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We have analyzed new twelfth-order high-temperature series for the susceptibility and

correlation length of classical planar models on the triangular lattice using an n-fit method

of analysis tailored to the form of the singularity A exp(bt ") predicted by Kosterlitz and

Thouless. Test-function analysis shows that the n-fit method is significantly more reliable

in treating a number of possible corrections to the leading singularity than is the D log Pade

analysis of the logarithm and logarithmic derivative used in earlier series work on tenth-

order series. Our n-fit analysis leads to the results v=0.5+0.1 and g=0.27+0.03 in good
1 1

agreement with the Kosterlitz-Thouless predictions v = —, and g =—.

I. INTRODUCTION

We consider the high-temperature behavior of
two-dimensional (d =2) magnetic models with pla-
nar spin coupling (n =2) which consist
of "spins, " S;, at sites i of a two-dimensional lattice
interacting with their nearest neighbors through the
Hamiltonian

X=Arexp(brt "),
1

where br (2 rt)b 2/2 w——ith i)—= —,.

(1.3)

where K =pJ and (i,j ) restricts the sum to
nearest-neighbor pairs. The plane-rotator model is
the n=2 Heisenberg model with two-component
spins of magnitude v 2; the classical XI' model has
classical three-component spins of magnitude v 3.

In spite of the proven absence of a spontaneous
magnetization in these models, early series work in-

dicated a divergent susceptibility and correlation
length; at the same time, the series work suggested
difficulties with assuming the standard power-law
singularities. ' Kosterlitz and Thouless used an ap-
proximate renormalization-group scheme to show
the existence of a phase transition with a topologi-
cal order parameter. ' At high temperatures, they
predicted exponentially decaying spin-spin correla-
tions with a carrelation length g of the form

g =A&2exp(b&, t ") (1.2)

with t=l —KT„T,=—K, '=m, and v=-, , and a
susceptibility of the form

Camp and Van Dyke performed standard Dlog
Pade analysis on tenth-order series for the logarithm
of the susceptibility lnX. This analysis produced
Pade tables for the index v which were quite irregu-
lar and which had a significant number of defects,
especially in higher orders. On the basis of this
analysis, they asserted v=0.7.

A similar analysis was performed by Guttmann
who performed standard D log Pade analysis of the
D log (the logarithmic derivative) of the susceptibili-

ty. The Pade analysis of these series is also irregu-
lar with a number of defects leading to the assertion
v=0.4 for the plane-rotator model and v=0. 6 for
the classical XFmodel.

Monte Carlo work produced results which were
somewhat more consistent with v=0.7 than v=0.5;
i.e., the "best fits fall between" v=0.70 and v=0. 50
with the "mast consistent fit being" v=0.70, with
uncertainties "pointing to slightly smaller values of
v." Thus Monte Carlo work and early series work
indicate what must be only a slight preference for
v=0.7 over the Kosterlitz- Thouless prediction

1v= —,. On the other hand, Monte Carlo work

predicts g =0.243—0.254 in striking agreement with
the Kosterlitz-Thouless prediction g =

4 .
To address the sizable disagreement over the value

of the index v, we have derived twelfth-order, high-
temperature series for the spin-spin correlation func-
tion of the classical planar models by extending the
same computer programs which Moore used to
derive the tenth-order series ' and by developing a
new method of series analysis (4 fits) tailored to
determining the parameters in Eqs. (1.2) and (1.3).
The series for the susceptibility X and for the corre-
lation length g =@2/2dX, where p2 is the second
moment of the correlations, are presented in Table I.
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TABLE I. Twelfth-order series for the susceptibility J and for the correlation length g =pi/2d+ for the spin-infinity
XFmodel with D =3 spin components and for the plane-rotator model with D =2 spin components on the triangular lat-
tice. Note our spin normalization =D' is the same as that of Ref. 3; to compare with Ref. 6 one needs to multiply our
nth series coefficient by D " ' and our transition temperature by D

2' =@2/X
XF model Plane-rotator model

2''=p2/X
6.0E

+36.0E
+189.12K'
+927.36K

+4338.463 346 938 7IC5

+ 19611.064946 939K
+86 320.725 159 182E

+' 372 013 027 787 76K s

+ 1 575 623.183022 3E
+6 576 564.151435 8E''

+27 109736.166 148K
+ 110550 319.799 06IC '

1+6.0K
+31.2K'

+ 150.72K
+694.08K4

+3086.129632 653 1E5

+ 13359.869 387 755K
+56 616.566 595 918E7

+235 802.093 364 85E
+968 006.614052 10E

+3 925 503.220 889 6E'
+ 15 752 404.879 275K"
+62 636 620.793426E'

