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The current-current linear-response function for a semi-infinite compressible electron-gas

substrate with a surface layer of zero thickness is evaluated by treating the substrate hydro-

dynamically. No assumptions are made regarding the current-current response of the sur-

face layer, and retardation effects are fully included. Contact is made with Nakayama's pa-

per on surface plasmons, and a discussion of the effects of a finite compressibility of the

background electron gas on the surface modes is included. Angular distributions for Raman

scattering by a simple type of surface plasmon are calculated as an application of these re-

sults.

I. INTRODUCTION

The physics of collective excitations in solids
deals with phenomena which are direct manifesta-
tions of strong coupling, and as such affords the ob-
server a glimpse of types of dynamic behavior which
cannot be understood by perturbation-theoretic gen-
eralizations of single-particle theories. In particular,
the physics of plasmons is known to dominate the
behavior of a translation-invariant electron gas' (i.e.,
jellium) for small wave numbers and frequencies,
while the single-particle excitations are "frozen
out"—i.e., they are invisible to an external small
probe of k and ~. Put more precisely, the density
response function of an electron gas (which mea-
sures the coupling of the electron gas to such a
probe via density fluctuations) can be described
within a well-defined region of e-k space by the
plasma-pole approximation, in which the only ele-

mentary excitations of the electron gas are the col-
lective ones, i.e., plasmons.

The proper generalization of the plasma-pole ap-
proximation to inhomogeneous electron-gas-like sys-

tems, in particular surfaces and interfaces, has been
a topic of active study for almost 30 years. In par-
ticular, the various forms of surface excitations pos-
sible for a bounded electron gas are now well under-

stood. By comparison, the difficult problem of
evaluating the coupling strengths of these excita-
tions to an external probe, which is equivalent to
calculating the inverse dielectric function (i.e., the
linear response) of an inhomogeneous electron gas,
has received scant attention from all but a few dedi-
cated researchers. In particular, only Eguiluz has
performed any really extensive calculations of these

properties.
This paper will address the problem of using the

plasma-pole approximation to describe the response
of a semi-infinite electron-gas-like "solid" which has
a two-dimensional surface layer characterized by a
current-current response function X(K,co), where K
is a surface wave vector. The results presented here
generalize those derived by the present author and
Ying in a previous publication (hereafter referred to
as CY). The electron-gas substrate is treated within
the hydrodynamic approximation, and is assumed to
have a finite compressibility; the full Maxwell's
equations are utilized to include retardation effects.

II. SURFACE EXCITATIONS

The problem of surface plasmons on a semi-

infinite electron-gas substrate has been well studied;
when a surface layer is added, the resulting excita-
tions were discussed by Nakayama, who observed
that their properties could be elucidated in great
generality by introducing a surface current-current
response, leading to a kind of Ohm's law for the sur-
face:

aKp(K co) Xpj(K&co)Ej (z 0 K Q)) l' J' 1 2

where M is a surface current, X a 2/ 2 surface con-
~(t)

ductivity tensor, and E the tangential component
of an applied electric field of the form

E( .K )
'(K. x —co)

K,X are the surface wave vector and position coor-
dinate (as usual, the surface is at z =0). The
Maxwell boundary conditions at the interface now
include a jump in the magnetic field there:
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where n =(0,0, —1) is the outward normal to
the solid (the solid fills the space z & 0), and

I

H, H are the magnetic fields in the vacuum and
solid, respectively. By matching these conditions for
an evanescent surface wave in the usual manner,
Nakayama obtained the following dispersion rela-
tion:

e 1 4m
X

Po EN

c 4m 4m
, (I'+so}+ . &22 + . &i2

CO lN lCO

4m
&2i =o

lCO

where the notation of his original equation [Eq. (10)]
has been modified to conform with that of CY, and
the system under study is specifically the solid-
vacuum interface where the solid is described by a
local dielectric constant, E, (cu), plus the plasma po-
larizability:

2
COp

E=t~(CO)—
CO

and

po ——K —co /c2 2 2 2

P2 K2 Fc02pc 2

are the decay constants of the surface mode into the
vacuum and solid, respectively. (The quantities e,
po, and p are denoted as e~, a2, and a~, respectively,
in Nakayama's paper. )

The generality of this result is perhaps its most
striking feature, relying as it does only on the two-
dimensionality of the layer, which allows a two-
dimensional Fourier decomposition, and its vanish-

ing thickness, which allows the boundary-value
problem to be solved. Any plasma-pole theory of
the linear response of this system should clearly
yield this equation as determining the location of the
plasma pole in co-K space.

