PHYSICAL REVIEW B

VOLUME 27, NUMBER 5

1 MARCH 1983

Raman scattering study of magnons at the spin-reorientation transitions of TbFeO₃ and TmFeO₃

S. Venugopalan Department of Physics, Applied Physics and Astronomy, State University of New York, Binghamton, New York 13901

Mitra Dutta and A. K. Ramdas Department of Physics, Purdue University, West Lafayette, Indiana 47907

> J. P. Remeika Bell Laboratories, Murray Hill, New Jersey 07974 (Received 29 November 1982)

The temperature dependence of $\vec{q} \sim 0$ magnons in TbFeO₃ and TmFeO₃ has been investigated by Raman scattering. On approaching the spin-reorientation transition from above, the lower magnon branch (M_1) of TbFeO₃ shows a remarkable stiffening, while TmFeO₃ exhibits the familiar mode-softening behavior. It is proposed that the stiffening of M_1 in TbFeO₃ can be understood in terms of the stronger exchange coupling expected in this case between the iron and rare-earth moments, owing to the magnetic ordering of the Tb³⁺ spins just below the spinreorientation transition.

Ferrimagnetic crystals of the rare-earth orthoferrite $(R \text{FeO}_3, R \equiv \text{rare-earth ion})$ group exhibit several striking magnetic phenomena,¹ including canted antiferromagnetism and spin-reorientation (SR) transitions. Both of these properties have stimulated a number of experimental and theoretical studies. The SR transition involves the spontaneous rotation of the weak ferromagnetic moment from one crystallographic axis to another, within a narrow temperature interval. Recent investigations show that SR transitions can be second order^{2, 3} and may be associated with the softening of a low-lying magnon of the system,⁴⁻⁶ in a manner analogous to displacive structural phase transitions caused by unstable phonon modes.⁷ In this paper we report a Raman scattering study of magnons in TbFeO3 and TmFeO3 near their SR transitions. We find an unusual stiffening of the lower magnon branch in TbFeO₃, whereas in TmFeO₃ the corresponding magnon exhibits the familiar modesoftening behavior. In the context of the ordering of Tb³⁺ spins just below the SR transition of TbFeO₃, our results point to the crucial role of the exchange interactions between iron and rare-earth moments in determining the spin dyanmics of these crystals.

Single crystals of TmFeO₃ and TbFeO₃ were grown at Bell Laboratories by the flux method. The orientation of the as-grown faces were checked by the Laue method and found to be orthorhombic. The a, b, and c axes were unambiguously identified by observing on a diffractometer Bragg reflections up to the third order. The sample faces were polished with Syton before the experiments. Raman scattering experiments were performed in the backscattering (reflection) geometry with a spectral resolution of ~ 1 cm⁻¹. Spectra were excited with ~ 150 mW of 6471-Å radiation from a Kr⁺ ion laser. A cylindrical lens focused the laser beam to a line image on the sample face, thus minimizing sample heating effects due to the laser beam. The scattered radiation was dispersed with a triple monochromator and detected with a photon counting system. A variable temperature cryostat was used for measurements over 5-300-K range. Other details of the experimental procedure and equipment are described elsewhere.⁸

Both TmFeO₃ and TbFeO₃ belong to the space group $D_{2h}^{16}(Pnma)$. Above the SR transition region, their net ferromagnetic moment points along the c axis, while below the transition it lies along the aaxis. The respective spin configurations are denoted¹ $\Gamma_4(F_z)$ and $\Gamma_2(F_x)$. Adopting a two-sublattice model of the four Fe³⁺ spins in each unit cell, one obtains two doubly degenerate spin-wave branches, $^{9}M_{1}$ and M_2 . For $\vec{q} \sim 0$, the lower-frequency mode M_1 is found to exhibit considerable softening near the SR region of $R \text{ FeO}_3$ crystals studied so far.⁴⁻⁶ Phenomenologically, the softening has been explained⁵ by the temperature dependence of the twofold anisotropy constants, A_{xx} and A_{zz} . By considering the magnetic point group of these crystals (m'm'm), White et al.⁶ deduced the following form of the Raman tensors for M_1 and M_2 , which are applicable above the SR region:

$$M_{1}: \begin{bmatrix} 0 & 0 & iC \\ 0 & 0 & F \\ iG & H & 0 \end{bmatrix}; M_{2}: \begin{bmatrix} A & iB & 0 \\ iD & E & 0 \\ 0 & 0 & I \end{bmatrix} .$$
(1)