6.0E
+36.0E

+ 183.0E
+846.0E

+3674.0IC

+ 15 269.0E6
+61 385.125K

+240 508.916666 66E
+922 905.866 666 38E

+3 480 222 9999904IC io

+ 12 930470.159491E"
+47 434 983.642 942E

1+6.0E
+30 OK

+135.0E
+570.0K4

+2306.0E
+9041.5K6

+34 582.125E
+ 129634.166666 66K
+477 988.033 333 33E9

+ 1 738 252.391657 6IC'

+6 246 941.242 864 6IC"
+22 220 235.302 532K'

Our 4-fit method of analysis is presented in Sec. II
of this paper. The 4-fit method works directly with
the series coefficients in a way which is akin to the
ratio method in that estimates of the parameters
from higher-order series terms are independent of
lower-order terms. We believe that this is an im-
provement over the earlier series analysis because
low-order corrections to the leading singularity,
which can be sizeable, will be propagated to high or-
ders in the process of taking the double logarithm.
Test-function analysis in Sec. III supports this con-
clusion that low-order corrections, which have no
effect on the 4-fit analysis, can easily disrupt the
D log Pade analysis of the logarithm of the series.
We have studied test functions which include both
analytic and confluent corrections to the Kosterlitz-
Thouless singularity. The D log Fade analysis of the
logarithm and logarthmic derivative of these test
functions shows the same sort of irregularity and
number of defects as the analysis of Refs. 6 and 7,
whereas, the 4-fit analysis of the test functions is
much smoother and more reliable. Our 4-fit
analysis of the model series, presented in Sec. IV,
provides evidence which favors the Kosterlitz-
Thouless prediction v= —, and which strongly op-

poses a value as large as 0.7. This analysis suggests
v=0.5+0.1 where we have tried to err on the side
of significantly overestimating the uncertainty.
More optimistically, we expect that v =0.50+0.05 is
still quite realistic. Our analysis favors values for rt

1

a bit larger than 4, e.g., 0.26—0.30, but consistent
I

downward trends lead us to believe that this prefer-
ence for larger values of il is an artifact of short and
fairly irregular series.

II. 4-FIT METHOD OF ANALYSIS

g =A exp(bt ")= g Ae T~BJ(bv, v)KJ,
j=o

(2.1}

where t= 1 KT„T,=kT, /J, an—d where the forin
of these coefficients is determined by first expandirig
bt "in powers of K,

The logic behind our 4-fit analysis for this singu-

larity is the same as that behind the 5-fit analysis for
confluent singularities' ' " and even the ratio
analysis for standard leading singularities. ' One
takes a parametrization of what one hopes to be the
dominant part of the singular function under inves-

tigation. Then, one expands this parametrization as
a power series in inverse temperature, i.e., the in-

teraction strength K=J/kT, where the coefficients

bl are known as functions of q undetermined param-
eters. One then takes q of these coefficients and

equates each to the corresponding coefficient aj in

the exact enumeration series. Thus one has q equa-
tions bj =a/, the solution of which provides values

for the q unknown parameters, hence the name q
fits.

To realize this approach, we expand the predicted
leading singularity as a power series in K, e.g., for
the square of the correlation length,

bcr=b(t " 1)=bv(T,K—)+bv (T,K} +bvv+1 2 v+1
2 2

oo j—1

(T,K)s+ . =bv g g Sjv' (KT, }t,
j=l i =0

(2.2)
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and then by expanding the exponential in powers of bo,

00 +1 b
g ~e e =Ae g =Ae (I+bv(I|.T, )+ bv + (ICT ) +

j i —1

=Ae + g Ae TJ g g fz,t, (bv. )'v" EJ .
j=l i =1k=0

(2.3)

To determine values for the four parameters v, b,
T„and A or equivalently v, bv, T„and Ae, we
equate four consecutive coefficients in Eq. (2.3) with
the corresponding coefficients in the exact enumera-
tion series g = g". OatEJ, i.e.,

aJ =Ae TJBJ(bv, v ) (2.4)

for j =n, n —1, n —2, and n —3, so that we have
four equations in the four unknowns. If we divide
the jth equation by the (j—1)st equation, we have

(aJ /aJ, )BJ i(bv, v ) =T,BJ(bv, v ) (2.5)

for j=n, n —1, and n —2 eliminating the unknown
Ae so that we have three equations in three remain-

ing unknowns. If we then divide this equation by
the corresponding (j—1)st equation, we have elim-
inated the unknown T, and are left with two equa-
tions in two remaining unknowns which can be writ-
ten as