III. LINEAR-RESPONSE FUNCTION

In CY, it was shown that a compressible
electron-gas solid (henceforth referred to simply as a
solid) propagates electromagnetic waves according
to the equation

2 $2
V +6 E— 1 —eg —V(V E)=0,c2 g c2

where s is the "sound velocity" of a charge-neutral
version of the solid, and

2
COpe= e, (co)—
~2

'

This equation is admirably suited for solving

and (after a Fourier decoinposition parallel to the
surface}

E(z;K,co)= M(z;K, co) E(0;K,co)

6 z,z';K, co E'" z', K,co dz',

where at z =0,

M(0; K,a) )=1' ',
G(0,z';K, co}=0,

and 1' ' is the (three-dimensional) unit tensor; thus,
at z =0, Eq. (2) reduces to an identity, and one is
free to specify any boundary conditions at all there.
This freedom clearly allows response-function (and
hence coupling-strength} calculations for a wide
class of surface-plasmon systems, notably those of
Ritchie, 9 Crowell and Ritchie, '0 Quinn and Chu, "
Stern, ' etc.

The boundary conditions used here are similar to
those used in CY, i.e.,

(I) continuity of tangential E and normal D=e,E,
(II) continuity of tangential H, and
(III) vanishing of the normal component of

cJ=-
47TE co

V +e, E—V(V E)
c

When a surface layer is present, condition (II) is re-
placed by Nakayama's condition; the proper general-
ization of condition (III), however, is less easy to pin

boundary-value problems; in CY, it was shown that
when the electron gas is semi-infinite, the current-
current response function can be calculated by first
computing a "field-field" response, in which the sys-
tem boundary conditions are isolated from the bulk
behavior. To be precise, it was found that if an
external field E'"(x)e '"' is applied to the gas, the
induced field satisfies the equation

2 $2
V +e E— 1 —e,—V(V E)= E'",

c c c
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down. If it is assumed that the system under study
has a depletion region (also of zero thickness) be-

tween the surface layer and the bulk, i.e., the surface
layer is similar to a metal-oxide semiconductor in-
version channel, then it is reasonable to leave (III) as
is, i.e., no current is allowed to flow from the bulk
to the surface. Discussion of the interesting case of
coupling between bulk and surface currents will be
deferred for now and taken up in a future publica-
tion.

Much of the analysis of CY can be taken over
directly in the present case. Introducing the nota-

tion

E, A = H
le lN

for the fields, we find that Eq. (A5) of CY, which is
condition (II},becomes, after multiplying by the ma-
trix

which is related to the curl,

P —K
po Pi (0)—iKS',""(0)+PPi(0)+ KK F i(0)+ iKS', (0)

0 0

+ J cr Ni(0, z';K, a)} S''"(z', K,a))dz'= X (Pi(0)+ Pi (0)], (3)
0 c

where

2

hp PQ E——, Q =—E2——
g

2

and N is defined in CY [three equations above (A4}]; S' is the field just inside the solid, S' ""the field just out-
side. Note the presence of F i"(0}in the boundary condition; it appears there because the Ohm's-law equation
must apply to the total field:

M =X [E(0)+E'"(0)].

The continuity of tangential E gives simply

F ","(0}=S'i(0),

while vanishing normal current implies

(4)

eK
[iK Fi(0)]+ e, + S(0)=( g

e—E)iK R, S',
0 0

where

R [(I' '+ho 'KK )e —60 'KK e + (PQ/b, }(e —e +)iK] S''"(z', K,co)dz',
0

and the integrand is a matrix with two rows and three columns. This equation was not given in CY; 1(2) is the
two-dimensional unit tensor.

