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of the energy bands, cohesive energy, and bulk modulus of W
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The energy bands, equilibrium lattice constant, cohesive energy, and bulk modulus of
tungsten have been calculated using our new semirelativistic pseudopotential. The agree-

ment with experiment is exceptionally good. This can be attributed to the pseudopotential

containing all relativistic effects, except spin-orbit, to order a, where a is the fine-structure

constant, and to our taking the exchange-correlation potential to be V„","=V„,(pt tg)
—V„,(p „)rather than V„","=V„c(pya]).

I. INTRODUCTION

In the past few years there have been several ad-
vances in pseudopotential theory. Zunger and
Cohen' (ZO developed a hard-core norm-conserving
pseudopotential and a soft-core norm-conserving
pseudopotential was developed by Ham ann,
Schliiter, and Chiang (HSC). These pseudopoten-
tials yield pseudo-wave-functions which are identical
to, rather than merely proportional to {as is the case
for pseudopotentials based on core orthogonaliza-
tion ), the true wave function outside the core re-

gion. Furthermore, their energy-independent form
introduces negligibly small errors which can be
shown to be due to the rigorous cancellation of the
linear term in an expansion about the energy for
which the pseudopotential was created. Kleinman
has shown how to obtain the HSC pseudopotential
from the Dirac equation so that it contains all rela-
tivistic corrections to order a where a is the fine-
structure constant. If one takes the weighted aver-

1

age of the pseudopotentials for j=l+ —, and

j=l ——,, a semirelativistic ionic pseudopotential

Vi =(2!+1) '[(I+1)Vi+tn+IVi tl2~-
is obtained from which computations proceed iden-
tically to those with nonrelativistic pseudopotentials.
We have recently shown how to cast semilocal
pseudopotentials of this type (i.e., local in the radial
coordinate but nonlocal in the angular coordinates)
into a completely nonlocal form. This not only
greatly simplifies the computation of matrix ele-
ments but also allows the small error which occurs
on transporting the pseudopotential to different
chemical environments to be further reduced.

In this paper we compare a calculation of the en-

ergy bands, cohesive energy, and bulk modulus of
tungsten made using our new pseudopotential with
similar calculations made by ZC (Refs. 6 and 7) us-

ing their nonrelativistic hard-core pseudopotential.
Other than the pseudopotential, our potential differs
in two respects from ZC's. We use the relativistic
form ' of the Kohn-Sham' exchange potential and,
for want of something better, the nonrelativistic
Wigner" correlation potential. Because of their
nonlinear nature, the valence parts of the exchange
and correlation potentials cannot rigorously be
separated from the total potentials as has been
pointed out by Louie, Froyen, and Cohen. ' Howev-

er, when spin polarization is not a factor, the pseu-
dopotential (especially in its nonlocal form5) is self-
correcting for errors made in the core region. It was
for a more pedestrian reason that we chose to work
with exchange and correlation energy functionals
and potentials of the total charge density

pT ——p„„+p„~ in the frozen-core approximation
p„„=p"'„. Because the d bands of tungsten are
only partially filled, p„,&

is nonspherical quite close
to the atoms, containing short-range l=4 Kubic
harmonics. p„',~

which appears in the exchange and
correlation then contains short-range l=8 Kubic
harmonics whose Fourier expansion shows little sign
of converging even with 7000 plane waves. On the
other hand, in the core region pT -p' „+—,

p„,~lp„„contains only a small l=4 component and
negligible l=8 component. In the next section we
describe our calculation and give estimates of the er-
rors introduced by using the pseudopotential, which
was constructed to be exact for a tungsten ion in a
particular configuration, in the crystalline environ-
ment and the errors introduced by the use of a small
Gaussian basis set. In Sec. III we compare our re-
sults with those of ZC and with experiment.
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FIG. 1. Relativistic Kohn-Sham exchange plus Wigner

correlation potential for p „{r)of Dirac atom.
FIG 2. Se.mirelativistic s, p, d, and f tungsten pseudo-

potentials and VL, , the local part of the pseudopotentials,
together with —2Z/r (dashed curve).