III. TEST-FUNCTION ANALYSIS

We have performed standard Pade analysis and
4-fit analysis for a number of test functions which
incorporate the expected leading singularity,

[(aJ i) /(aJaJ i)]BJ i(bv, v)BJ(bv, v)

BJ i(bv, v)—=0 (2.6)

with j =n and n —1. Since the BJ s are finite
polynomials in bv and v with known coefficients,
determining the values of bv and v which solve these
equations is equivalent to finding the common roots
of the j=n and the j=n —1 polynomials. This is
done using standard numerical methods to locate the
common physical root in the expected ranges of v
and bv. Once these values denoted v„and b„are
determined, they can be used in Eq. (2.5) to deter-
mine T, „. Finally, A„e " can be determined using
these values in Eq. (2.4). Therefore, we have deter-
mined the nth element in each of the four sequences
whose limit is the value of the corresponding param-
eter in Eq. (2.1), e.g., lim„„v„=v.

Y=A exp(bt "), (3.1)

t= 1 E/E„—various types of analytic corrections,
as well as various types of less-singular, confluent
corrections. Standard log-derivative Pade analysis
was performed on ln Y (Ref. 6) and on Y'/Y (Ref. 7)
both of which should yield v and K, in Eq. (3.1) as
the location and residue of a simple pole:

ZI ——ln Y, lnZI ——
dK E,—K '

Y' d 1~ 1+v
Y' dE E,—EC

(3.2a)

(3.2b)

Since both approaches are similar, the reliability of
both approaches should also be similar. As borne
out by the test-function analysis, it seems likely that
any sizeable, low-order analytic corrections could
significantly affect the reliability of these Pade
methods because low-order deviations are telescoped
to higher order in taking the logarithmic derivative
on top of the logarithm in Zi and on top of the log-
arithmic derivative in Z2, e.g., lnln(Y+1)=lnY
only when Y»1. We developed and applied our 4-
fit method in the belief that the effect of these ana-
lytic corrections would decrease rapidly with in-
creasing order.

In comparing the results from the Pade analysis
with the results from the 4-fit analysis for the test
functions which we have analyzed, we find the fol-
lowing:

To demonstrate these effects we will discuss the

(i) that the 4-fit analysis is significantly better
behaved and more reliable than the Dlog Pade
analysis of Zi and Zz,

(ii) that sufficiently large low-order analytic
corrections can easily confound the Dlog Pade
analysis of Zi and Z2 although little effect is ob-
served in the 4-fit analysis, and

(iii) that confluent corrections lead to errors in the
4-fit predictions of a few percent (similar to the ef-
fect observed in the spin-s Ising model' ")but that
even relatively weak confluent corrections seriously
disrupt the Pade analysis of Zi and Zz.
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TABLE II. Test-function analysis: Results for v from Pade analysis of fifteenth-order
series and from 4-fit analysis of twelfth-order series for the test functions in Eq. (3.3). An as-
terisk denotes a Pade approximant with a nearby or intervening pole,

N [N/N+1] [N/N] [N+1/N] N [N/N+1] [N/N] [N+1/N] n v„

ln Yg

0.482 0.481

0.464 0.463

6 0.478

0.486

4 0.464 0.481

0.546

0.482

0.452

0.464

0.487

2 0.618

3 0.268

4 0.414

5 0.654

6 0.543

Yg /Yg
0.772

0.492

0.385

0.500

0.575

0.377

0.597

3
4
5

6
7
8

9
10
11
12

Y

0.5773

0.5600
0.5144
0.5028
0.5005
0.5001
0.5000

2 0.579

0.449

0.448

6 0.456

ln Y~

0.430

0.447

0.503

0.447

0.448

2 0.590

3 0.320

4 0.466

Yg /Yg

0.688

0.526

0.449

0.508

6 0.567 0.586

0.679

0.450

0.450

0.594

3
4
5

6
7
8

9
10
11
12

0.5488

0.6543
0.5574
0.5243
0.5160
0.5146
0.5148
0.5151

2 0.509

3 0.510

ln Yc

0.454

0.512

0.490

0.506

5 0.465

6 0.472

0.478

0.472 0.472

0.474

4 0.480 0.468 0.480

2 0.579

3 0 323

4 0.418

6 0.572

Yc/Yc

0.562

0.421

0.419

0.452

0.627

0.540

0.417

0.562

Yc

3 0.5053
4 0.5652
5 0.5390
6 0.5277
7 0.5208
8 0.5162
9 0.5129

10 0.5104
11 0.5085
12 0.5071

2 0.460

3 0.467

5 0.467

6 0.489

ln YD

0.456

0.461

0.484

0.489

0.459

0.463

0.462

0.490

2 0.480

4 0.562

5 0.485

6 0.365

Yg) /Yg)