If we combine Eqs. (3) through (5), a single (vector) equation for S'i(0}results:

P — 1 e P —K
( P)l' ' — X S'i(0)+ — — KK S' (0}

C ~p ~p ~p Gs~p+E

C Es~p+6K C

This equation can readily be solved, to give

Fi(0)=3'R+7 S' i"(0),

where
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T=(e —e)
' ' e -'kk' —e -'+ " e -'kk'e -'

4m™~e —& ~ e —&.KK T.e —&

C2

e=(P+p, )I"'— ', X, e,=p, (e,~,+eK')e,
C

u=l+~n, rr=K'e-'K,
(e, e)P—e,Q-

+ 2
Pp e,hp+eK

Equation (5}can now be used to get 8', {0);after much algebra, it is found that

N', {0)=— ' f dz'9 (z', K, to) 8' '"(z', K,to)dz'+ [t'K 8 'X 8' '"(0}],S ~ p
p C

where

8 r(z', k, to)=(T (z'), t(z'))

I

and using

2

( I e) =—P —po
co

C2

T (z')=(Ae ™ Be +)iK-

+(Ce )iK 8
t(z') =D(e ~ e+ ), —

with

gives

(P-po)[(e, e)K—1 2

1 —e

—e,g(P+epo)] .

A =g[pop —ll(P+po)],

B=(p, —ll)K' —P,PII,
COC=e poQ
C2

D =g[(p, —ll)K' —P,IIP] .

For 2=0, it is clear that

II=K i(P+p ), B=(P+p ) 'I' ',
and the equation for I',(0) reduces to Eq. (A6) in
CY when e, =1. By setting

~o=po(esto+«)
+II[p [P(e —e) eQ] e—k e—K—

=0, (6)

we identify the dispersion relation for surface waves.
Note the following limits:

(1) For X=O, one finds that

The factor in square brackets is (for e, =l) the
Crowell-Ritchie dispersion relation' for a semi-
infinite compressible electron gas, and appears in
CY below Eq. (A6).

(2) For s~0, we formally set Q —+ oo,' in order to
avoid indeterminate quantities, we take this limit in
the expression

P {e, e) e,g——
pp e,b p+eK2

=0

to give

1 1II +—=1,
Pp P

which is in fact Nakayama's result [Eq. (I)]; to see
this, let K point along the 1 axis. Then if
A. =4mi CO/C,

II=K [(P+p )1' ' —lt,X] 'K

CO /C
[(e, e)K e,g(P+epo—)], —

P+pp

P+pp —A,X22

+~x
+~&i2 K

P+pp —AX() 0
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where

hatt =det[(P+p, )1"'—AX]

(P+p0) ~(P+p0){X11+X22)

+~ (~11~22 ~12~21)

so that

II= (K'/h)(P+pO —}I,X22) .

Use of the identity

—+——(P+PO) = —+1 1 e 1 co
2

P0 ~ PP C'

&[Jt.t Jt.tl&= &l jb, jb]&+&[~,jb]&5(z)

+&[j b ~]&5(z')

+&[M,M]&5(z)5(z') .

The fourth term can be evaluated immediately;

(7)

eventually yields Eq. (I).
Equation (6} is therefore the dispersion relation

for Nakayama's surface plasmons when the
compressibility of the electron-gas "substrate" is
taken into account. At this point, it is useful to note
that the current-current response function in the
presence of the surface layer should, by Kubo's fa-
miliar arguments, take the form

& [Jtot &stot ]&
=

& [Jb +Js &Jb +Js ] &

where j~ is the bulk current density and j, the sur-
face current density (i.e., three-dimensional}. Then

j,= M 5(z),

so that

since

X [ 8' (0)+ 8' '"(0)],
ECO

~ex
one extracts the coefficient of 8'z (0) in 8'j(0) to
get

2

&[X,~]& =—,[AX+AX {e+2}KK ) 'AX] .

The second term shows the effect of "virtual bulk
plasmons" on the surface response function. It is
not hard to show that &[PC',5 ]& has a pole at
S =0.

