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Photoemission spectra and band structures of d-band metals.
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Band-structure calculations are performed to assess the magnitude of relativistic effects in

angle-resolved photoemission. The specific case of normal emission from Ag(111) is con-

sidered using a combined interpolation scheme which incorporates spin-orbit coupling both

within the d bands and between the plane waves of the basis set. Detailed numerical results

are presented for the momentum matrix elements in the nonrelativistic and relativistic cases

for all the initial-state bands in both parallel and perpendicular polarization. The observa-

bility of relativistic effects in available and future experimental data is discussed.

I. INTRODUCTION

The precision with which angle-resolved photo-
emission can determine band structures continues to
grow, and it is now necessary to consider effects
which have hitherto been regarded as negligible.
Relativistic effects represent a case in point. For ex-

ample, in Cu (not usually regarded as a relativistic
metal) it is now possible to resolve the spin-orbit
splitting in the d band. ' Our concern in this paper
will be with spin-orbit splitting, but more especially
with the subtle ways in which relativistic effects in-

fluence the momentum matrix elements for optical
transitions.

This paper is one in a series whose unifying theme
is the use of a combined interpolation scheme to
mediate between photoemission experiments and
first-principles band calculations. Part of the work
has consisted in refining the combined interpolation
scheme itself. Paper I of the series described cer-
tain improvements over the original schemes of
Hodges et al. and Mueller. Paper VII extended

the scheme to higher energies and reported success-
ful attempts to compute the optical momentum ma-
trix elements from derivatives of the Hamiltonian.
In this paper we extend the scheme further by in-
clusion of spin-orbit splitting in the unoccupied (i.e.,
plane-wave) bands. Taking the particular case of
normal photoemission from Ag(111), we compute
the momentum matrix elements and examine in de-
tail the way in which relativistic selection rules lead
to expectations different from those based on nonre-
lativistic selection rules. Our discussion here is

timely since it has been suggested in the recent
literature that the lowering of symmetry associated
with the inclusion of relativistic effects will lead to
an abundance of new transitions which would have
been symmetry-forbidden in the nonrelativistic case.

The format of this paper is as follows. Section II
describes the formal inclusion of spin-orbit effects in
the unoccupied bands and illustrates the results of
fitting the scheme to the first-principles calculations
on Ag. In Sec. III the computation of relativistic
momentum matrix elements is discussed and com-
parisons are made with nonrelativistic Ag to show
how inclusion of relativistic interactions affects the
momentum matrix elements. Some of the motiva-
tion for this computational effort may be found in a
subsequent paper, where extensive experimental re-
sults on Ag(001) may be found. While we do make
some contact with experiment in Sec. III, our main
emphasis here is with the technicalities, magnitudes,
and observability of relativistic effects in photoemis-
sion. The Appendix lists certain symmetrizing fac-
tors which are required in the successful operation
of the interpolation scheme but which have not been
described in previous papers of the series.

II. RELATIVISTIC INTERACTIONS
AND THE BAND STRUCTURE OF Ag

Previous versions of the combined interpolation
scheme have included spin-orbit splitting only in the
d bands. ' ' For completeness, we now include
spin-orbit coupling between the plane-wave (PW)
basis states of the scheme. We then recalculate the
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bands of Ag so as to simulate the first-principles rel-
ativistic auginented plane-wave (APW) results of
Christensen. The relativistic changes to the band
structure are quite appreciable. This sets the stage
for our discussion in Sec. III of momentum matrix
elements and relativistic selection rules.

