electron occupation (Mg). Addition of a third
valence electron (Al), however, finds both fcc and
hcp phases with large peaks right at ez, leaving the
bcc phase the most stable. Most of the large peaks
in the &(e) are created by states near the bottom of
the 3d band and their hybridization with the sp
bands. The lowest-lying d states for the fcc struc-
ture occur in separate Xi and X3 branches, as dis-
cussed earlier, which are largely responsible for the
buildup of fcc &(e) seen in Fig. 8(b) near the one-
and three-electron Fermi levels, respectively. The
dashed line in Fig. 8(b} shows a similar buildup of
hcp S'(e) to either side of the two-electron eF. In
contrast to these close-packed structures, however,
the bottom of the d band for the bcc structure
occurs at only the single (although doubly-
degenerate) Hi2 state. This may explain why large
values of the bcc &(e) occur within a more narrow
energy range (e-3.5—4.3 Ry) in Fig. 8(b) than is
the case for the two close-packed structures. One
consequence is that the three-electron eF falls at a
low value of the bcc &(e), beyond the peak struc-
ture, causing this phase to be very stable relative to
the fcc and hcp phases near three-electron occupa-
tion.



27 STRUCTURAL PHASE STABILITY IN THIRD-PERIOD SIMPLE . ~ ~ 3245

Skriver' has recently predicted analogous se-

quences of structural transitions at more modest
compressions in Ca, Sr, Ba, and Ra due to the
lowering of the 3d, 4d, 5d, and 6d bands, respective-
ly. He has shown that the structural energy differ-
ences for these alkaline-earth metals follow an al-
most universal curve as a function of the number of
d electrons nd. This behavior is consistent with our
finding that the structural energy differences can be
understood in terms of detailed features of the one-
electron density of states. The same features should
occur in the densities of states for all of the heavier
alkaline-earth metals (beginning with Ca), provided
the locations of the d bands relative to the sp bands
are the same. It is precisely this information which
the parameter nd supplies. However, for the two
light alkaline-earth metals Be and Mg there are no
nearby d bands at normal density as there are for the
heavier alkaline earths, and so one might expect the
correlation with nd to change. Indeed, we find the
two transitions in Mg, hcp~bcc and then bcc~fcc,
to occur for n~ ——0.23 and 0.27, respectively. Nei-
ther this structural sequence nor the precise values
of nd closely correlate with Skriver's results for the
heavy alkaline-earth metals, as is to be expected.

Lam and Cohen have also analyzed the high-
pressure Al transitions in terms of the number of d
electrons. They note that the phase at Q/Qp=0. 4
which has the largest nd will be stable because (i) the
d component of the pseudopotential is more attrac-
tive than the s and p components in the core region,
and (ii) the bcc phase will have the largest nd be-
cause d orbitals overlap most strongly in this phase.
While we believe this analysis to be essentially
correct at Q/Qo ——0.4, we note that by Q/Qo ——0.15,
where the bcc stability is most pronounced in our
LMTO calculation, the bcc phase has the smallest

nd of the three phases. This indicates that deter-
mination of the stable phase in highly compressed
third-period metals is not, in general, simply deter-
mined by the maximum n~ among the phases con-
sidered.

B. Relationship to interatomic potentials

We have used the characteristic functions Z~ and
I'N directly in Eq. (2) for Est~, to obtain the GPT
results presented in Sec. III above. In analyzing the
physical meaning of these results, however, it is
somewhat more revealing to work with the
equivalent real-space representation of E„,. For-
mally, E„~, can be written as a small structure-
independent constant plus a lattice sum over a
central-force pair potential between atoms. The re-
sulting volume-dependent interatomic pair potential
is given by

v~, ,(r) =(Z*e)2 ———f F~(q) dq
r

(10)

The first term in Eq. (10) is the direct Coulomb
repulsion between ions of charge Z*e, while the
second term is the indirect ion-electron-ion attrac-
tion which screens the Coulomb interaction. At
small separation r between atoms, less than the
nearest-neighbor distance, the direct Coulomb in-
teraction is dominant and a strongly repulsive pair
potential results. At separations on the order of in-
teratomic spacings, however, the repulsive and at-
tractive contributions are comparable in magnitude
and an oscillatory potential typically is obtained. At
very large separations these become the familiar
Friedel oscillations. These features are all clearly
evident in the normal-density (0/Qv=1. 0) intera-
tomic potentials of Na, Mg, Al, and Si, which are
plotted versus r/S in Figs. 9(a)—9(d), respectively.