0.484

0.553

0.339

0.456

0.490

0.570

0.540

0.374

3

5
6
7
8
9

10
11
12

YD

0.4782
0.4765
0.4962
0.5079
0.5149
0.5189
0.5209
0.5218
0.5219
0.5215



318 M. FERER AND M. J. VELGAKIS 27

analysis of' the following four test functions:

Yz ——2exp(3t '~ )+exp(3K),

Ys = 2 exp(3t '~ )+exp(3K)

+2 exp(2. 5t ' ),
Yz ——2exp(3t '~ )+t

YD=2exp(3t '~')+0. lt ",

(3.3a)

(3.3b)

(3.3c)

(3.3d)

where t =1—3E.
Table II shows that values of v from the [E,D]

Pade approximants to Dlog Z~ and Z2 as well as
the 4-fit sequence for v, From this table, it is clear
that even a simple analytic correction like e in Yz
introduces defects and irregularities in the Dlog
Fade analysis of Z& and Z2 so that one might esti-
mate v=0.485+0.030, an error in the "best value"
of 3% and uncertainties of 6%. However, the 4-fit
sequence has converged to within 0.1% by the
tenth-order term Intro.ducing confluent corrections,
as in Ys, Yc, and YD, produces smooth 4-fit se-
quences which, to the orders studied here, lead to er-
rors of no more than 4% depending on the strength

of the conAuent correction, affected by both its am-
plitude and power of divergence. This is similar to
the effect observed in ratio studies, which are essen-
tially 3 fits to the standard critical singularity, of the
spin-s Ising model where confluent corrections cause
ratio estimates of the leading indices to be in error
by a few percent. ' " The Pade analysis of these
functions shows behavior similar to that caused by
the analytic correction, i.e., defects, irregularities of
10% or more, and consistent errors of a few percent
which is usually greater than the error from the 4-fit
sequence. The one exception to this is for the test
function YD which has no analytic corrections but
which has a strongly divergent confluent correction
with a weak amplitude so that low-order corrections
are sma11. The smallness of the low-order correc-
tions suggests that the Pade tables may be smoother,
which they are; the strength of the divergent con-
fluent singularity makes the 4-fit analysis a bit less
reliable.

In conclusion, the test-function studies show that
the 4-fit analysis is not only better behaved but also
more reliable in the presence of low-order correc-
tions which wi11 certainly contribute to the actual
series.

TABLE III. Sequences from a 4-fit analysis of the series for the spin-infinity XY model on
the triangular lattice.

3
4
5

6
7
8

9
10
11

Vll

0.494
0.519
0.588
0.463
0.549
0.540
0.504
0.483

3.338
3.313
3.256
3.351
3.291
3.296
3.318
3.330

P2/&X

3.348
3.182
2.774
3.640
2.981
3.038
3.316
3.497

(b„v„)

1.654
1.651
1.630
1.686
1.636
1.641
1.670
1.689

0.229
0.273
0.424
0.166
0.341
0.320
0.235
0.192

[A„exp{b„)]

6.52
6.58
6.80
6.33
6.71
6.67
6.46
6.33

{g—1)/K

3

5

6
7
8
9

10
II

0.454
0.571
0.681
0.627
0.590
0.560
0.530
0.503

3.400
3.298
3.221
3.255
3.277
3.294
3.310
3.324

3.054
2.372
1.919
2.128
2.299
2.4S9
2.646
2.838

1.388
1.354
1.307
1.335
1.357
1.378
1.403
1.428

0.312
0.653
1.092
0.857
0.704
0.585
0.472
0.379

6.61
7.00
7.44
7.19
7.01
6.84
6.65
6.47
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IV. SERIES ANALYSIS

In Tables III and IV, we present the sequences re-
sulting from the application of 4-fit analysis to the
correlation-length series g =p2/EX and to the sus-
ceptibility series (X—I)/K n-shifted by one for the
spin-infinity XY model and for the plane-rotator
model. We present the analysis for the n-shifted
susceptibility because this analysis is significantly
better behaved than that of the unshifted susceptibil-
ity series X, e.g., using the unshifted series there are
no 4-fit solutions for n=7, 8, 9, 10, and 11, the
highest orders, and there are significant monotonic
trends in the 3-fit sequences as will be discussed
later. In these tables, we also present the sequences
for b„v„and A„exp(b„) not only because these are
the naturally occurring quantities in the 4-fit equa-
tions, Eq. (2.4), i.e., b always appears in the form bv
and A always appears in the form Aes, but also be-
cause these sequences are obviously smoother than
the sequences for A„and b„ independently.