A. Relativistic PW-PW interactions

The PW states of the interpolation scheme in-

teract with each other through a pseudopotential
which has local and nonlocal parts. The nonlocal
part arises through orthogonalization to the d states
and takes the form

H„,„=Sj,(k;Rj), (k,R)P2(k; k, ) . (1)

Here k; and kj are wave vectors of the form k+G;
and k+GJ, where k is the reduced wave vector and

G; and GJ are reciprocal-lattice vectors; j2 and P2
are the usual spherical Bessel function and Legendre
polynomial of order 2; S and R are treated as dispos-
able parameters. The success of this term in its abil-

ity to mimic the behavior of band gaps of first-
principles calculations is attributed to its strong
similarity to the l=2 term in the standard APW
Hamiltonian. In the relativistic APW formalism,
there is an additional interaction between the PW's
due to spin-orbit coupling which (following
Christensen and Seraphin' ) may be written,

Here 0, is the volume of the unit cell, R, is the
muffin-tin radius, and Pi(E) are energy-dependent
spin-orbit parameters; jI are again spherical Bessel
functions of order I; P/ (k;.kj ) are the first derivative
with respect to the argument of the Legendre poly-
nomials of order i;

~
m; ) are the spin eigenstates of

the ith electron states. It happens in our case that
the complete expansion is unnecessary when we con-
sider that we are dealing with only the L S term in
the Hamiltonian. This term is generally small in
comparison with the kinetic energy, pseudopotential,
and nonlocal terms in the free-electron part of the
Hamiltonian. It is found that we may adopt the for-
mulation of Cohen and Heine, "who have truncated
(2) to be a first-order polynomial in (k; kz):

H, , =[)(i+Aq(k; kj)](m; ~in kj X k;
~ mj ) .

(3)

A, i and A, q are constants which we treat as disposable
parameters to be chosen so as to give the proper
splitting of certain PW bands. Noting that

(+—,
~

n
~

+ —, ) =+iz,
(4)

(+—,
~

o
~

+ —, ) =x+ iy",

we have the following explicit k-dependent forms

(+ ~iokj Xk' ~'+ i ) +i(k~ky ky~k )

4n.Rs
H, , = g P/'(k; kjj}&(k;R,)ji(k,R, )0, (+ ~i nkj xk'' ~+ i ) =i(ky'k kjky)—

(5)

XP,(E)(m; ~io k, yk", ~m, ) .

(2)
I

The complete Hamiltonian matrix, including both
the PW and the d terms, is now

H.c+Hcc+

Hdc

H,, +

Hcg

Hgg+ gH~+

H,+-

H„+H,,
Hgc

gH+-

H~+ gH~

(6)

H„, H,~ (or H~), and H~ are, respectively, the
16X16 PW-PW, the 16&&5 (or 5&(16) PW-d, and

5)&5 d-d interaction matrices for the combined in-
terpolation scheme without spin-orbit effects. The
H~- are the 5X 5 spin-orbit matrices of Abate and
Asdente' added previously to the interpolation
scheme. The Hcc

—are the 16' 16 PW-PW matrices
constructed from Eq. (3) using the explicit forms of
Eq. (5).

Spin-orbit interactions must be included explicitly

l

in the Hamiltonian since they bring about a qualita-
tive change in the form of the bands. The other rel-
ativistic effects (mass velocity and Darwin shifts}
can simply be absorbed into the existing parametri-
zation of the scheme, as has been explained previ-
ously in Ref. 8.

B. Band structure of As

We have recomputed the band structure of Ag
with the combined interpolation scheme



3146 R. L. BENBOW AND N. V. SMITH 27

8

-4 -4

r a xzw Q L z r x Kusx
FIG. 1. Band structure of Ag obtained from the com-

bined interpolation scheme with all relativistic interac-

tions. The parameters (Table I) were arranged to repro-

duce the first-principles results of Christensen (Ref. 9).

parametrized to fit the first-principles calculations
of Christensen. The bands are shown in Fig. 1, and
the parameters are listed in Table I. Inclusion of the
additional PW-PW interaction has had the desired

d bands
E

Ai
A2

Ag

A4

A5

A6
Plane-wave bands

a
Vooo

V2oo

V22o

V

V222

0.1070
—0.0039

0.011 14
0.002 15
0.005 47
0.006 63
0.001 64
0.004 39

0.01050
—0.0378

0.0625
0.0484

—0.0010
0.0848
0.1243

Hybridization and orthogonalization
R 0.294

&r»e 1.442
S 1.480

Spin orbit

TABLE I. Parameters of the combined interpolation
scheme for Ag, arranged to reproduce the relativistic
first-principles results of Christensen (Ref. 9). Energies
are in rydbergs. The Fermi level is EF——0.~".". Ry.

effect, viz. , it has removed from the upper bands de-

generacies left by the nonrelativistic interpolation
scheme. It has also introduced a few relativistic

gaps in the higher-lying bands, since bands of like
symmetry are not allowed to touch (i.e., to cross).