In real space the clearest distinction in structural
energies is between the open-packed bcc phase and
the close-packed fcc and ideal hcp phases, largely
because the latter phases have identical nearest and
second-nearest neighbors. It turns out, in fact, that
all of the GPT structural trends seen in Figs.
1(b}—4(b) for the bcc-fcc energy difference can be
explained by considering only first-neighbor interac-
tions in the fcc structure (12 total neighbors) and
first- and second-neighbor interactions in the bcc
structure (14 total neighbors}. In this regard, note in
Fig. 9 that v~„,(r) for both Na and Mg has a dis-
tinct absolute minimum near the fcc nearest-
neighbor distance. In Al this minimum is reduced
to a shallow local one, while in Si only a strong in-
flection in the curve remains. Nonetheless, the ex-
istence of either a minimum or inflection at this
point is sufficient in each case to make the bcc-fcc
energy difference positive, in accord with the full
OPT results of Figs. 1(b)—4(b). Under compression
this minimum is slowly pressed out of the pair po-
tential in a manner similar to the progression from
Mg to Al to Si seen in Fig. 9, so that v~, , eventually
becomes strongly repulsive at the first-neighbor dis-
tance. This is illustrated more clearly in the case of
Mg in Fig. 10, where pair potentials at Q/Qo ——1.0
and 0.5 are compared. Whether or not the bcc-fcc
energy difference remains positive under compres-
sion depends on the precise slope and curvature of
this repulsive part of the potential. Under the right
conditions, such as the very steep curve seen in Fig.
10 for 0/Qo ——0.5, the bcc-fcc energy difference be-
comes negative because the bcc second-neighbors are
then unimportant and the energy difference is con-
trolled by the fact that there are 12 fcc first neigh-
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FIG. 9. Normal-density (0/Qp ——1.0) interatomic pair potentials for (a) Na, (b) Mg, (c) Al, and (d) Si (00——97.0) as cal-
culated from the empty-d-band limit of the GPT. Location and number of the most structurally significant near neighbors
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nearest (not shown) neighbors. ] S is the Wigner-Seitz radius.

bors as opposed to only eight in the bcc structure.
Suffice it to say that the correct trends are obtained
in this manner in every case, as we have verified by
direct calculation, although not accurately in the
case of Na where the energy differences are so small.

A similar but necessarily more complicated
analysis of the hcp-fcc energy difference is possible
if one goes out to fourth-neighbor interactions in the
fcc structure (54 total neighbors) and sixth-neighbor
interactions in the ideal hcp structure (56 total
neighbors). Visual study of Figs. 9(a)—9(d) implies,
correctly, a negative hcp-fcc energy difference in Na
and Si and a positive difference in Al, although, in-
correctly, a positive difference in Mg also. Howev-
er, extension of the analysis to smaller volume pro-
duces the correct trends [i.e., those seen in Figs.
1(b)—4(b)] in Mg, as well as in Al and Si, as we have

directly verified. Only in Na does the analysis fail
as a function of volume. This is undoubtedly an ar-
tifact of the incredibly tiny GPT hcp-fcc energy
difference in that metal as seen in Fig. 1(b). In this
regard, note from Fig. 9 that at a given reduced
atomic volume the energy scale of interatomic po-
tentials in all the third-period metals is roughly the
same (1—10 mRy at normal density), so that the rel-
ative difficulty in analyzing Na in terms of Up„., be-
comes apparent.