The calculation of the full current-current
response now proceeds as in CY: Once the depen-

dence of 8'(0) on I' '*(z) is known, that of I'(z),
j (z), and 4 (z) is determined, and after much alge-

bra one finds that

Es cN

j,.(z;K,co) = ——I J&J(z,z', K,co)gj s 0 7

}t,'O'J"(z';K, co)dz',

where J is given in full in the Appendix. Now, in
CY it was shown that a part of J associated with the
surface-plasmon mode can be split off easily; to iso-
late the surface-plasmon term when a surface layer
is present is a somewhat more subtle task (a glance
at the Appendix will convince the reader of this). It
can be shown that the surface-plasmon eigenfunc-
tion which reduces to the function j,~ given in CY
as X~O is of the form

j»(z;K,co)=CO[ j b(z;K,co)+i»5(z}],
where

j b(z;K, co) =
6's50+ 6'K ~ ~ 1 1

2

9 '(iK)+(E E) —iK e — iKe—
eQII * bQ Q

e
—Ps+ -Qz

and

Es ~0+ 2

s{X [e '(iK)] .
e, IIQ(e, —e)co /c'

J(z,z', K,co) =Jb(z,z', K,co}+J»(z,z', K,co},

where

So, a part of each term in Eq. (7) must be extracted
in order to build up a term of the form

J, = j,„(;K,)j, ( ', K, ).
a) —u) (EC)

This procedure is quite tedious, and will not be de-
tailed here. The final result can be written

Jsp(z, z'; K,co = ———] (p, —p)
E' 0

X j»(z;K,co) j,p(z', K,co),

recalling that
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a =K'[p, —11]—p,PII .

It can be shown that the function Jb is singular only
at the usual "bulk" branch points:

po ——0, P=O, Q=O .

IV. THE EFFECT OF COMPRESSIBILITY
ON PLASMON DISPERSION

Inclusion of finite-compressibility effects in the
dynamics of a bounded electron gas can have strik-
ing consequences, especially with regard to wave

propagation. To assess the role of these effects in
the system under study here, we rewrite Eq. (9) in
the form

response. Introducing the dimensionless variables

z =co/cop, g=sK/cop, Q =(g —z +1}'~,
and the dimensionless parameter

2778 Op

m' co&s

the coupling strength can be written (again after
some algebra)

COpr=
(1—z')'

CQ(Q+k}(z' —~k}
(2z —A g) [z —g(Q +g) ]—z

J,~(z,z', K,co)=I' j,~(z;K,co) j,&(z';K,co),

where the imaginary part of

and all dependences on g and z are explicit.
Now, the dispersion relation

(2 ' ~k}[z' NQ—+k}]=z' (10)

e, e,BQ—-1 (e, —e)
e ' S'p

is identified as the coupling strength of the surface

plasmon to an external probe. When X is isotropic,
little algebraic manipulation allows us to rewrite I
in the form

EsI'= ——(e, —e)

should describe the coupling of two distinct types of
surface wave:

(a) The "two-dimensional surface plasmon, "'2

whose dispersion relation (in the nonretarded limit}
is

2
2778 Op

2

co = E,m'

or in these dimensionless units

where

K Q[1 (4m lico—)Xpo]

(4'/ico)Xpo(E—&kp+EK )

z =A/.

(b} The "Ritchie surface plasmon, " whose disper-
sion relation is

&„=&,Q(P+ ~pa) (e, e—)K'—
is the Crowell-Ritchie dispersion relation alluded to
above. For X=O and i,=1, this expression reduces
to the coupling strength derived in CY; the disper-
sion relation for surface waves [Eq. (6) of this paper]
takes the form

(4n/ic—o)Xpo(e, i),0+eK )=0 .

It is clear that these expressions are rather unwiel-

dy, and that if any physics is to be extracted from
them some simplifications must be made. To this
end, we first take the nonretarded limit ciao, in
this limit, P,p p ~K. We then use the simple
current-current response which Nakayama em-

ployed:

ie CrpX=
m co

where 0'p is the surface carrier density. Finally, we
set e, =1, i.e., the electron gas has neither phonon
degrees of freedom nor any intrinsic dielectric

(~2 ~2 )[K2 S
—2(&2 2 )]112 2K

or in dimensionless form

(2z —1}Q=( .