We will first focus our attention on a determina-
tion of the index v. Recalling the Kosterlitz-
Thouless prediction of v=0. 5 (Refs. 4 and 5) and
the Monte Carlo and early series work favoring
v =0.7, we observe that almost none of the elements
v„presented in Tables III and IV and shown in Fig.

1 are larger than 0.6 and that most trends are down-
wards. In trying to estimate the limiting value of v,
we must attempt to determine to what extent the
convergence of the sequences is oscillatory and to
what extent we can reliably extrapolate apparent
trends. These sequences are clearly more irregular
than any of the sequences from the test functions;
perhaps this is due to low-temperature antifer-
romagnetic behavior similar to the zero-temperature
transition in the triangular Ising antiferromagnet for
which short series indicate a finite-temperature tran-
sition. Because of this irregularity, it is difficult to
determine whether trends in the higher-order terms
in the v„sequences can be assumed to be monotonic
to n = ao or whether they are just a continuation of
the low-order oscillations. If one considers the se-

quence for the correlation length of the XY model,
the low-order terms are clearly oscillatory, but even
the last three terms (see Fig. 1), which are monotoni-
cally decreasing, indicate a curvature, suggestive of
a continuation of the oscillatory behavior. Similar-

ly, the very irregular sequences for the plane-rotator
model are more consistent with oscillatory conver-

gence than with consistent upwards or downwards
trends. The most consistent trend is to be found in
the sequence for the XF susceptibility, which is
monotonic downwards for the last six terms. We do

TABLE IV. Sequences from a 4-fit analysis of the series for the plane-rotator model on the
triangular lattice.

b„

IJ,2/Eg

(b„v„) A„ [A„exp(b„)]

3
4
5

6
7
8

9
10
11

0.590
0.418
0.475

0.560
0.489

2.776
2.942
2.891

2.857
2.898

3.514
4.908
4.300

3.477
4.088

2.073
2.050
2.043

1.946
1.998

0.186
0.044
0.083

0.206
0.106

6.26
5.95
6.09

6.66
6.30

(X—1)aC

3
4
5

6
7

9
10
11

0.474

0.477
0.452
0.535
0.566

2.966

2.934
2.948
2.905
2.890

3.280

3.374
3.604
2.917
2.709

1.554

1.611
1.630
1.561
1.534

0.245

0.214
0.167
0.358
0.454

6.52

6.26
6.13
6.61
6.81
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FIG l. 1 ln . plot of the sequences for v„ from the 4-fit analysis of the correlation length g~ and susceptihihty g series
for the spin-infinity XY and plane-rotator (PR) models. Closed square indicates overlap of g

~ and y data points.

not believe this is a real trend since a naive linear ex-
trapolation to n = op predicts v=0.2 which is incon-
sistent not only with the other sequences but also
with the previous work. Thus it seems likely
that these sequences are converging in an oscillatory
fashion. The existing terms "oscillate" about 0.5,
and all but a few low-order terms are within 0.1 of
0.5. For these reasons, v=0.5+0. 1 seems to be a
conservative estimate of our real uncertainty; it
seems unlikely that any monotonic trends
camouflaged by the oscillatory behavior would lead
to a value outside this range. Given the evidence, it
does not seem overly optimistic to suggest smaller
uncertainties v =0.50+0.05. However, our main as-
sertion is that the results agree with the Kosterlitz-
Thouless predictions ' to within our uncertainties
and that they are strikingly inconsistent with the

preference of v=0.7 from Monte Carlos and early
series work using shorter series and seemingly less
reliable methods of series analysis, because no terms
in our sequences are near 0.1, and any apparent
trends are in the opposite direction. They are con-
sistent with the conclusions of Ref. 7 (0.4 & v & 0.6),
but we find our results more convincing and model
independent. In Table V, we present, for complete-
ness, the results for v from a Pade analysis, as in
Refs. 6 and 7, of the XY series. These Pade tables
show the same number of defects and irregularities
observed in the test-function analysis. Even this
analysis of both the correlation length and n-shifted
susceptibility is not consistent with v=0.7; recall
that Ref. 6 analyzed only the unshifted susceptibility
series.