II. CALCULATIONAL TECHNIQUE

The atomic pseudopotentials were calculated from
the Dirac equation for W+ in the1.8 2.7 0.25 0.083 0. 1675d 3/25d 5/26s 1/2 6p 1/2 6p 3/2 configuration accord-
ing to the prescription of Ref. 4. W+ was used rath-
er than W because the Sf functions are not bound
for W in the Kohn-Sham approximation. The rela-
tivistic exchange potential (in Ry) used in the calcu-
lation is '

' 1/3

V (r )=—2 —p(r )
m'

3 In[p~{p + I)'r2] 1

P(P2+ I )
I/2

where P=[3sr2p(r )]'~ a and the correlation poten-
tial" is

V, (r) = —0.88[4np(r )/3]'~

—, +7 79[4srp(r )/3]'.~'
X

[1+7.79[4srp(r )/3]' '}
The ionic pseudopotential is obtained by subtract-

ing the valence Coulomb potential and V„,(pT) from
the atomic pseudopotential. In order to obtain
smoother potentials we subtract V„,(p, „) from

The pseudopotential then becomes5

p ( ) (1 )+ Vco 1(r )+ VL, (P)+ VNL

where

(4)

V„(p&). Thus V„(p „) is added to the pseudopo-
tential and subtracted from the self-consistent'
V„,( pz }. If the reader wishes to consider

V"„,"(r )=V„,{pr(r ))—V„,(p „(r))
to be a physically meaningful quantity, he may, but
it is our point of view that V„,( p„„)is an arbitrary
function which is being added to one part of the po-
tential and subtracted from another. In Fig. 1 we
display V„,( p„„(r)), where p„„(r) is obtained from
the Dirac equation and therefore is weakly infinite
as is V„, at r=0. In Fig. 2 we show the semirela-
tivistic ionic pseudopotentials V7'"{r) used in this
calculation. They fail to be equal to —2Zlr beyond
r=3 bohrs because of the added V„,(p„„};although
p„„is negligible in this region, p,'„,is not.

The nonlocal form of the pseudopotential is gen-
erated by using Vt'"(r) in a self-consistent calcula-
tion of W+ to obtain semirelativistic pseudoeigen-
functions

C t~(r ) =Pt~(r) Yt~(Q) .
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TABLE I. Dirac-equation eigenvalues for W+ and W
in eV and error made (in meV) when semilocal (SL) and
nonlocal (NL) W+ ionic pseudopotentials are used in

self-consistent calculations for W. 6.1

TABLE II. Convergence errors at I and H in meV.

I2s

26.0

H)p

9.4

H2s

20.922.9

His

3.6

Dirac W+ Dirac W h(SL) h(NL)

5d 3/2

5d s/2

@1/2

6p]/2

6p3/2

&fsn
&fsn

—11.926
—11.182
—12.329
—7.639
—6.863
—1.090
—1.089

—4.679
—4.007
—6.009
—2.184
—1.733

13
12

—1.4
—6.7
—9.3

—5.8
—5.7
—6.1

—7.5
—10.2

I
&vie'im & & c'i~&vi

I

5V, = Vi""(r} V, (r), —

and Vl(r} is an arbitrary local pseudopotential
chosen so that V~ has good transferability. VL (r}
which is shown in Fig. 2 is a numerical function,
chosen to be 1.05 V7'"3(r) in the core and to join
smoothly to Vi'"3(r) outside the core. That it differs
markedly from the VL used in Ref. 5 is a conse-
quence of the different V„","(r) used in the two cases.
To check the transferability of the pseudopaten-
tial we calculated the eigenvalues for a W atom
in the 5d 3/25d 5/26s &/26p ~/2 6p3/2 configuration

2 3 0.5 0.167 0.333

using the Dirac equation and both the sernilocal and
nonlocal ionic pseudopotential (arising from W+) in
a self-consistent Schrodinger-equation calculation
with the results shown in Table I. (The semirela-
tivistic pseudopotential could not be checked direct-
ly since there is no semirelativistic Dirac equation
with which to compare. ) The largest error arising
from the nonlocal pseudopotential is —10 rneV and
its largest relative error is less than 5 meV. We ex-
pect the errors in the crystal to be no worse than
these because the spherically averaged valance
pseuda-charge-density in the core region of the crys-
tal differs from the ion by no more than the atomic
valence pseudo-charge-density does.

