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The energy bands, equilibrium lattice constant, cohesive energy, and bulk modulus of
tungsten have been calculated using our new semirelativistic pseudopotential. The agree-
ment with experiment is exceptionally good. This can be attributed to the pseudopotential
containing all relativistic effects, except spin-orbit, to order a?, where a is the fine-structure
constant, and to our taking the exchange-correlation potential to be VIZ’:VXC(pw,,,)

— Ve Peore) rather than V32 =V, pya).

I. INTRODUCTION

In the past few years there have been several ad-
vances in pseudopotential theory. Zunger and
Cohen' (ZC) developed a hard-core norm-conserving
pseudopotential and a soft-core norm-conserving
pseudopotential was developed by Hamann,
Schliiter, and Chiang? (HSC). These pseudopoten-
tials yield pseudo-wave-functions which are identical
to, rather than merely proportional to (as is the case
for pseudopotentials based on core orthogonaliza-
tion’), the true wave function outside the core re-
gion. Furthermore, their energy-independent form
introduces negligibly small errors which can be
shown to be due to the rigorous cancellation of the
linear term? in an expansion about the energy for
which the pseudopotential was created. Kleinman®*
has shown how to obtain the HSC pseudopotential
from the Dirac equation so that it contains all rela-
tivistic corrections to order a? where a is the fine-
structure constant. If one takes the welghted aver-
age of the pseudopotentials for j=I/+5 and
j=I1— %, a semirelativistic ionic pseudopotential

M=QI+ DT+ DS 2+ V%] ()

is obtained from which computations proceed iden-
tically to those with nonrelativistic pseudopotentials.
We® have recently shown how to cast semilocal
pseudopotentials of this type (i.e., local in the radial
coordinate but nonlocal in the angular coordinates)
into a completely nonlocal form. This not only
greatly simplifies the computation of matrix ele-
ments but also allows the small error which occurs
on transporting the pseudopotential to different
chemical environments to be further reduced.

In this paper we compare a calculation of the en-
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ergy bands, cohesive energy, and bulk modulus of
tungsten made using our new pseudopotential with
similar calculations made by ZC (Refs. 6 and 7) us-
ing their nonrelativistic hard-core pseudopotential.
Other than the pseudopotential, our potential differs
in two respects from ZC’s. We use the relativistic
form®® of the Kohn-Sham ! exchange potential and,
for want of something better, the nonrelativistic
Wigner!! correlation potential. Because of their
nonlinear nature, the valence parts of the exchange
and correlation potentials cannot rigorously be
separated from the total potentials as has been
pointed out by Louie, Froyen, and Cohen.!? Howev-
er, when spin polarization is not a factor, the pseu-
dopotential (especially in its nonlocal form®) is self-
correcting for errors made in the core region. It was
for a more pedestrian reason that we chose to work
with exchange and correlation energy functionals
and potentials of the total charge density
PT=Pcore + Pval in the frozen-core approximation
Peore=Pse’. Because the d bands of tungsten are
only partially filled, p,, is nonspherical quite close
to the atoms, containing short-range /=4 Kubic
harmonics. Pva13 which appears in the exchange and
correlation then contains short-range /=8 Kubic
harmonics whose Fourier expansion shows little sign
of converging even with 7000 plane waves. On the
other hand, in the core region p}/ 3 ~pcore + 35
p,,al/pgo/fe contains only a small /=4 component and
negligible /=8 component. In the next section we
describe our calculation and give estimates of the er-
rors introduced by using the pseudopotential, which
was constructed to be exact for a tungsten ion in a
particular configuration, in the crystalline environ-
ment and the errors introduced by the use of a small
Gaussian basis set. In Sec. III we compare our re-
sults with those of ZC and with experiment.
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FIG. 1. Relativistic Kohn-Sham exchange plus Wigner
correlation potential for p.o(r) of Dirac atom.