V. QUANTITATIVE COMPARISONS

In this section we make a critical quantitative
comparison of our GPT and LMTO results to each
other, as well as to the recent AP calculations and to
available experimental data. The existing experi-
mental data on structural phase stability in the
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third-period metals is limited but is nonetheless use-

ful in this comparison. In addition to the known
stable structures at normal density there are experi-
mental estimates of the energy differences between
phases in Na, Mg, and Al. These data are given in
Table II together with a summary of the corre-
sponding 0/00 ——1.0 OPT, LMTO, and AP predic-
tions for these metals, as well as for Si.

For Na the experimental bcc-fcc energy difference
given in Table II has been obtained directly from the
measured heat of transformation in the well-

known bcc~hcp Martensitic transition at about 36
K. Clearly, the GPT calculation of this number is
in good agreement with the experimental value,
while the corresponding LMTO result is more than
a factor of 5 too large. Moreover, a GPT calcula-
tion of the Martensitic transition temperature gives
a quite reasonable value of 43 K. In Mg and Al, on
the other hand, the experimental estimates are based
on only extrapolations of thermochemical alloy
data and are of unknown reliability. This fact may
be significant given the uniformly good agreement
(to within 0.8 mRy} amongst the theoretical predic-
tions for the hcp-fcc energy differences in Mg and

Al, as compared to the less good (only to within

TABLE II. Structural energy differences b,E„,for the third-period simple metals as calcu-
lated from the LMTO, GPT, and AP methods. Results refer to the atomic volume Qo shown,

which is the observed 1-atm volume except for Si as noted.

Element

Qo

(a.u. ) Method bcc-fcc
hE„, (mRy)

hcp-fcc bcc-hcp

Na

Mg

Al

Si

255.2

156.8

112.0

970

LMTO

GPT

Expt. '
LMTO

GPT

Expt b

LMTO

GPT
AP'

Expt. b

LMTO

GPT
AP'

0.2
0.054

0.2
1.4
2.0
3.8
7.3
7.5
7.7

—3.0
4.3

—3.1

—0.1

—0.011

—0.7
—0.6
—1.5

1.6
1.7
2.4

4.2
—1.1
—1.6
—1.4

0.3
0.065

0.055

0.9
2.0

3.5
2.2
5.6
5.1

3.5
—1.9

5.9
—1.7

'Measured heat of transformation (0.032, Ref. 34) less the calculated bcc-hcp difference in

zero-point vibrational energies ( —0.023, Ref. 35).
thermodynamically based estimates of Ref. 36.

'Reference 20.
LMTO-predicted P=0 volume of the bcc phase, the most stable amongst the fcc, hcp, and

bcc phases at this pressure.
'Reference 5.
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about 2 mRy} agreement of these predictions with
the experimental numbers in the table. At the same
time in Mg and Al, the GPT and AP energy differ-
ences involving the bcc structure are in generally
better agreement with each other and the experimen-
tal data than the LMTO values. We believe this
latter situation is due to the less accurate treatment
of more open-packed structures such as bcc by the
atomic-sphere approximation in the LMTO method.

In the case of Si all of the calculated hcp-fcc ener-

gy differences in Table II are in close agreement
(within 0.5 mRy), while the GPT and LMTO energy
differences involving the bcc phase pull even farther
apart following the trend established by the earlier
elements. Both the numbers in Table II and the
model calculations used in obtaining Fig. 6 show
that the energy of the bcc structure relative to the
close-packed structures increases with increasing
valence until just beyond three-electron occupation.
Further increase in the number of valence electrons
reverses this trend, causing a rapid drop in the bcc
energy, possibly related to an increased tendency to-
wards covalency. Note that the AP method, which
is best equipped to treat covalency, obtains the most
dramatic decrease in the bcc-fcc and bcc-hcp energy
differences from Al to Si. In the GPT results the
corresponding decrease is much smaller, possibly
due to the neglect of higher-order terms, leaving
these two energy differences still positive for Si. In
the case of the LMTO Si results, on the other hand,
the close agreement with the AP calculations involv-
ing the bcc phase may be accidental in that the more
modest drop in the LMTO bcc energy from Al to Si
offsets the too low LMTO bcc energies already es-
tablished for Mg and Al.

