First- and second-order phase transitions with random fields at low temperatures

David Andelman Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 11 June 1982)

It is shown, within mean-field theory of the random-field Ising model, that a maximum of the distribution function at zero field does not necessarily imply a second-order transition at low temperature, as was previously suggested. The order of the low-temperature transition is discussed in terms of the maxima of the distribution function.

In a previous work,¹ it was suggested that Ising systems in a random ordering field undergo a first-order (second-order) phase transition at low enough temperatures, provided that the distribution function is symmetric and has a minimum (maximum) at zero field. We present here a correction to this criterion. The random-field Ising system has the Hamiltonian

$$
\mathfrak{X} = -J \sum_{\langle ij \rangle} s_i s_j - \sum_i H_i s_i, \quad s_i = \pm 1 \quad , \tag{1}
$$

FIG. 1. Solutions of the self-consistent Eq. (6), M_0 , $\pm M_1$, $\pm M_2$, and $\pm M_3$ are drawn. $\pm M_1$ and $\pm M_3$ correspond to minima of the free energy. These solutions are represented graphically. They occur when the area under the curve $P(M)$ is equal to the area under the horizontal line $1/(2cJ)$.

where $\{H_i\}$ are uncorrelated local random fields, with a distribution function $P(H_i)$.

Following Aharony,¹ and Schneider and Pytte,² within the mean-field theory, the free energy per spin can be written as

$$
\overline{F} = \frac{1}{2} cJM^2 - \frac{1}{\beta} \left\langle \ln \left[2 \cosh \beta (cJM + H_i) \right] \right\rangle_{\text{av}} , \qquad (2)
$$

where c is the coordination number and the magnetization M minimizes the free energy, Eq. (2), thus satisfying the self-consistent equation

$$
M = \langle \tanh(\beta c J M + \beta H_i) \rangle_{\text{av}} \tag{3}
$$

FIG. 2. First-order transition (a) \rightarrow (b) \rightarrow (c) \rightarrow (d) and second-order transition (a) \rightarrow (e) \rightarrow (f) when P''(0) is negative.

 27

3079

©1983 The American Physical Society

For $T \rightarrow 0$ limit, we can write the free energy as

$$
\overline{F} = \frac{1}{2} cJM^2 - \langle |cJM + H_i| \rangle_{\text{av}} \quad . \tag{4}
$$

For a symmetric distribution $P(-H)$, Eq. (4) reduces to

$$
\bar{F} = \frac{1}{2} cJM^2 - 2 \int_0^{cJM} (cJM - H) P(H) dH , \quad (5)
$$

leading to the self-consistent equation

$$
M=2\int_0^{cM} P(H) dH \quad . \tag{6}
$$

We investigate the order of the phase transition between the ferromagnetic $(M > 0)$ phase and the paramagnetic (spin-glass?) phase $(M=0)$ at $T=0$. If M is small we can expand the free energy, Eq. (5) , in powers of M

$$
\overline{F} = cJ[\frac{1}{2} - cJP(0)]M^2 - \frac{1}{12}P''(0)(cJM)^4 + O(M^6)
$$
\n(7)

For $P''(0) > 0$, the transition cannot be second order, so it has to be first order. For $P''(0) < 0$, the transition can be second order or first order. In the

latter case, we need to expand the free energy at least up to order M^8 , and the order of the transition will not depend on $P''(0)$ alone.

By considering the most general symmetric distribution, we arrived at the following conclusions:

(a) When $P(H)$ has n maxima, $\overline{F}(M)$ will have at most $n + 1$ minima, as seen in Fig. 1.

(b) For *n* even, $P''(0)$ is positive. In this case, only a first-order transition is allowed at $T = 0$.

(c) For $n > 1$ odd, $P''(0)$ is negative. In this case a second-order transition is possible, if it is not preempted by a first-order transition (Fig. 2). Note that for $n = 1$, the transition is always second order.

For a general symmetric distribution, we can also get phase transitions between two different ferromagnetic phases.

ACKNOWLEDGMENTS

I would like to thank H. Orland, A. N. Berker, A. Aharony, and Y. Shapir for useful comments. This work was supported by the National Science Foundation under Grant No. DMR-79-26405.

¹A. Aharony, Phys. Rev. B $\frac{18}{27}$, 3318 (1978). ²T. Schneider and E. Pytte, Phys. Rev. B 15, 1519 (1977).