The energy eigenvalues tabulated by Christensen
in Ref. 9 have been used in strict order. This leads
us to bands which simulate those of Ref. 9 quite
well. We find, however, that we differ with
Christensen in the labeling and identification of
some of the bands according to appropriate double-

group representations. Specifically at L and along A
in the Brillouin zone, Christensen labels band 2 as
L4+ (or A4) and band 3 as L 5++L6+ (or A5+A6); we
label them oppositely. Our calculated momentum
matrix elements obey the correct relativistic selec-
tion rules, thus confirming our identifications. Note
that Christensen also uses a convention for labeling
the symmetry of the group Cq„(and Cq), which
differs from that originally established by Elliott. '

Elliott chose to label the twofold degenerate states as
L6- (A6) and the time-reversal degenerate states as
L4+L& (A4+A&). We here use the convention of
Elliott. ' Thus band 2 at L is L4++L &+ and band 3
is labeled L6+ with corresponding changes along A.
The influence of both PW-PW and d-d spin-orbit in-
teraction is illustrated in Fig. 2 where we compare
the bands along A for the relativistic and nonrela-

tivistic cases.

III. RELATIVISTIC MOMENTUM
MATRIX ELEMENTS

A. Basic expressions

In comparing the strengths of optical transitions
we need to evaluate the matrix elements
(—:(f

~

n
~

i )) of the operator,

m=P+ (cr X VV), (7)
4mc

where P is the momentum operator. For Bloch
functions we may write, '

m BH(k)
ak

a differential expression which has proved quite suc-
cessful in the numerical prediction of photoemission
spectra' and optical constants. ' To compute the
matrix elements one need only apply the same simi-
larity transformation to m that was used to diago-
nalize H:

A2

0.0190
0.00005
0.00008

[E;]=UHU ', (A'/m)[n J;]=U U ' . (9)
Bk

The additional terms given by Eqs. (3) and (5) are
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FIG. 2. Comparison for Ag along the I AL direction:
(a) without and (b) with spin-orbit interactions.

tion of A& of the group C3„. A& is the symmetrical
{or identity} representation and is the only one for
which electrons can have a group velocity normal to
the surface thereby allowing matching to a running
wave in the vacuum. This arises because these two
bands have most of the G&~& PW component and
correspond to the primary Mahan cones. ' The
selection rules for the nonrelativistic bands are sim-

ple: The doubly degenerate A~bands are coupled to
the empty A~ bands only for ALI AL and A~ bands
are excited only for A~

~

I'AL.
In the relativistic case (double group —Elliott no-

tations' } all Ai bands become Aq bands, but the Aq
bands split into doubly degenerate (relativistic sense:
two spin states} Aq and time-reversal degenerate
A4+Aq states (one spin state each). The selection
rules are relaxed somewhat: For ALI AL, all transi-
tions to Aq states are allowed, but for A~

~

I AL, only
the optical transition A6 to A6 is allowed.

Our numerical results for the momentum matrix
elements are displayed in Figs. 3—7. Figures 3 and
4 address the parallel polarization case A~~I AL

where the electromagnetic vector potential A lies

along the [111]direction. Figures 5—7 address the
case of perpendicular polarization ALI AL. In these
figures we compare and contrast the nonrelativistic
and relativistic cases. In the nomenclature adopted
here,

~
A„); and

~
A, )y denote, respectively, initial

and final states. x is the appropriate group represen-

easily differentiable by the k; and can be straightfor-
wardly incorporated. The magnitude of these terms
is much less than that of the rest of the terms aris-
ing from the differentiation of the elements of (6).
More important is that U, the matrix of eigenfunc-
tions, is properly set up to give the correct eigen-
values upon diagonalization of H. As pointed out
by Wang and Callaway, ' the principal relativistic
effects arise not so much through the distinction be-
tween v and P but through the relativistic remixing
in the eigenfunctions

~

i ) and
~ f).