We have used the relation b» (2 rl)b, /2 to-— —
/2
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TABLE V. Values for v from the near-diagonal elements of a Pade table from the Pade
analysis as in Refs. 6 and 7 of the series for the susceptibility and correlation length for the
spin-infinity XY model on the triangular lattice. An asterisk indicates a Pade approximant
with a nearby or intervening pole. It is our experience from the test-function analysis that the
Pade analysis of lnY is somewhat more reliable than the Pade analysis of Y'/Y=d(lnY)/dE
for the test functions considered.

1n[(g —1)/K)
)fC 0.524

0.597 0,646
)fC 0.584

0.549
0.605

N

0.549
0.582

)N/N
i

1n(g ~/K )

0.517
0.541

0.555

i
N+1/N

f

0.537

d
dE

1n[(g—1)/K ] In(g 2/K )
dEC

1.151
0.609 0.738

0.799 0.728
0.648
0.649

0.631
0.665

0.667
0.644
0.646

TABLE VI. Sequences from a 3-fit analysis of the series for the spin-infinity XY model on
the triangular lattice, using the fixed values of v shown.

P2/I( g
Tc,s b„

(X—1)/&
Tc,n

2
3
4
5
6
7
8

9
10
11

3.9941
3.3093
3.3063'

3.3133
3.3383
3.3280
3.3389
3.3470
3.3477
3.3447

3.0044
3.3305
3.3317
3.3294
3.3221
3.3247
3.3222
3.3204
3.3203
3.3209

v =0.5
0.111
0.239
0.240
0.237
0.230
0.233
0.229
0.227
0.226
0.227

3.4966
2.7682
2.7498
2.7689
2.8053
2.8299
2.8460
2.8561
2.8608
2.8612

2.9744
3.3499
3.3581
3.3511
3.3395
3.3327
3.3286
3.3263
3.3253
3.3252

0.182
0.422
0.432
0.422
0.401
0.387
0.378
0.372
0.369
0.369

v =0.7

2
3
4
5

6
7
8

9
10
11

3.2333
2.3782
2.3222
2.2815
2.2618
2.2206
2.1997
2.1800
2.1574
2.1344

2.6510
3.1225
3.1516
3.1698
3.1776
3.1925
3.1994
3.2056
3.2122
3.2186

0.237
0.642
0.691
0.731
0.752
0.801
0.828
0.856
0.890
0.926

2.8305
1.9218
1.8748
1.8563
1.8542
1.8460
1.8343
1.8204
1.8046
1.7876

2.6244
3.1727
3.2000
3.2092
3.2101
3.2134
3.2176
3.2224
3.2274
3.2325

0.354
1.070
1.142
1.174
1.178
1.194
1.218
1.248
1.284
1.326
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TABLE VII. Sequences from a 3-fit analysis of the series for the plane-rotator model on
the triangular lattice, using the fixed value v =0.5.

v =0.5

2
3
4
5

6
7
8
9

10
11

b„

4.3200
4.0737
4.1234
4.0809
4.0712
3.9991
3.9652
3.9791
2.9766
3.9447

P2/Kg

2.7778
2.8745
2.8589
2.8701
2.8723
2.8872
2.8937
2.8913
2.8917
2.8966

0.080
0.105
0.099
0.104
0.105
0.116
0.121
0.119
0.119
0.125

3.7500
3.1702
3.0993
3.0898
3.1523
3.1938
3.1887
3.1787
3.1848
3.1949

(X—1)/I(:

2.6667
2.9172
2.9432
2.9461
2.9295
2.9198
2.9209
2.9229
2.9218
2.9201

A„

0.141
0.272
0.297
0.301
0.277
0.261
0.263
0.267
0.264
0.260

determine sequences

(2 rl )~ =—2b~ rib„

using the 4-fit analysis already discussed as well as
3-fit analysis. In the 3-fit analysis, we fix the value
of v at a particular value in Eqs. (2.4)—(2.6); we then
solve Eq. (2.6) with j =n for b„, Eq. (2.5) with j =n
for T, „,and Eq. (2.4) with j =n for A„. Tables VI
and VII show the sequences resulting from the 3-fit
analysis of these series. In Table VIII, we present
the sequences for 2—g. Figure 2 shows a 1/n plot
of these sequences. Note that in the sequence from
the 4-fit analysis we have used b„v„bec as utehis se-

quence is smoother than the sequences for b„.