Our basis set consists of three s, p, and d and one
f Gaussian Bloch functions for a total of only 34
basis functions. Note that Eq. (5) involves n two-
center integrals whereas the semilocal form of the
pseudopotential

g I
I'im(&) & Vi(r}& I'i~(II )

I

l, m

requires the computation of n (n —1)/2 complicated
three-center integrals. Each is a single Gaussian ex-
cept that the short-range d Gaussian has about 2%

of a very-short-range Gaussian contracted with it.
The Gaussian exponents and the contraction factor
were determined by trial and error to maximize the
convergence at the I and H high-symmetry points
in the Brillouin zone (BZ). In Table II we show the
convergence errors for several states at I and H ob-
tained by comparing with converged-plane-wave ex-
pansions. For I 25, our worst case, the convergence
using our 34 Gaussian basis set was equivalent to
that obtained using a 297 plane-wave basis set; con-
vergence to approximately 0.2 meV required 887
plane waves. This 26-meV error is probably the
largest computational error in the calculation.

ZC performed sums over the BZ to obtain the
Fermi energy, charge density, sum of one-electron
eigenvalues, etc., using a tetrahedron integration
scheme. ' They used a 14-point sample in the 4, th
irreducible BZ except for one calculation in which
they used 20. They obtained a binding energy' ' of
16.29007 Ry using 14 k points for W at the experi-
mental lattice constant and at the theoretical lattice
constant (estimated from 14-k-point calculations)
they obtained 16.265 907 Ry in a 20-k-point calcula-
tion. Thus, since the equilibrium binding energy
should have been the larger of the two, the energy
change due to the increased number of k paints was
at least 0.33 eV. ZC's claims of better convergence
are somewhat surprising. ' The tetrahedral integra-
tion scheme has two flaws. (1) It joins the nth level
at one k point to the nth level at a neighboring k
point, ignoring possible band crossings and thus in-
troducing energy gaps where none exist. (2) If a
tetrahedron is completely below EF, each of its four
points contributes equally to the integral over the
tetrahedron rather than proportionally to its prox-
imity volume within the tetrahedron (the tetrahedra
are necessarily irregular). If one sums the contribu-
tion of each point from the several tetrahedra to
which it belongs, he finds that the points sampled in
the BZ are misweighted. ' We therefore sampled 50
points on a regular bcc lattice within the 4, th fcc ir-
reducible wedge of the BZ and weight the contribu-
tion of each energy level by that fraction of a Gauss-
ian of 0.05 eV full width at half maximum centered
on the energy level which lies below EF and by the
number of independent members of the star of k.
Because we did not try a small sampling we cannot
make an accurate estimate of the accuracy of the
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sampling but it is obviously much more accurate
than any 20-point sampling.

Fourier transforms of the pseudo-charge-density
were obtained directly from the crystal eigenfunc-
tions to yield

Vcou)(K )=8np(IC)/Ix:

and are summed at 360 random points in the 4, th
irreducible unit cell to obtain p„,~(F) which is added
to g,.P„~(F—R;) and substituted in Eqs. (2) and (3)
to obtain V„,{pr(F}}.Then

V„,{pr(F)) —g V„,(p„„(F—R;)}

was fitted with 140 symmetrized combinations of
plane waves (SCPW) and 16 Gaussians times Kubic
harmonics (four each of l=0, 4, 6, and 8). The rms
error in the fit was always less than 8)& 10 eV and
the largest error at any point was 3)& 10 eV. This
fit is an order of magnitude better than we obtained
when V"„,"was taken to be proportional to p„',~

even
though we used two additional shorter-range Gauss-
ians for each I in that fit. The fitting functions were
Fourier transformed with the same number (504) of
SCPW used in Vc",„~(K ) to obtain V„"",(K). The
valence contributions to matrix elements between
Gaussian Bloch basis functions were then calculated
in reciprocal space. The calculations were iterated
until the largest difference between input and output
potentials at any point in real space was less than
4X 10 eV.

III. RESULTS

In Table III we list the various contributions to
the binding energy of tungsten at the three lattice
constants shown. The first row is the sum of the
one-electron energies averaged over the BZ including
all zeroth Fourier transforms of the potential. The
arbitrary zeroth Fourier transform of the Coulomb
potential (of Z=6 point ions with a compensating
constant background of charge) is taken to be zero
and subtracted from the g,. VL (r —R;) to cancel the

2Z/~ r —R;
~

tail on the VL's. Thus the zeroth
Fourier transform of the g,.VL (F—R;) reduces to

(2/a ) f [VL,(r)+2Z/r]d r .