B. Numerical results for normal emission
from Ag(111)
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In photoemission measurements normal to the
(111) face, one is confined to that part of the band
structure along to the A direction, this is shown for
Ag in Fig. 2 for both the nonrelativistic and rela-
tivistic cases. We will limit our discussion of
momentum matrix elements to those which are per-
tinent to photoemission spectroscopy. In the nonrel-
ativistic version along I AL, only transitions to
bands 7 and 8 need be considered. These have eigen-
states which transform as the irreducible representa-

L r ~ L

FIG. 3. Numerical results for momentum matrix ele-
ments

~
TIr;

~
in parallel polarization A~(I'AI. : (a) initial

state
~

i ) in the lowest A& band (nonrelativistic case); (b)
initial state

~

i ) in the corresponding lowest Aq of the rel-
ativistic case. Solid curves correspond to the final state
being in the first unoccupied band

~ A i )r (nonrelativistic)
or

~
AB)I (relativistic); dashed curves correspond to the fi-

nal state being in the second unoccupied band
~

A~ }I or
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FIG. 4. Numerical results for

l nf; l

' in parallel polari-

zation Al(I'AL: (a) initial state
l
i ) in the second occu-

pied Ai band (nonrelativistic case); (b), (c), and (d) initial

state li ) in the fourth, third, and second A6 bands,

respectively (corresponding relativistic cases). Solid and

dashed curves correspond to two final-state bands as in

Fig. 3.
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(a)
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FIG. 6. Numerical results for

l mf; l

' in perpendicular

polarization ALI'AL: (a) initial state li ) in the second

filled A3 band (nonrelativistic case); (b) and (c) initial state

li) in the second A&+A5 band and fourth A6 band,

respectively (corresponding relativistic cases). Solid and

dashed curves correspond to two final-state bands as in

Fig. 3.

(a)

1.2-
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ci(IrA I&l'vsk
A J. I'AL

n=1
2

(c)

tation subscript. Where there is more than one state
with representation A„, the superscript m or n dis-

tinguishes them in increasing order of energy. We
consider only two final-state bands (n =1,2}. These
are the two lowest unoccupied A& symmetry bands

0.8-
A u I'AL
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. tb)
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~8

(
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FIG. 5. Numerical results for
l re l

' in perpendicular

larization ALI'AL: (a) initial state
l
i ) in the lower A3

band (nonrelativistic case); (b) initial state li) in the

A4+A& band (relativistic case); (c) and (d) initial state
l
i )

in the second and third A6 bands, respectively (relativistic

case). Solid and dashed curves correspond to two final-

state bands as in Fig. 3.
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FIG. 7. Numerical results for
l ey; l

in perpendicular

polarization ALI AL in the relativistic case for transitions

from the lowest filled A6 band. Solid and dashed curves

correspond to final states in the lowest two unfilled A6

bands. In the nonrelativistic case, transitions from this

lowest band are totally symmetry forbidden in perpendic-

ular polarization.
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in a nonrelativistic case (designated by the states

~
Ai )f and

~
Ai )f},and these correspond in the rel-

ativistic situation to the two lowest unoccupied A6
symmetry bands (designated

~
A6)f and

~
A6)f). In

Figs. 3—7 the values of
~
nf;.A

~
are shown as full

curves for final states
~ Ai)f or

~ A6)y and as
dashed curves for

~
Ai)f or

~
A6)f.

In Fig. 3(a} we show the matrix elements for
A~

~

I AL for the lowest Ai band to the two final A,
bands, and in Fig. 3(b} we show the corresponding
relativistic case of A6 to A6 transitions. These are
largely the same, differing mainly near I where part
of the A& character of what was band 8 has been
transferred to band 9 (not shown).