II. CALCULATIONAL TECHNIQUE

The atomic pseudopotentials were calculated from
the Dirac equation for W+ in the
5d g‘/SZSd §'/726s‘1",2256p?'/°2836p (3",'267 configuration accord-
ing to the prescription of Ref. 4. W+ was used rath-
er than W because the 5f functions are not bound
for W in the Kohn-Sham approximation. The rela-
tivistic exchange potential (in Ry) used in the calcu-
lation is®°
1/3
Ve(T)=-2

3 .
‘”p(r)

3WmB+(B+1?] 1
2 pB+D” 2

where B=[37p(7")]'/* a and the correlation poten-
tial'! is
Ve(r)=—0.88[4mp(T)/3]'3
% +7.79[4mp(T) /3]
{147.79[4mp(T)/3]13)2

The ionic pseudopotential is obtained by subtract-
ing the valence Coulomb potential and Vie(p7) from
the atomic pseudopotential. In order to obtain
smoother potentials we subtract Vie(Peore) from

> (2)

(3)
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FIG. 2. Semirelativistic s, p, d, and [ tungsten pseudo-

potentials and ¥, the local part of the pseudopotentials,
together with —2Z /r (dashed curve).

Vie(pr). Thus Vyc(peore) is added to the pseudopo-
tential and subtracted from the self-consistent!3
Vie(pr). If the reader wishes to consider

Vi (F)= Ve pr(T)) = Vi poore(r))

to be a physically meaningful quantity, he may, but
it is our point of view that V,.(p..) is an arbitrary
function which is being added to one part of the po-
tential and subtracted from another. In Fig. 1 we
display V. (peore(7)), where pe.(r) is obtained from
the Dirac equation and therefore is weakly infinite
as is V. at r=0. In Fig. 2 we show the semirela-
tivistic ionic pseudopotentials ¥;°(r) used in this
calculation. They fail to be equal to —2Z /r beyond
r=13 bohrs because of the added Vfc(pco,e); although
Pcore 18 negligible in this region, pé‘f,, is not.

The nonlocal form of the pseudopotential is gen-
erated by using ¥;°'(r) in a self-consistent calcula-
tion of W to obtain semirelativistic pseudoeigen-
functions

D) (F) =0 (N Y (D) .
The pseudopotential then becomes’
Voo (F) =V T )+ VELE)+ V(1) + Var
@

where
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TABLE 1. Dirac-equation eigenvalues for W+ and W
in eV and error made (in meV) when semilocal (SL) and
nonlocal (NL) W™ jonic pseudopotentials are used in
self-consistent calculations for W.

Dirac W+ Dirac W A(SL) A(NL)
5ds —11.926 —4.679 13 —5.8
5ds, —11.182 —4.007 12 —5.7
6s1,2 —12.329 —6.009 —1.4 —6.1
6p1,2 —7.639 —2.184 —6.7 75
6p3,2 —6.863 —1.733 —-9.3 —10.2
5fsn —1.09
5f1,2 —1.089

|8V,<1>, (@587, |
Vae=23, “
Im Im |8Vl|q)lm

8V, = lon(r)— Vi(r), (6)

) (5

and V (r) is an arbitrary local pseudopotential
chosen so that Vi, has good transferability. V(r)
which is shown in Fig. 2 is a numerical function,
chosen to be 1.05 ¥;24(r) in the core and to join
smoothly to 7;%%(r) outside the core. That it differs
markedly from the V, used in Ref. 5 is a conse-
quence of the different VY2(F) used in the two cases.
To check the transferablhty of the pseudopoten-
tial we calculated the eigenvalues for a W atom
in the 5d 3/25d 5,208 /26p?/12676p(3)/3233 configuration
using the Dirac equation and both the semilocal and
nonlocal ionic pseudopotential (arising from W) in
a self-consistent Schrodinger-equation calculation
with the results shown in Table I. (The semirela-
tivistic pseudopotential could not be checked direct-
ly since there is no semirelativistic Dirac equation
with which to compare.) The largest error arising
from the nonlocal pseudopotential is —10 meV and
its largest relative error is less than 5 meV. We ex-
pect the errors in the crystal to be no worse than
these because the spherically averaged valance
pseudo-charge-density in the core region of the crys-
tal differs from the ion by no more than the atomic
valence pseudo-charge-density does.