<u>27</u>

3115

©1983 The American Physical Society

3116

Thus M_1 and M_2 will appear as Raman lines in mutually exclusive polarizations (configurations). Also, M_2 should be seen for diagonal components of the tensor, in contrast to the purely antisymmetric tensor which characterizes one-magnon scattering observed in several other systems.^{8, 10}

Figure 1 shows the spectra of M_1 and M_2 for TbFeO₃ at 300 K. We believe this is the first investigation of the magnon spectrum of TbFeO₃. The strongest signals for both magnons were obtained in backscattering from the *a* face. Also, as expected, M_2 does appear in the diagonal polarization. By recording both Stokes and anti-Stokes components of all the spectra, it was possible to determine the magnon frequencies to within an accuracy of ± 0.2 cm⁻¹. The frequencies of M_1 and M_2 are 11.8 and 18.5 cm^{-1} , respectively. The SR transition of TbFeO₃ is known to be within the 5-10-K range. The temperature variation of M_1 and M_2 is shown in Fig. 2. In constrast to the M_1 magnon of other R FeO₃ crystals,⁴⁻⁶ here, far from softening, it shows a continual stiffening as the temperature approaches the SR region, its frequency remaining constant right through the transition. M_2 shows an increase in frequency for lower temperatures, in agreement with the results reported by Kozhizuka and Ushioda⁵ for ErFeO₃.

We now contrast this with the situation in TmFeO₃, where our results complement the previous

FIG. 2. Temperature dependence of the M_1 and M_2 magnon frequencies in TbFeO₃ over 5-300 K. The shaded arrow in the 5-10-K range corresponds to the SR transition region. Note scale change in temperature axis after 130 K.

inelastic neutron scattering study of Shapiro *et al.*⁴ The increased energy resolution of the light scattering technique also permits one to determine the magnon frequencies with a higher accuracy. Figure 3 shows the spectra of M_1 and M_2 at 300 K; their respective frequencies are 13.8 and 24.4 cm⁻¹. The SR transition of TmFeO₃ occurs¹¹ between 84–93.6 K. Figure 4 shows the variation of M_1 and M_2 with temperature.

FIG. 1. Stokes (S) and anti-Stokes (AS) components of the magnons in TbFeO₃; T = 300 K. (a) M_1 magnon; (b) M_2 magnon. Their respective polarizations are indicated.

FIG. 3. Stokes (S) and anti-Stokes (AS) components of the magnons in TmFeO₃; T = 300 K. (a) M_1 magnon; (b) M_2 magnon. Their respective polarizations are indicated.

RAMAN SCATTERING STUDY OF MAGNONS AT THE SPIN- ...

FIG. 4. Temperature dependence of the M_1 and M_2 magnons in TmFeO₃ over 5-300 K. Arrows at 84 and 93.6 K denote, respectively, the upper and lower SR transition temperatures, T_2 and T_1 . Note scale change in temperature axis after 140 K. The open circles represent the M_1 magnon in $\Gamma_4(F_z)$ spin configuration, whereas the filled circles represent the same magnon now in $\Gamma_2(F_x)$ configuration.

We find a marked softening of M_1 on approaching the SR region. However, the softening is definitely incomplete and the frequency stays finite within the transition region. Again, M_2 shows a gradual increase in frequency as the temperature is lowered.

In both TbFeO₃ and TmFeO₃ we observe a drastic decrease in the intensity of M_1 and M_2 on approaching the SR transition from above. Below the transition region, the spin configuration changes¹ to $\Gamma_2(F_x)$ and M_1 is now observed from the c face in crossed polarization. The frequency of M_1 increases below the SR transition until it reaches again the roomtemperature value. The intensity is extremely low at all temperatures below the SR transition, and our accuracy in determining the magnon frequency is correspondingly lower, now ± 0.5 cm⁻¹ as compared to the ± 0.2 cm⁻¹ mentioned earlier. Further, we were not able to observe the M_2 magnon below the SR transition. We are currently investigating the magnon and phonon spectra of related $R \operatorname{FeO}_3$ crystals. These results will be published in due course.