Before we analyze Eq. (10} in any detail, it pays to
note that by introducing the decay constant Q into
the problem we have added a strong bound on the
dispersive behavior of any true surface mode in the
co-K plane:

Q &0, co &co&+s K (12)

In Sec. III, we recovered Nakayama's expressions by
formally letting Q~ao', this procedure is highly
misleading, in that the dispersion relation which re-
sults may violate condition (12), which as s~O be-
comes

2 2(CO~ ~

Thus Eq. (11), which we should recover in the limit

co& ~O, will clearly violate this inequality when E is
large enough.
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The physics of this situation is as follows: When

Q ~0, the surface mode is degenerate with a bulk
electrostatic wave, and hence is actually not local-
ized at a11; indeed, standard methods can be used to
calculate its rate of decay into a bulk excitation.
However, for s =0, there is only one frequency for
electrostatic waves, i.e., co=cop,' this means that any
other frequency is an allowed surface-wave frequen-
cy. Clearly, this limit s~0 is a pathological one, as
has been noted by Eguiluz.

To attack this dispersion relation, it is useful to
introduce a graphical method. Let

fi(g) =A( —2z2,

f2(k) = '/t(' '+P—k' '+1)—'"l
The function g(z) is defined by the intersection of
these two curves, as shown in Figs. 1 and 2. In Fig-
ure 1, these two functions are shown for z & 1. The

Ia)

Ib)

Ia)
(

I

I

I4"
I

I

I &g(h)

I
I

2 I

I

I

I

I

I

2"

FIG. 2. (a) f~(g) and fi(g) for z =1.1, A, =2.5; fq(g)
lower branch "ends" at (=0.3 with a value of
—z = —1.1, and intersects f~(g). (b) f~(g) and fz(g) for
z'=2, A, =2.5; fz(g) lower branch ends at (=1 with a
value of —z'= —2; it does not intersect f~(g) for this
value of g.

I

I

I

4 I

I

I

I

I

I ~,ai
I

I

I

I

I

I 6

following features of the dispersion relation are evi-
dent.

(I} For small enough z, fi((}has only one inter-
section with fz(g), i.e., with its first-quadrant
branch. It is easy to show that for small z, this
branch of the dispersion relation is "phononlike, "
i.e.,

or

co=vE,
FIG. l. (a) Functions f~(g) and fz(g) for z = —and

A.= —,. f, intersects the f axis at —2z'= —2/3; the verti-

cal asymptote is 2/W3. (b) f&(g) and fz(g) for z'= —,
1 4

A.= —,. f ~
crosses at ——,, asymptote at 2/V 15.

where

s 4~e 0.0
2

p ltd

' 1/2
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This velocity gets very large as cop~0; hence, we

identify this branch of the dispersion relation with
the two-dimensional plasmon, whose phase velocity
has been made finite by its interaction with the bulk
plasma.

(2) When z & 1/v 2, or co & to& /v 2, a new branch
of the dispersion relation appears; this branch we

identify with the Ritchie surface plasmon, which
starts at the same point.

Figure 2 shows the situation for z &1. Once
again, the first-quadrant branch of fi(g) supplies an
intersection, which for large z behaves like

4' 20.0

Pl

2

Ptl C

&& I d rd r'e'q''

Now, it is shown in many texts that the cross section
for Raman scattering in a many-body system is
given by the formula

2
'2

d O' CO

dE'd Q CO
(ek ek')

g=z'A, X (nH(r, t)nH(r ', t') ), , (13)

which confirms our identification of this branch
with the two-dimensional plasmon. For the second
branch, however, the value of A, is crucial. When A,

is zero, it is easy to show that Eq. (10) reduces to
Ritchies dispersion relation. However, it can be
shown that when A, &2, there is a region