Our g„z e„(k ) cannot be directly compared with
ZC's because they did not include the zeroth-
exchange and correlation-potential Fourier
transforms and because of differences in our pseudo-
potentials and exchange potentials. The next row
subtracts off half the valence self-Coulomb contri-
bution to g -e„(k ). We would expect it to be al-

a, k
1

most equal in magnitude to ZC's —, g„(G)Vc,„~(G)
which they added after subtracting off all valence
self-interactions. The fact that it is almost 3 times
smaller leads us to compare several Fourier com-
ponents of the self-consistent pseudo-charge-density
of the two calculations' in Table IV. It is hard to
believe that the p(K ) were calculated for the same
crystal. On the other hand, their Fig. 3 and our
Fig. 3, which are contours of constant

TABLE III. Contributions to the binding energy of tungsten (in rydbergs) for three dif-
ferent lattice constants and the cohesive energy in eV.

a (bohr)

ge„(k)
n, k

5.793

6.003 770

5.972

5.362252

6.151

4.785 872

——8nDQ'p2(K )/E~
K

—0.087416 —0.117940 —0.156 111

V..( pT)p,.i
[&xc( Pr )PT &xc( Pcore)pcoee)

EEwald

—Ebinding

E„,

6.949 783

—6.209 650

—22.615660

—15.959 173

15.311790

6.797 339

—6.072030

—21.937796

—15.968 175

15.311790

6.666 361

—5.956 528

—21.299 384

—15.959 790

15.311790

Ecohesive 8.8076 eV 8.9301 eV 8.8160 eV
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m arison of several Fourier com-

d h d t (

d Coh
' Ref 6

ponents o
in~' by Zunger an ounits of e/cell) obtain

and 7 and by us.

0
(110)
(200)
(211)
(220)
(310)
(222)
(321)

p«)zc
(Ref. 6)

6.0000
0.6905

—0.0235
0.0339

—0.0755
—0.1755
—0.0431
—0.0751

p(K )zc
(Ref. 7)

6.0000
0.6719

—0.0994
—0.0172
—0.0599

p«)s~
6.0000
0.3880

—0.1523
—0.1070
—0.1226
—0.1800
—0.0497
—0.0552
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TABLE VII. Comparison of spin-orbit averaged Dirac
eigenvalues (in e or
Schrodinger-equation eigenvalues wit nonre a ivi

relativistic orms o ef f th exchange potential in the same
Sd 6s ' 6p 1/2 configuration

~I ~

Dirac Schrodinger rel. ex. Schrodinger nonre .

1
3

4 3

Sd —4.276
6s —6.001
6p —1.883

—4.816
—4.752
—1.739

—4.806
—4.767
—1.741

0-

12

~ 1

GN-Xr- A PD-N P-F--H
H G N

FIG. 4. Energy bands of semirelativistic tungsten with
lattice constant a= .=5 972 bohrs in units of eV measured
from the Fermi energy.

our more reais ic rea1' t' treatment of the valence electron
exchange energy, wr 12 we obtained a binding energy
eV smaller than ZC's and an atomic valence electron
energy e sm5 V smaller so that our cohesive energy is
eV larger than theirs. An increase of 0.0023% in
the calculated binding energy at a=5.972 bohrs an
a decrease of the same amount at a=5.793 bohrs

r,
r„.
I as

Ni
Np

Ni
N)
N4
Ng

H)p
H)5
P4
Pg

P)

ZC

0.00
4.80
8.31

28.80
0.56
2.47
7.89
8.21
8.92

11.03
0.18

10.44
3.32
9.00

15.93

PV

0.00
5.51
8.38

21.37
1.28
3.28
8.64
8.67
9.28

12.16
0.75

11.26
4.16
9.41

17.66

BK

0.000
8.186

11.611
29.290
3.252
5.871

10.497
11.519
12.435
15.339
3.629

14.412
6.545

12.589
15.964

TABLE VI. Comparison of energy band eigenvalues
(in eV) of tungsten as obtained by Zunger and
6) by Petroff and Viswanathan (Ref. 23) and by us.