We now discuss the possible origin of the unique behavior of the M_1 magnon in TbFeO₃. The SR transition occurs only in those R FeO₃ crystals where the rare-earth ion carries a net spin.¹ The coupling between iron and rare-earth spins is an essential feature of the theoretical analysis given by Yamaguchi¹² for this transition. TbFeO₃ is rather unique among R FeO₃ crystals in that its SR transition lies just above the temperature interval where the rareearth moments themselves become ordered. The latter transition is manifested in the specific-heat data of de Combarieu *et al.*¹³ which shows a peak at 3.2 K. For other $R \text{ FeO}_3$ crystals examined hitherto,⁴⁻⁶ the situation is quite different as their SR transition lies at much higher temperatures,¹ and the magnetization of the rare-earth sublattices is expected to be much less significant in that range. In TbFeO₃, one therefore expects a much stronger exchange coupling between Fe³⁺ and Tb³⁺ spins near the SR transition. We believe this could account for the continual stiffening of M_1 .

It is known that the SR transition itself can occur in one of two ways^{2,3}: (a) an abrupt jump of the spins, resulting in a first-order transition at a certain temperature, or (b) two successive second-order phase transitions at temperatures T_1 and T_2 , the spins beginning to rotate in a coherent manner at one temperature and reaching their new orientation at the other. To our knowledge, the nature of the transition in TbFeO₃ has not been conclusively determined yet. It is tempting to speculate whether the SR transition here indeed might be first order, thanks to the strength of the coupling between Fe^{3+} and Tb^{3+} spins. If so, one would not expect M_1 to soften at this transition. However, this speculation can be confirmed only through a specific-heat study of this crystal; a similar investigation by Moldover et al.¹⁴ showed the transition in YbFeO₃ to be definitely second order.

In summary, our experiments revealed an example of magnon stiffening, in addition to the familiar softening effect, near the SR transition of $R \text{ FeO}_3$ crystals. The effect is clearly dependent upon the extent of the exchange coupling between the two distinct magnetic species of the system.

ACKNOWLEDGMENTS

S. V. wishes to acknowledge the support he received at the State University of New York (SUNY) at Binghamton for this project through grants from Research Corporation, and the SUNY Research Foundation University Awards Program. The work at Purdue was supported by the National Science Foundation Grant No. DMR81-06144 and benefited from the Central Laser Facility operated under NSF-MRL Program No. DMR80-20249. Our thanks are due to Dr. A. Jayaraman and Professor S. Rodriguez for their interest and helpful discussions.

3117

3118

VENUGOPALAN, DUTTA, RAMDAS, AND REMEIKA

- ¹R. L. White, J. Appl. Phys. <u>40</u>, 1061 (1969).
- ²H. Horner and C. M. Varma, Phys. Rev. Lett. <u>20</u>, 845 (1968).
- ³J. R. Shane, Phys. Rev. Lett. <u>20</u>, 728 (1968).
- ⁴S. M. Shapiro, J. D. Axe, and J. P. Remeika, Phys. Rev. B <u>10</u>, 2014 (1974).
- ⁵N. Koshizuka and S. Ushioda, Phys. Rev. B <u>22</u>, 5394 (1980).
- ⁶R. M. White, R. J. Nemanich, and C. Herring, Phys. Rev. B <u>25</u>, 1822 (1982).
- ⁷See, for example, the review by J. F. Scott, Rev. Mod. Phys. <u>46</u>, 83 (1974).

- ⁸S. Venugopalan, A. Petrou, R. R. Galazka, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B <u>25</u>, 2681 (1982).
- ⁹G. F. Hermann, Phys. Rev. <u>133</u>, A1334 (1964).
- ¹⁰W. Hayes and R. Loudon, *Scattering of Light by Crystals* (Wiley-Interscience, New York, 1978).
- ¹¹G. Gorodetsky, S. Shaft, and B. M. Wanklyn, Phys. Rev. B <u>14</u>, 2051 (1976).
- ¹²T. Yamaguchi, J. Phys. Chem. Solids <u>35</u>, 479 (1974).
- ¹³A. de Combarieu, J. Mareschal, J. C. Michel, and J. Sivardiere, Solid State Commun. <u>6</u>, 257 (1968).
- ¹⁴M. R. Moldover, G. Sjolander, and W. Weyhmann, Phys. Rev. Lett. <u>26</u>, 1257 (1971).