In Fig. 4 we show a similar comparison for the
second filled (i.e., higher energy) Ai band to the
same two final-state bands. It is important to note
that this Ai band crosses the two (initial) Ai bands.
On introducing relativistic interactions, each A3 be-
comes separate A6 and A4+ A5 bands. The A6 band
arising from the A~ band now hybridizes with the
two new A6 bands derived from the A3 bands. Thus
there is additional s-d hybridization in this direction
in the Brillouin zone. Evidently, this hybridization
is weak since the new gaps are small, but we must
consider three initial states where formerly there was
only one. In Fig. 4(b) we show the matrix elements
for transitions from the fourth A6 band to the two
final bands. Upon moving from L to the midpoint
of the line I AL, we see that the matrix element is
mostly unchanged. Along the remainder of the line
the matrix elements formerly associated with A~

have been transferred to the two closest A6 bands.
In Figs. 4(c) and 4(d) we show the same transitions
from the third and second A6 bands, and this seems
to account for most of the matrix elements missing
from the fourth initial A6 band.

For the case of ALI AL, all transitions are al-
lowed to A6 final states. In Fig. 5(a) we show the re-
sults of transitions from the lower A3 band to the fi-
nal Ai bands. To account for most of the A3 transi-
tion strength, we need to consider the lower A4+A5
band and, because of the "no-crossing rule, " the
second and third A6 bands. Inspection of Figs.
5(b)—5(d) shows at once how the symmetry selection
rules are relaxed upon converting to relativistic
bands: The transition strength of the nonrelativistic

A3 band is divided approximately equally between
the relativistic bands of differing symmetries.

Matrix elements for the transitions from the
upper initial A3 states are shown in Fig. 6(a). The
same for the spin-orbit split bands is shown in Figs.
6(b) and 6(c). The %portion of matrix elements for
AP' (initial)~A'i"' (final) not found in Figs. 6(b)
and 6(c) may be found in Fig. 5(b).

There is one more allowed transition to a final A6

state, namely from ~A&),'. The comparable case

~
Ai ) is not allowed for ALAI'L but is now allowed

because of the relaxation of the selection rule. We
show this as Fig. 7. The matrix elements are rather
small. (Note the change in vertical scale compared
with the other figures. ) Except near I', a region
which can be discounted because of low photoelec-
tron escape probability,

~
irf;

~

is generally less than
0.006 in our units.

C. Discussion

The examples of matrix elements presented in
Secs. III A and III B allow us to make some general-
izations in relation to relativistic and nonrelativistic
bands and matrix elements. Firstly, the sum of the
squares of the matrix elements for any nonrelativis-
tic optical transition is not very much different than
the similar quantity for the composite matrix ele-
ments of the appropriate relativistic bands. This is
to say that spin-orbit and any other relativistic ef-
fects neither add nor subtract much from ordinary
matrix elements; rather, they rearrange the bands
and redistribute the matrix elements. The matrix
element strength of the A3 transitions for Aj.I AL,
for example, was approximately evenly distributed
among the resulting A4+A5 and A6 transitions in
the relativistic case.

One thing to note is that relaxation of a selection
rule in going from a nonrelativistic to a relativistic
set of bands does not mean that a transition will be-
come strong once it is allowed. On the contrary, if
the bands in question are essentially unchanged-
i.e., not split off from formerly degenerate bands or
hybridized through the relativistic interaction —the
matrix elements are still virtually zero. For exam-

ple, in Figs. 4(c) and 4(d) the half of A6 symmetry
lines closest to L were contributed by A3 states. The
selection rule states that no transition is allowed,

A3 Ai, for A
~ ~

I'AL, but that A6 A6 is allowed.
But for all practical purposes, the matrix elements
to the A6 final bands for the two A6 initial states
which arose from the two A3 initial states nonrela-
tivistically are zero. Similarly, the matrix element
for Aj.I AL, A&~A& is strictly zero. The transition
A6~A6 for the same polarization is allowed, and
the matrix element for such transitions from the
lowest A6 band are nonzero in general, but are very
weak (Fig. 7). Further, transitions for the conduc-
tion band (fourth A6 band in the energy range
—4—0 eV) are allowed for ALI AL, but it is expli-
citly shown in the appropriate part of the zone of
Fig. 6(c) that there is no matrix element to support
the transitions.