the bulka=6.151 bohrs are sufficient to bring the b
modulus into agreement with experim

his li ht the agreement of the calculated bulk
ectacular.m uus wiod 1 ith experiment is also quite spec

n s of semi-F 4 is our calculated energy bands oigure
ats m-relativistic1

' ' t' W and in Table VI eigenvalues a y
met oints in the BZ are compared with the non-

f ZC (Ref. 6) and of Petroffrelativistic eigenvalues o
and Viswanat anh (PV). The differences between

ted to thethe ZC and PV calculations can be attributed to t e
d from a non-self-consistent

muffin-tin potential. The differences between
hould be almost entirely due to the semire a-

tivistic nature of our pseudopotentia . is g'

d h'ft b t only small relative shifts among
t e ower-y' . rh 1 -1 ing pure d states. Thus our z5, &z,

Nz, N4, H&z, and P& levels all lie 3.44
I than do ZC's. To check how

much of this s-d shift has an atomic origin in Tab e

I with all-electronconfiguration from Table wi

Schrodinger-equation eigenvalues
'

es in the same con-
figuration wi oith both relativistic and nonrelativistic

the valenceforms of the exchange. We see that the vaence
eigenva ues are no vet very sensitive to relativistic e-
f ts in the exchange but that the d eigenva ue isecs in

d b 1.76 eV relative to the s on going'n from theraise y
r e uation tocomp e ey1 t 1 nonrelativistic Schrodinger q

h Dirac. Because I
&

is unaffected by p'-the s in-

orbit interaction and H&z only neg igi y a
our H —I i energy difference with

that of the completely relativistic but non-se-
consistent ca cu a ion o1 1 t' f Christensen and Feuerbach-
er. They obtain

'
ed 3.686 eV compared to our . 2

ic s-d shift ineV. Thus it appears that the relativistic s- s i in
the crystal is almost twice that in the atom.

F' 5 displays a Lowdin projection of the s,
p, d, and f densities of states (DOS) tog

tal DOS. In order to obtain smooth curves we
d the tetrahedron integration schemeuse e e

the s mmetry lines33 additional points along the y
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TOTAL

Q= 6.0oo

~ ~, ~ ~ ~ ~ ~ ~

sx50

Q=0.254

~ t

P"]0
Q=O.842

fxioo
Q=4.828 Q=0.075

~ s ~ ~ ~ ~ a E ~ E ~ ~ ~

~ ~ ~ w ~ ~ ~ ~ t ~ ~

-10 -5 0
~ ~ ~ ~ ~ ~ y ~ ~ ~ I I

5 5 0
''' ''''& ~ ~ ~ ~ ) ~ . . ~

0 (eV) 5

FIG. 5. Total and ro'ecp jected densities of states of semirelativistic tun sten.semire attvistic tungsten. g is the integrated charge density up to EFF

(which were calculated for Fig. 4) added
lar 50-

a to our regu-

t lin
-point sample. The extra points als ong symme-

ry ines alleviate the band-crossin err

s own that the Lowdin projection h h
'

n o symmetrically orthogonalized Bloch basis func-

peaks in our total DOS are in general a reem
o e. 6) but differ in detail and the

relativistic s-d shift is nnoticeable in a comparison of
t e two plots. Q, the integrated DOS (up to EF), is
shown for each projection in Fig. 5. The ratio of

This lar e rarge ratio is probably characteristic of all tran-
sition and noble metals.

In summary, we have used a new form of seudo-
potential to calculate som
o W. The pseudopotential includes all relativistic

is completely nonlocal, facilitating its corn t t' al
e pseudopotential has been used 'th h

ni ue'q which includes several noteworthy features

The pseudocharge-density is obtained d'ain irectly in

p ane-wave expansions of Gaussian Bloch foc unctions.
xc ange and correlation potentials are eval

'c
y rom the total, core-plus-valence

charge density.
In the present work the method is applied in a

self-consistent calculation for W. Thor . e convergence
properties of the Gaussian basis wer

ge er with the transferability of the pseudopotential
yielding maximum errors of 26 and 10 me
tivel . Thy. he agreement of the calculated lattice con-
stant, cohesive energy, and bulk modulus with the
experimental values is excellent. A corn

'genva ues with nonrelativistic eigenvalues indi-
cates an s-d shift of roughly 3.5 eV in the crystal,
approximately twice that of the atom.
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