X4
z 6 ————A,

2 4

1/2 ' ' 1/2

2
, —+ ——A,

2 4

then

for which the curves fi(g) and the lower branch of
fi(() do not intersect. In fact, the surface mode
merges smoothly into the continuum for these
values, a fact we verify by noting that if

' 1/2
X4

z+ ———+ ——A,
2 4

where an incident photon of energy co, momentum
k, and polarization eI, gives rise to a scattered pho-
ton of energy co', momentum k ', and polarization
ek. In this formula,

q=k —k',
IE' =CO —CO

and dQ' is the solid angle around the vector k'.
The quantity in angular brackets is the Fourier
transform of the well-known density-density correla-
tion function. Using the fluctuation-dissipation
theorem in the usual way, we relate this quantity to
the density-density response function N( r, r ';e) via

(nH(r, t)nH(r ', t')), = —2ImN(r, r ',e) . (14)

Now, it was shown in CY that the response function
is related to the quantity J calculated in this paper
via the formula

=0,
i.e., the decay length 1/Q is infinite. This peculiar
behavior is a sign that the surface layer is "overdriv-
ing" the plasma, in the sense that co-k relation of the
bulk plasma wave precludes its localization as a sur-
face wave.

4~e2 dr Br~

(15)

Let us keep only the surface-plasmon part of J in
these formulas; then in the choo limit it is found
that

V. APPLICATION TO RAMAN SCATTERING jk(z;K, oi) =
i K/K

e
—Kz

To illustrate the use of some of these results, we
conclude by calculating the cross section for Raman
scattering by the simple two-dimensional surface
plasmons described in the last section. We first take
the formal limit Q~~ in our expression for the
coupling strength and obtain (restoring dimensional
quantities)

4—p E(cu —LAC)
2 2 2 2 2

co (co —co ) 2' —co —LAC
7

P P

where

In order to remove the plasma entirely, we now let
cop~0; only the surface current survives, as expect-2

ed, and so

J„=r~X 'S(z)W')
'—MCCO lli~akK +

K K g$( )$( )2' —ddC co
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and
Taking the su ace Fourier transforms f E . '1

d (15) and the divergences in (15) gives the
density-density response

N(z, z', K,a))= 2K4,2 2 2 ~ 2
(z)5(z')

CO

vectors parallel and perpendicular to the surface, the
appropriate spherical angles can then be introduced.

COK„=—sin8 cosP
c 7

CO

K» =—sin8 sing,
and (13) becomes

d 2Cr

dedQ'
CO

CO

c»Thl.—dz dz' 'i'*e
and

CO

k, =—cos0,
c

X [—21rnN(z, z', K,e)],
»

COK„=—sin8'co sf',

~here L is the area of the surface and
'2

2

Th 2 6k ~km*c

is the usual Thompson cross section. S
gives

ion. ome algebra

d (T 2 CO
2

Th

X =(-, 6=-)'")i(e—(-, 6=)'") (16)

where

:- =K—K'

is the momentum transfer along the surface.
igure 3 shows the kinematics of the scattering

process. We Lnck the plane of the incident
wave vector kr as the xz plane; then if k=(K k '

1c'=(K' k')', ,') are the decompositions of the wave

then

2COC

I
COK„=—sin8'sint()'
c 7

CO

k,
' =—cosO' .

c

Using the conservation of momentum gives

2
CO . 2 COCO

sin 8—2 sin8 sin8'cost()'
c c2

&2

+ sin 0',
c2

wnile conservation of energy gives

co —co'= ( —,b:-)'»

These e uatiq tions give co as a function of th e inci ent
energy co and the angles 0 8' d, an through the
following quartic equation: If

(=co /co,

I

I

It )e
L
I

K
( —g) =A, (sin 8—2(sin8sin8'cost()'+g sin 8')(1 4 2 2

(17)

Let us integrate Eq. (16) with respect to e then u-
ing

:-=—(co —co')'= (1— )

and introducing the frequency Q=h/c, we can
write the differential cross section

do II
&

C CO

dn ='""" 0 c

FIG. 3. Raaman scattering kinematics.

where a is the fine-structure constant and

e 1

Ac 137

as usual. With E .q. (17), the angular distribution of
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FIG. 4. Differential Raman cross sections: Curve a is for co =Q/20, b is co =Q/2, c is co=Q.

scattered light can be calculated; note that it is a
function of the angle of incidence 0.