Our basis set consists of three s, p, and d and one
f Gaussian Bloch functions for a total of only 34
basis functions. Note that Eq. (5) involves n two-
center integrals whereas the semilocal form of the
pseudopotential

2 | Y ( @)V (Y}, (D) |

I,m
requires the computation of n(n —1)/2 complicated
three-center integrals. Each is a single Gaussian ex-
cept that the short-range d Gaussian has about 2%

TABLE II. Convergence errors at I' and H in meV.
ry | ) Fas Hy, Hys His
6.1 229 26.0 9.4 20.9 3.6

of a very-short-range Gaussian contracted with it.
The Gaussian exponents and the contraction factor
were determined by trial and error to maximize the
convergence at the I' and H high-symmetry points
in the Brillouin zone (BZ). In Table II we show the
convergence errors for several states at I' and H ob-
tained by comparing with converged-plane-wave ex-
pansions. For I';s, our worst case, the convergence
using our 34 Gaussian basis set was equivalent to
that obtained using a 297 plane-wave basis set; con-
vergence to approximately 0.2 meV required 887
plane waves. This 26-meV error is probably the
largest computational error in the calculation.

ZC performed sums over the BZ to obtain the
Fermi energy, charge density, sum of one-electron
elgenvaluw, etc., using a tetrahedron 1ntegratlon
scheme.!* They used a 14-point sample in the wth
irreducible BZ except for one calculation in which
they used 20. They obtained a binding energy!>16 of
16.29007 Ry using 14 kK points for W at the experi-
mental lattice constant and at the theoretical lattice
constant (estimated from 14-k- -point calculations)
they obtained 16.265907 Ry in a 20-k-point calcula-
tion. Thus, since the equilibrium binding energy
should have been the larger of the two, the energy
change due to the increased number of k points was
at least 0.33 eV. ZC’s claims of better convergence
are somewhat surprising.!” The tetrahedral integra-
tion scheme has two flaws. (1) It joins the nth level
at one k point to the nth level at a neighboring k
point, ignoring possible band crossings and thus in-
troducing energy gaps where none exist. (2) If a
tetrahedron is completely below Eg, each of its four
points contributes equally to the integral over the
tetrahedron rather than proportionally to its prox-
imity volume within the tetrahedron (the tetrahedra
are necessarily irregular). If one sums the contribu-
tion of each point from the several tetrahedra to
which it belongs, he finds that the points sampled in
the BZ are misweighted.'®* We therefore sampled 50
points on a regular bce lattice within the Lth fce ir-
reducible wedge of the BZ and weight thc contribu-
tion of each energy level by that fraction of a Gauss-
ian of 0.05 eV full width at half maximum centered
on the energy level which lies below Er and by the
number of independent members of the star of k.
Because we did not try a small sampling we cannot
make an accurate estimate of the accuracy of the
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sampling but it is obviously much more accurate
than any 20-point sampling.

Fourier transforms of the pseudo-charge-density
were obtained directly from the crystal eigenfunc-
tions to yield

Vel (K )=8mp(K)/K?

and are summed at 360 random points in the 418 th
irreducible unit cell to obtain p,,(t") which is added
t0 ., Peore(T —R,) and substituted in Egs. (2) and (3)
to obtain V,.(p7(T")). Then

ch(PT ))— Ech(pcore(r_ R;))

was fitted with 140 symmetrized combinations of
plane waves (SCPW) and 16 Gaussians times Kubic
harmonics (four each of /=0, 4, 6, and 8). The rms
error in the fit was always less than 8 X 10~ eV and
the largest error at any point was 3X 10~% eV. This
fit is an order of magnitude better than we obtained
when V2! was taken to be proportional to p!/’ even
though we used two additional shorter-range Gauss-
ians for each / in that fit. The fitting functions were
Fourier transformed with the same number (504) of
SCPW used in V&, (K) to obtain V}2(K). The
valence contributions to matrix elements between
Gaussian Bloch basis functions were then calculated
in reciprocal space. The calculations were iterated
until the largest difference between input and output
potentials at any point in real space was less than
4X107%eV.