The validity of the GPT description of phase sta-
bility in Na is also supported by evidence at higher
pressure. Above the Martensitic transition tempera-
ture, the bcc structure in Na is known to be quite
stable under pressure. Resistivity data taken at 77
K indicates, in fact, that the bcc structure is stable
up to at least 45 GPa. This is entirely consistent
with the GPT results in Fig. 1(b), but clearly not
with the corresponding LMTO results in Fig. 1(a).
The apparent failure of the LMTO method in Na is
not just a matter of convergence uncertainties in the
total energies, which are reliable to -0.1 mRy, far
too small to reconcile the GPT and LMTO results
for this metal. Furthermore, the agreement between
the two methods for the band structure and its
volume dependence is as good if not better than that
for the other three metals in the series. While elec-
trostatic Ewald or Madelung contributions are quite
important to an accurate description of Na, the ma-
jor problem with the present LMTO calculations for
this metal lies with the too large energy differences

arising from the atomic-sphere approximation
through Eq. {7}.In comparison to this contribution,
the omitted Ewald correction Eq. (8), is relatively
unimportant. While the agreement between the
LMTO and GPT predictions for Na is as good in an
absolute sense {i.e., within 1 mRy) as that for any of
the other three elements, it is clear that the structur-
al energy differences in this material are simply too
small to be obtained with even qualitative reliability
within the atomic-sphere approximation of the
LMTO method.

The available high-pressure experimental data for
Mg, Al, and Si is generally less helpful. There has
been some hint of an anomaly in roam-temperature
compressed Mg near 10 GPa, although whether or
not this is due to a structural phase transition is not
known. There has also been the suggestion of a
partial fcc—+hcp transition in Al at 20.5 GPa,
though, as with Mg, these results are ambiguous.
In Si, however, the diamond —to—P-tin transition
has been found experimentally at 12.5 GPa. The
10-GPa AP prediction of Yin and Cohen for this
transition (Table I) is clearly in excellent agreement
with experiment, lending support to the quantitative
reliability of the AP method.

With regard to the GPT and LMTO methods,
more revealing at high pressure in Mg, Al, and Si, is
a direct comparison between the calculated energy
differences themselves. Generally speaking, the
quantitative distinction between the GPT and
LMTO results increases as the metal is compressed.
This is especially clear for Al, as can be seen from
Fig. 5. Detailed analysis of this situation reveals
that it is the respective treatment of the d states
which is most responsible for this trend. In Fig. 11
the X~ (sd-hybrid) and X4 (p-like) fcc energy levels
for Al are plotted relative to the I i level as a func-
tion of reduced volume. The dashed and solid lines
indicate the simple and empty-d-band GPT results
(negligibly different for X4-I &}, respectively, while
the long-short dashed lines give the LMTO calcula-
tions. Note the excellent agreement between the
GPT and LMTO values for the X4-I

& separation, a
rough measure of the width of the sp bands, at all
volumes. In contrast there are significant differ-
ences between the methods for the X&-I ~ separation
at small volume. As the solid is compressed below
Q/Q0= 1.0 the Xi-I i separation at first increases
in response to the broadening sp bands. The lower-
ing of the 3d band retards this behavior, eventually
dominating near Q/Q0 ——0.25, after which further
compression decreases the Xi-I

&
separation. While

the empty-d-band GPT result is in close agreement
with LMTO at larger volumes, it deviates increas-
ingly from the latter under compression, as if the d
band were coming down more slowly than is the
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I ~ energy the bcc-fcc and hcp-fcc energy differences
are indeed also reconciled. That is to say, under

these conditions the GPT and LMTO energy differ-
ences agree as well at Q/Q0 ——0.40 as they do at
Q/Qp= 1.0. The same effect can be achieved more
rigorously by choosing a less localized d basis state

Pd in the GPT theory. This suggests that while the
prescription adopted for this choice is optimum in

the vicinity of normal density, under high cornpres-
sion this is no longer true. In contrast, the excellent
volume-independent agreement between the GPT
and LMTO X4-I i energy, which is virtually in-

dependent of Pq, shows that the pseudopotential too

does remain optimum even under high compression.