For normal incidence, (17}reduces to a quadratic
and is easily solved:

g= 1+—,lL, sin8' —()I, sin8'+ —,A, sin28')'~2 .

The angular dependence is plotted in Fig. 4; there is
no (ti' dependence. The scattering is zero in the for
ward and backward directions; for co &0, the cross
section has a maximum at an angle Hm given by

9 6)
sin8~ =——.

4 0

VI. CONCLUSION

After some communication with Eguiluz, ' the
author became aware that the response functions de-
rived in CY are valid only for that sector of m-K
space which corresponds to nonradiative processes;
hence, they are useful primarily in the study of sur-

face excitations. Note that the "radiative" processes
include radiation of electrostatic waves also, i.e.,
waves in the solid whose dispersion relation is of the
form

co =a)p+s (E +kg) .

The expression for J given in the Appendix is Her-
mitian, and hence satisfies the f sum rule as shown
in CY; hence, it is a valid generalization of the usual
bulk response functions in the plasma-pole regime.
The correlations in this model are, of course, pri-
marily electromagnetic, as discussed in CY; howev-
er, as much complexity as is desired can be built
into the function X(K,co}, i.e., the random-phase ap-
proximation, Hubbard, or any other two-
dimensional polarizability can be studied in this
way. Clearly, the surface periodic potential cannot
be so dealt with; however, disordered surfaces and
order-disorder transitions may be observable as
changes in the coupling strength.

APPENDIX

The form of J(z,z', K,co) is quite cumbersome. Using the notation of CY and Eq. (7) [without a factor of
e, le 1; see Eq. (8)], one obtains—

(2)el 0
([jb,jb]) = 5(z z')+(e, —e)Jp(z, z'K—aP)+e, J&(z,z', K,co)+J,(z,z';K, co),
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where

Jp(z, z', K,co)=—(ego /c )J. ' ' —KK iKB/dz

iK 8/Bz K 2P

(1/2P)[(ceo Ic )1' ' —KK ] (a—p Ic )B ' (1/2P)(iKP)
—(1/2P)(iK P) (1/2P)K

—K K iKB/Bz e
—9 l~ —~'

I

JQ(z,z', k,m) =
iK T&/&z

Note the disagreement with the J& given in CY.
when the response function is rearranged to extract

K K i—KQ e
—Q~~+*'~

iK Q —Q 2Q

This is not a misprint; the signs given here are important

the surface-plasmon term. As for J„define

L = (eg e)—(I(."+ppP) eg—Q(P+p p),
M=P(p, —n) —p, n=A/Q,

and the vector

G=e K.
Then

Ju. Jj
S'pJ, = -T

J,g J
2 -- 2

J~j= e LGG —e pp(e, —e)(GK +KG }—(e, —e)MKK (e, e)e —'+''
c2 c2

+ e ppG+MK K e (e e)e — + +K e ppG +MK e,(e, —e)e
c c

MK K ~'+' '
S

2

J~ eppQe, (e,——e)e (e —e+ )i G—+ [(e, e)e e—,e +][(—e, e}Be e—Ae —(i' ]iK,
C2

J,g
—— (eaP/c —)ppQe (e —e)e (e e&)i—G

—[(e, e)Be e—,Ae @][(—e, e)e —e,e + ]—iK =( Jj )',
J = e, (e—, e)QB(e —e+ )(e —e+) . —

The mixed surface-bulk terms are of the form

([5,j ~])=(e, —e)XX(:- (z'), Z(z'))5(z),

T.
where matrix multiplication of X by " and Z is implied, and

(z')=(6+gKK ) 'e + [(e, e)e e—,e +]K—G
0

:-(z)= (6+gKK ) 'e ~ + [(e, e)e e—,e ]GK—
0
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Z (z)= ' g{e —e +}(iG ),0
Z(z')= — Q(e e—+ }(iG),o

while

as stated in the main text.
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