III. RESULTS

In Table III we list the various contributions to
the binding energy of tungsten at the three lattice
constants shown. The first row is the sum of the
one-electron energies averaged over the BZ including
all zeroth Fourier transforms of the potential. The
arbitrary zeroth Fourier transform of the Coulomb
potential (of Z=6 point ions with a compensating
constant background of charge) is taken to be zero
and subtracted from the 3,V (7 —R,) to cancel the
2Z/|T—R;| tail on the V.’s. Thus the zeroth
Fourier transform of the 3,V ( (f—R,) reduces to

(2/a%) [ [Vi(n+2Z/rld’r

Our 3 + —€,(K) cannot be directly compared with
ZC’s because they did not include the zeroth-
exchange and  correlation-potential  Fourier
transforms and because of differences in our pseudo-
potentials and exchange potentials. The next row
subtracts off half the valence self-Coulomb contri-
bution to 3, ¢ ~€,(K). We would expect | it to be al-
most equal in magmtude to ZC’s 5 zn(G W cou(G)
which they added after subtracting off all valence
self-interactions. The fact that it is almost 3 times
smaller leads us to compare several Fourier com-
ponents of the self-consistent pseudo-charge-density
of the two calculations'® in Table IV. It is hard to
believe that the p(K) were calculated for the same
crystal. On the other hand, their’ Fig. 3 and our
Fig. 3, which are contours of constant

TABLE III. Contributions to the binding energy of tungsten (in rydbergs) for three dif-
ferent lattice constants and the cohesive energy in eV.

a (bohr) 5.793 5.972 6.151

> €l K) 6.003770 5.362252 4.785872

nk

— 78703, p*K )/K? —0.087416 —0.117940 —0.156111
K

— f Vic( pr)pval 6.949783 6.797 339 6.666 361

f [€xcl pT)PT — Excl Peore)Poore] —6.209 650 —6.072030 —5.956528

Egyaa —22.615660 —21.937796 —21.299384

— Epinding —15.959173 —15.968 175 —15.959790

Esom 15311790 15.311790 15.311790

E conesive 8.8076 eV 8.9301 eV 8.8160 eV
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TABLE 1V. Comparison of several Fourier com-
ponents of the self-consistent pseudocharge density p (in
units of e/cell) obtained'® by Zunger and Cohen in Refs. 6
and 7 and by us.

p(I_{ )zc p(I_{ )zc N

K (Ref. 6) (Ref. 7) p(K )px

0 6.0000 6.0000 6.0000
(110) 0.6905 0.6719 0.3880
(200) —0.0235 —0.09% —0.1523
@11) 0.0339 —0.0172 —0.1070
(220) —0.0755 —0.0599 —0.1226
(310) —0.1755 —0.1800
(222) —0.0431 —0.0497
(321) —0.0751 —0.0552

pseudocharge-density, look quite similar.!® Their
charge density midway between second neighbors, in
the center of the first neighbor bond, and at the
maximum of the bond is in the ratio 1.0:1.35:3.1 and
ours at the same points is 40:55:115=1.0:1.38:2.88.
The next row in Table III subtracts off the
one-electron  exchange-energy®® contribution to
2., vEn(k). Note that the