Borstel et al. have discussed the need for using
double-group selection rules in materials where rela-



3150 R. L. BENBOW AND N. V. SMITH 27

tivistic effects are important. Furthermore, they ar-
gue that the lower symmetry associated with rela-
tivistic selection rules will permit transitions forbid-
den in the nonrelativistic case, and the strength of
these transitions could be quite appreciable even in
circumstances where the spin-orbit splitting is not
resolved. Our results are in qualitative agreement
with this; a good example is the case of the transi-
tions from

~
As), which are forbidden nonrela-

tivistically for the perpendicular polarization
Aj.I AL, but are permitted in the relativistic case.
Quantitatively speaking, however, this effect and
many others are found to be rather small. Large ef-
fects occur where two bands approach each other
closely (or cross) which were not permitted to in-

teract in the nonrelativistic case. In the spirit of
perturbation theory, the extent of wave-function ad-
mixture now permitted by relativistic interaction
will go as gl(E~ —E2), where E~ and E2 are the
respective band energies and g is the appropriate
spin-orbit interaction parameter. Thus the energy
range over which relativistic selection rules differ
significantly from nonrelativistic selection rules will

be comparable with the spin-orbit splitting itself. In
contradiction to Ref. 6, we conclude that in cases
where the energy resolution is insufficient to detect
the spin-orbit splitting, relativistic selection rules
can largely be ignored. Note also that the experi-
mental spectra presented by Borstel et al. to support
their argument were taken several degrees away
from normal emission. This itself brings about a
lowering of symmetry and is probably sufficient to
explain the additional peaks they observe.

D. Contact with experiment

Wehner et al. ' have published synchrotron-
radiation-derived normal-emission data on Ag(111).
It is not our purpose here to analyze fully their data
in terms of our results, but one point in their discus-
sion will illustrate the ease with which matrix ele-
ments may be applied to experimental results. In
their normal emission data, for fico=22 eV, transi-
tions from band 4 become the dominant feature in
the spectrum. This was attributed to transitions to
band 7 near I" where band 7 is quite flat. The ma-
trix elements for this transition are to be found in
Figs. 5(d) and 4(c). Note in particular that in Fig.
5(d) the matrix element becomes strong only near I

where band 7 is quite flat. [The same thing happens
in Fig. 4(c) but appears less dramatic because of the
larger scale in the figure. The magnitudes of the
two differently polarized matrix elements are about
the same. ] The matrix element gets large just at the
point where the escape probability transfers to band
8. In our bands the transition energy is 22.6 eV at
that point. Thus our bands and momentum matrix
elements are able to explain quantitatively an al-

ready published experimental result, and to confirm
the identifications made. Further quantitative com-
parisons between theory and angle-resolved photo-
emission experiment will be made in a subsequent

paper of this series.
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APPENDIX: SYMMETRIZING FACTORS

Each PW of the interpolation scheme has associ-
ated with it a symmetrizing factor whose purpose is
to compensate for the use of a truncated basis set.
(See Refs. 2 and 3.) These were not described in
Ref. 5, but their inclusion is essential if one wishes

to avoid the spurious removal of degeneracies due to
incompleteness of the basis set. They are especially
important in the present context where we are con-
cerned with symmetry selection rules in optical tran-
sitions. In the work of this paper, and that of Refs.
5, 7, 15, and 16, the symmetrizing factor F; associat-
ed with plane wave k; was assigned the form:

1 if kg &280

F;= 0 if k; (355
1 —(k, —280)~/5625, otherwise .

The units of k; are such that IX=8 units. The
scheme, therefore, retains the fully symmetric sets at
I, L, X, and 8' up to and including the PW energy
ak; =256a. Above this energy the PW's are
smoothly "switched off." In some papers we have
used the alternative range 225 & k; ~ 300.

'Mailing address: Synchrotron Radiation Center, 3725
Schneider Drive, Stoughton, Wisconsin 53589.
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