VI. CONCLUSIONS

0.2 0.4 0.6 0.8 1.0

case in the LMTO calculations. This behavior is
mirrored in the structural energy differences in Fig.
5. Because it is the lowering of the d band which
drives the energy-difference curves downward with
decreasing volume in Fig. 5, the GPT curves appear
shifted to smaller volumes in relation to the LMTO
results.

The LMTO method should be quite accurate in
treating the relatively narrow 3d band and its hy-
bridization with the sp valence states, as should the
AP method as well. Thus it is significant that the
AP results of Lam and Cohen in Fig. 5, while in
best agreement with the GPT calculations at large
volumes, move into increasingly better agreement
with the LMTO predictions at smaller volumes.
This strongly implies that the empty-d-band GPT
treatment of Al underestimates the d-state hybridi-
zation beyond about twofold compression, and that
it is this fact which accounts for the growing quan-
titative differences between the LMTO and GPT re-
sults in this range. We have tested this more direct-
ly in Al at Q/Qo ——0.40 by arbitrarily lowering Ed'
(and hence the 3d band) in the GPT equations.
When E~" is adjusted to reproduce the LMTO X&-

Relative atomic volume Q/Qo

FIG. 11. Location of the X4(p) and X~(sd) one-

electron eigenvalues for Al relative to the bottom of the
conduction band (I ~) vs volume as calculated from the
simple-metal and empty-d-band limits of the GPT
(dashed and solid lines, respectively) and from the LMTO
method (long-short dashed line).

We have demonstrated substantial qualitative and
semiquantitative agreement between the predictions
of the GPT and LMTO methods in regard to phase
stability in the third-period simple metals, both near
1 atm and under high pressure. Only for the exceed-
ingly small structural energy differences in Na is
this agreement lacking, where the GPT method
alone provides an adequate description of this ma-
terial. With this exception, our GPT and LMTO re-
sults are not only in accord with each other, but are
also in generally good agreement with the available
experimental data and published AP calculations.
Moreover, in the realm of possible diamond-anvil
experiments, the GPT, LMTO, and AP results
display sufficient quantitative consistency to be
trusted as a guide to future experimental investiga-
tions. Clearly predicted here are the phase transi-
tions (i) hcp~bcc in Na at —l GPa (-0 K only),
(ii) hcp~bcc in Mg at -50—57 GPa, and (iii)
hcp~fcc in Si at -76—80 GPa (following lower-
pressure transitions to the hcp phase). At somewhat
higher pressures we also predict an fcc~hcp transi-
tion in Al at -120—360 GPa.

At least for Mg, Al, and Si, all of these transitions
are driven by the downward movement of the 3d
band under compression. While it is not possible as
yet to translate this fact into simple comprehensive
rules for phase stability in third-period simple met-
als, steps in this direction are provided by our analy-
ses. For example, we have demonstrated that a
rigid-band model of the electronic structure permits
qualitative understanding of all of the LMTO-
derived transitions. From a complementary point of
view we have also shown how systematic trends in
the interatomic pair potential, both with increasing
atomic number at normal density and for individual
elements under increasing pressure, are sufficient to
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account for the GPT-derived transitions.

Finally, we have analyzed the quantitative accura-
cy of the GPT and LMTO methods as presently em-
ployed and have identified specific areas where ei-
ther limitations occur or useful improvements could
be made in structural energy calculations. These in-
clude the use of the atomic-sphere approximation in
the LMTO method for open-packed lattices such as
bcc and the choice of localized d basis states in the
GPT at high compression.
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