3 Vel Peorel T—K;))

which was subtracted from V. (pr(T)) does not
enter here because it was added to the pseudopoten-
tial and therefore is not included in 3, +e€,(k).
The next row adds the total exchange energy minus
the core exchange energy. This term was fit directly
and then analytically integrated. Although, strictly
speaking, in the local density approximation the core
and valence exchange energy cannot be separated,
subtracting that which is calculated with the core
charge alone from the total yields a reasonable
valence energy. In any event, the same core constant
is subtracted from the atom and therefore does not
affect the cohesive energy. The next row,
Epyaa=—1.79186Z%R, where +mR3=a’/2,
represents the Coulomb energy of point ions in a

%

FIG. 3. Plot of contours of constant valence pseudo-
charge density in the (011) plane in steps of 5 millielect-
rons per cubic bohr.

@

[of]

constant compensating electronic background. It is
because the Coulomb energy of the zeroth Fourier
transform of the electronic charge is included in this
term that we chose the arbitrary zeroth Fourier
transform of the Coulomb potential to be zero in
calculating the 2,,?€n(k ). Adding these five
terms we obtain the negative of the binding energy.
Subtracting the total energy of the pseudoatom from
the binding energy yields the cohesive energy. The
atomic energy was calculated in the 5d36s, spin-
polarized?! configuration.?

Fitting our three cohesive energies with a parabo-
la we find an equilibrium lattice constant of 5.975
bohrs, a cohesive energy of 8.9301 eV, and a bulk
modulus of 2.970 X 10'> dyn/cm?. In Table V these
results are compared with those of ZC (Ref. 7) and
with experiment. Our agreement with the experi-
mental bulk modulus is good and with the experi-
mental lattice constant and cohesive energy is spec-
tacular and probably fortuitous. The cohesive ener-
gy agreement may be due in part to the fact that no
spherical approximation need be made in evaluating
the atomic energy in the ground-state configuration.
ZC’s agreement with all three is good. Because of

TABLE V. Comparison with experiment of lattice constant (at 0 K), binding energy,
cohesive energy, and bulk modulus of tungsten calculated by ZC (Ref. 7) and by us.

ZC BK Expt.
a (A) 3.173 3.162 3.162
Eindging (RY) 16.266 15.968
Econesive (€V) 7.90 8.930 8.90
B (erg/cm?) 3.45% 102 2.970% 1012 3.232x 102
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FIG. 4. Energy bands of semirelativistic tungsten with
lattice constant a=5.972 bohrs in units of eV measured
from the Fermi energy.

our more realistic treatment of the valence electron
exchange energy,'?> we obtained a binding energy 4
€V smaller than ZC’s and an atomic valence electron
energy 5 eV smaller so that our cohesive energy is 1
eV larger than theirs. An increase of 0.0023% in
the calculated binding energy at a=15.972 bohrs and
a decrease of the same amount at a=5.793 bohrs

TABLE VI. Comparison of energy band eigenvalues
(in eV) of tungsten as obtained by Zunger and Cohen (Ref.
6) by Petroff and Viswanathan (Ref. 23) and by us.

zC PV BK
| 0.00 0.00 0.000
s 4.80 5.51 8.186
'y 8.31 8.38 11.611
Iy 28.80 21.37 29.290
N, 0.56 1.28 3.252
N, 2.47 3.28 5.871
Ny 7.89 8.64 10.497
N, 8.21 8.67 11.519
N, 8.92 9.28 12.435
N; 11.03 12.16 15.339
Hy, 0.18 0.75 3.629
Hys 10.44 11.26 14.412
P, 3.32 4.16 6.545
P, 9.00 9.41 12.589
P, 15.93 17.66 15.964

TABLE VII. Comparison of spin-orbit averaged Dirac
eigenvalues (in eV) for W atom from Table I with
Schrodinger-equation eigenvalues with nonrelativistic and
relativistic forms of the exchange potential in the same
5d36s/26p'/? configuration.

Dirac  Schrodinger rel. ex. Schrodinger nonrel.