When one considers the convergence of these se-

quences, the presence of consistent upward trends
seems clearly indicated; superimposed on the up-
wards trends are small oscillations. Naive linear ex-
trapolations shown in the figure lead to values of
2 —rl between 1.69 and 1.73 from all sequences; the
authors do not feel that a more complicated extrapo-
lation procedure is warranted given the irregularity
of the sequences. Apparently, the best behaved se-
quences are for the XY model; for the plane-rotator
model, a significant number of terms in the 4-fit se-
quences are absent (no solution) and the 3-fit se-
quences are more irregular with larger trends. For
the XY model, both the 4 fits and the v=0. 5 3 fits
suggest the largest values, 2 —g =1.73, closest to the

TABLE VIII. Various sequences for 2—q =2bx/b 2 from 4-fit and 3-fit analysis.

2 —9

2
3
4
5
6

8
9

10
11

4-fit
XY model

2
(b.v. )x

(b„v„) 2

1.6781
1.6403
1.6038
1.5833
1.6594
1.6795
1.6796
1.6902

XY model

v=O. S

1.7509
1.6730
1.6634
1.6714
1.6807
1.7006
1.7048
1.7067
1.7091
1.7109

3-fit
XY model

2(b„x/b (2)

v =0.7

1.7509
1.6161
1.6147
1.6273
1.6396
1.6626
1.6677
1.6701
1.6730
1.6750

plane-rotator model

v =0.5

1.7361
1.5564
1.5033
1.5143
1.5486
1.5973
1.6083
1.5977
1.6018
1.6199
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FIG. 2. 1/n plot of sequences for 2 —g =2hz/b 2 from 3- and 4-fit analyses of the series for the spin-infinity XYmodel

and the PR model on the triangular lattice. The values of v used in the 3-fit analysis are shown. Approximate linear ex-
trapolants are drawn through the points.

Kosterlitz-Thouless prediction g = 4. ' However,
even the 3 fits with v=0.7, which, as we have seen,
is clearly inconsistent with 4-fit analysis, leads to the
prediction 2 —r1=1.70. On the basis of the evi-

dence, we estimate 2—q = 1.73+0.03 in agree-
ment with the prediction g = 4. ' We expect that
the obvious preference of our results for values of
2—il less than 1.75 is an artifact of the short series
not correctly representing the limiting upwards
trends.

Lastly, Fig. 3 shows the 1/n plots of T, „. Of the
sequences shown, the v=0. 5 3-fit sequences are
nearly independent of n, and the 4-fit sequences
show what we believe to be primarily oscillatory
behavior. On the basis of these sequences, we assert
T, =3.32+0.03 for the XY model and

T, =2.91+0.04 for the plane-rotator model. It
should be added that these estimates for T, do not
seem to sensitively depend on the value assumed for
v because even the v=0.7 3-fit sequences for T,
from the XY modef extrapolate to the value quoted
within uncertainties.

At the beginning of this section, we mentioned
that the behavior of the analysis of the unshifted
susceptibility series was significantly worse than the
analysis of the series n shifted by 1. In addition to
the absence of the higher-order 4-fit solutions, the
3-fit sequences formed from the unshifted series
show much larger trends, e.g., compare the v=0.5
3-fit sequence for T, from the n-shifted XY series
shown in Table VI with the last six terms
(n =6~11) in the v=0.5 3-fit sequence from the
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FIG. 3. 1/n plots of the sequences for T, from 4-fit analysis and v = —, 3-fit analysis of the correlation length g' and

susceptibility P series for the spin-infinity XY and PR models on the triangular lattice. Our conjectured "best" values plus
uncertainties are shown on the vertical axis. The high-order terms in the v=0. 5 3-fit sequence for the XY susceptibility
are nearly indistinguishable from the terms in the correlation-length sequence.

unshifted XY series: 3.2632, 3.2637, 3.2679, 3.2729,
3.2780, 3.2831, and 3.2880. This is reasonably con-
vincing evidence that the Kosterlitz-Thouless singu-
larity more closely mimics the n-shifted susceptibili-
ty series than the unshifted series.

We have not determined "best" values for b and 3
because they do not seem central to the isssues in
question and because their determination would de-
pend sensitively on the value chosen for v, whereas
the determinations of 2—g and T, seem relatively
insensitive to this choice.

We have also considered the series for the fluctua-
1

tion of the transverse magnetization of the spin- —,

XY model. ' Rogiers performed the Pade analysis
of Ref. 6 and found some evidence supporting
v =1.0.' The results from our application of our 3-
and 4-fit methods to these series are disappointing.
Allowing b to range from —3.0 to + 20, there are
only three 4-fit solutions for n=3 with v=0.650
and b =4.65, for n =6 with v =0.503 and
B= —1.07, and for n =7 with v=0.461 and
b = —1.23. Of the v =0.5 3-fit solutions, those with
positive b from 0 to 20 are very irregular while those
with negative b from —3 to 0 are fairly regular with
b= —1.0. Obviously negative b is not consistent
with a divergent susceptibility or the Kosterlitz-
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Thouless theory. The extremely bad fit observed for
the s = —, susceptibility may only mean that correc-
tions are much more important in the quantum
s= —, model than in the classical models. On the

1

other hand, it may mean that the s = —, XY model
belongs to a different universality class than the
classical models.

V. CONCLUSION

We have analyzed new, twelfth-order series for
the susceptibility and correlation length of classical
planar models on the triangular lattice using a 4-fit
method of analysis tailored to the form of the singu-

larity predicted by Kosterlitz and Thouless. '

Test-function analysis shows that the 4-fit method
used here is significantly more reliable in treating a
number of typical corrections to the leading singu-

larity than is the Fade analysis used in earlier series

work. ' This 4-fit analysis of our new longer series
predicts v=0.5+0.1 in good agreement with the
Kosterlitz-Thouless prediction v = —, and in striking
disagreement with the preference for v=0.7 of
Monte Carlo work and some of the earlier series
work. s Further, our n-fit analysis predicts that
q=0.27+0.03 in agreement with the Kosterlitz-
Thouless prediction g= 4 and the Monte Carlo
work g =0.243—0.254.

The surprising goodness of fit for the classical
models' lends additional credence to the form of
the singularity predicted by Kosterlitz and Thouless.

ACKNOWLEDGMENT

We are grateful for the'support of the National
Science Foundation —Experimental Program to
Stimulate Competitive Research Grant No.
PRM8011453-18.

N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17,
1133 (1966); N. D. Mermin, Phys. Rev. 176, 250
(1968); P. C. Hohenberg, ibid. 158, 383 (1967).

~H. E. Stanley, Phys. Rev. Lett. 20, 589 (1968).
M. A. Moore, Phys. Rev. Lett. 23, 861 (1969).

4J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

5J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
6W. J. Camp and J. P. Van Dyke, J. Phys. C 8, 336

(1975).
7A. J. Guttmann, J. Phys. A 11, 545 (1978).
Jan Tobochnik and G. V. Chester, Phys. Rev. B 20, 3761

(1979).
This program correctly reproduces the twelfth order sus-

ceptibility series for the nearest-neighbor s =—Ising

model for the fcc lattice [M. F. Sykes, D. S. Gaunt, P.
D. Roberts, and J. A. Wyles, J. Phys. A 5, 640 {1972)]
which shows that all "elementary" diagrams have been

correctly included. Changes of lattice and coupling
dimensionality n are performed in a routine fashion
which is unchanged from the original program. For
n =2, the only checks of which we are aware are first,
that the on-site correlation function for the plane-

rotator model must be —,which it is within round-off

errors {e.g., the twelfth-order contribution to the on-site
correlation function is —0.00075E' to be compared

with the nearest-neighbor site contribution
—6477.85132K' ) and second, that the eleventh term in

the nearest-neighbor site correlation function correctly
reproduces the twelfth term in the free energy of the
plane-rotator model on the fcc lattice to within round-
off [P. S. English, D. L. Hunter, and C. Domb, J. Phys.
A 12, 2111 {1979)].

' D. Saul, Michael Wortis, and D. Jasnow, Phys. Rev. B
11, 2571 {1975).

M. Ferer and M. J. Velgakis (unpublished).
D. L. Hunter and G. A. Baker Jr., Phys. Rev. B 7, 3346
(1977).

' The spin- —, series are derived in J. Rogiers, T. Look-

man, D. D. Betts, and C. J. Elliot, Can. J. Phys. 56,
409 (1978).

~4J. Rogiers (unpublished).
Various authors, e.g., W. J. Camp, in Phase Transitions
Cargese 1980, edited by M. Levy, J. C. LeGuillou, and
J. Zinn-Justin (Plenum, New York, 1982), p. 153; D. S.
Gaunt, ibid. , p. 217, have stated that, usually, unbiased
n fits (our 4 fits) do not provide sensible fits and that
biased n fits (our 3 fits) need to be used to determine
sensible fits. That is not the case for the classical
models; our unbiased 4 fits do provide sensible fits indi-

cative of a surprising goodness of fit.