5d —4.276 —4.816 —4.806
6s —6.001 —4.752 —4.767
6p —1.883 —1.739 —1.741

and a=6.151 bohrs are sufficient to bring the bulk
modulus into agreement with experiment. Looked
at in this light the agreement of the calculated bulk
modulus with experiment is also quite spectacular.

Figure 4 is our calculated energy bands of semi-
relativistic W and in Table VI eigenvalues at sym-
metry points in the BZ are compared with the non-
relativistic eigenvalues of ZC (Ref. 6) and of Petroff
and Viswanathan®® (PV). The differences between
the ZC and PV calculations can be attributed to the
latter being made from a non-self-consistent
muffin-tin potential. The differences between ZC
and us should be almost entirely due to the semirela-
tivistic nature of our pseudopotential. This gives a
large s-d shift but only small relative shifts among
the lower-lying pure d states. Thus our I',s, I'yjy,
N,, N4, H{y, and P; levels all lie 3.44+0.15 eV
higher relative to I'; than do ZC’s. To check how
much of this s-d shift has an atomic origin in Table
VII we compare the spin-orbit averaged Dirac eigen-
values for W in the 5d°6s!/%6p'/? spin unpolarized
configuration from Table I with all-electron
Schrodinger-equation eigenvalues in the same con-
figuration with both relativistic and nonrelativistic
forms of the exchange. We see that the valence
eigenvalues are not very sensitive to relativistic ef-
fects in the exchange but that the d eigenvalue is
raised by 1.76 €V relative to the s on going from the
completely nonrelativistic Schrodinger equation to
the Dirac. Because I'; is unaffected by the spin-
orbit interaction and H ;, only negligibly affected we
can compare our H,—TI'; energy difference with
that of the completely relativistic but non-self-
consistent calculation of Christensen and Feuerbach-
er.?* They obtained 3.686 eV compared to our 3.629
eV. Thus it appears that the relativistic s-d shift in
the crystal is almost twice that in the atom.

Figure 5 displays a Léwdin? projection of the s,
p, d, and f densities of states (DOS) together with
the total DOS. In order to obtain smooth curves we
used the tetrahedron integration scheme here with
33 additional points along the symmetry lines
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FIG. 5. Total and projected densities of states of semirelativistic tungsten. Q is the integrated charge density up to Ef.

(which were calculated for Fig. 4) added to our regu-
lar 50-point sample. The extra points along symme-
try lines alleviate the band-crossing errors inherent
in the tetrahedron scheme. We have previously
shown?® that the Lowdin projection, which is made
onto symmetrically orthogonalized Bloch basis func-
tions is more meaningful than other schemes. The
peaks in our total DOS are in general agreement
with those of ZC (Ref. 6) but differ in detail and the
relativistic s-d shift is noticeable in a comparison of
the two plots. Q, the integrated DOS (up to Ef), is
shown for each projection in Fig. 5. The ratio of Q,
to Q, is even larger for W than we*’ found for Cu.
This large ratio is probably characteristic of all tran-
sition and noble metals.

In summary, we have used a new form of pseudo-
potential to calculate some ground-state properties
of W. The pseudopotential includes all relativistic
effects up to O(a?) except for spin-orbit effects and
is completely nonlocal, facilitating its computational
use. The pseudopotential has been used with a tech-
nique which includes several noteworthy features.

The pseudocharge-density is obtained directly in
plane-wave expansions of Gaussian Bloch functions.
The exchange and correlation potentials are evaluat-
ed numerically from the total, core-plus-valence,
charge density.

In the present work the method is applied in a
self-consistent calculation for W. The convergence
properties of the Gaussian basis were examined to-
gether with the transferability of the pseudopotential
yielding maximum errors of 26 and 10 meV, respec-
tively. The agreement of the calculated lattice con-
stant, cohesive energy, and bulk modulus with the
experimental values is excellent. A comparison of
our eigenvalues with nonrelativistic eigenvalues indi-
cates an s-d shift of roughly 3.5 eV in the crystal,
approximately twice that of the atom.
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