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Spectrum of longitudinal fluctuations in an isotropic ferromagnet below the Curie point
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The spectrum for longitudinal fluctuations of an isotropic ferromagnet in the hydrodynamic
critical region below the Curie point is calculated. The spectrum has a hole in the center in the
absence of an external magnetic field. An applied field fills the hole and when it exceeds a criti-
cal value a central peak develops in the spectrum. This can be verified by neutron scattering ex-
periments.

The fluctuation spectrum of an isotropic ferromag-
net below the Curie point T~ is supposed to consist
of spin waves and a central peak coming from the
longitudinal fluctuations. In the hydrodynamic criti-
cal region, where g '(~) ))k, and the spin-wave
peaks are well separated, the central peak would be
easiest to see. However, to date, the neutron scatter-
ing experiments' have been unable to detect the cen-
tral peak, Vaks, Larkin, and Pikin2 calculated the
shape of the spectrum of the longitudinal fluctuations
at very low temperature where the damping of the
spin waves was negligible and showed that the spec-
trum does not have a central peak, but has sidebands
peaked at the spin-wave frequencies. In the hydro-
dynamic critical region, ~here the damping of spin
waves is important, we have repeated the Vaks, Lar-
kin, and Pikin calculations under these different
conditions. We find that at zero magnetic field there
is a hole in the center rather than a peak. Applica-
tion of a finite magnetic field removes the dip gradu-
ally and for fields greater than a critical field the cen-
tral peak should appear.

The order parameter P for the ferromagnet is the
magnetization vector with components p~, pq, and p3.
They satisfy the Landau-Lifshitz equation

where g is a mode-coupling constant. In the ordered
phase T & Tc, one of the P's (say Pt) acquires an
expectation value m The longitudinal fluctuations
are then the fluctuations in the variable P~

—m. The
static correlation of these fluctuations has the well-
known long-wavelength problem because of the

Goldstone modes for D & 4. In the present work, as
in Hohenberg et al. for the study of light scattering
near the A. transition in helium, we will overlook this
problem and assume that the longitudinal susceptibil-
ity can be approximated by a XI. which has an effec-
tive Ornstein-Zernike form

and the damping can be written as

r, =r,k'(k'+ ')- i' (4)

where k is the wave number, A and I 0 are some am-
plitudes, and

a=6 —D

The spectrum Gz(k, ~, 4») of the longitudinal fluc-
tuations can be written as

Gz(k, ~, 4») =Re 1
—ice+ X k, x, o)

(6)

where X(k, ~, 4») is the self-energy. To the lowest or-
der X(k, K, 4») is obtained from the convolution of
two spin-wave lines with the appropriate vertex fac-
tors. The spin waves can be treated as double
Lorentzians, which allows the frequency convolution
to be easily performed and leaves us with

(2)

Inserting the expectation value of p~ in Eq. (1) and
linearizing leads to the spin-wave spectrum for the
transverse fluctuations. Dynamic scaling4 arguments
by Halperin and Hohenberg' yield the spin-wave fre-
quency as

~2—c/2 k2

X(km, c») = X
(2~) [—l4» +I'Op (p +&~) +'4 + 1'Op' (p~ +&~) &4+ ig „—i (p —p ~) ]

Working in units where g'= (24r) D/CD, CD being the area of the unit sphere in D dimensions, and making
approximations appropriate to the hydrodynamic critical region, i;e., k « ~, we can rewrite Eq. (7) as

10CD " x —i 0+x4(1+x~) 'i
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where

0= 1+—OJ D
21"p]c 2

Note that the small-k approximation leads to setting

p —p' -2kpcos8in the numerator and p =p' in
the denominator of Eq. (7). This is what picks out
the lowest-order contribution in k. In three dimen-
sions, we get

-3/2 2 dx
4(1 2) -2/4

the former case

I()=
gJ x4 +z 4 z3/4

for z &&1,

I( ) dx 2 1

z+x 5 z sin(22r/5)

This suggests the interpolation formula

I(z) = ~z '/4(1-+~z)'/",K2
4

(12)

(13)

2
-3/2

= XL,
'k2 —' " I(z),3

(10)
where a is given by the equation

J2 2/2O 2 2r

4 5 sin(22r/5)
(14)

~here z= —i Q.
We now need to evaluate the integral I(z). This is

best done in the two limits, z « 1 and z && 1. In

Equation (13) gives a fit to the numerically evaluated
I(z) to within 10% for all values of z.

By using Eqs. (2), (6), (10), and (13),

locc + '6=Re —i0+— 2r( —lQ)-' [1+c2(—lft)] /o
3 I') 4

= C Re(—i 0'+(—i 0')2 "[1+b(—i Q')] / } ' (15)

The dimensionless ratio k/cc is denoted by x. 0' is a rescaled frequency which allows the first line to be ex-

pressed in the cleaner form of the second. This spectrum clearly vanishes at 0 =0 and hence the absence of a
central peak.

We now study the effect of an external field h. The spin waves, which are the Goldstone modes of our sys-

tem, acquire a mass, and the static susceptibility X~ can be written as

XT'=k +my

where

The self-energy of Eq. (8) now becomes

X(k, K, cd, /2) = XL, 2
x2cos28

(x2+y2)2 z +x2(x2+y2) (1 +x2) e/4

(16)

(17)

(18)

where y = ccr/cc. In three dimensions,

k'~-'/' 2-
X(k, cc, c», h) = X2,

' "„—J(zy)
0

with

I(zy) = x4 dx
~l (x2 +y2)2[z +x2(x2 +y2) (1 +x2) —3/4]

(20)

and for y &&1,

I(0,y) =,/, 2r,5
64y3/2

leading to the interpolation

I(0,y) = [1+2(14y')1"" .
16y3

(23)

(24)

The zero-frequency value is
The high-frequency limit of I(z,y) is the same as that
of I(z), and we can consequently represent I(z,y) as

For y «1,
x2 +y2 2

(21) I(z,y) =I(0,y) (1+Cz)

where

(25)

1(0,y) =
16 y3

(22) 3/5 2 7PC I(0 y) =,
( / )

(26)
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The spectrum is now given by

l'ag~+D~zg(k, g, ra, lr)
r

=Re z+X —I(0,y)(1+Cz) 3~'
I'( 3

(27)

This spectrum has a similar mathematical structure
to the spectrum above Tc. ' Whether such a spec-
trum will have a central peak or a dip in the center

can be settled by expanding Eq. (27) in powers of z
and examining the coefficient of z . As can be seen
from Eqs. (26) and (27) this depends on I(0,y), i.e.,
on the strength of the applied field. For a small
field, I(0,y) is large and there will be a dip in the
center, but for fields exceeding a critical field (where
the coefficient of z2 changes sign) there will be a cen-
tral peak in the spectrum obtained by neutron scatter-
ing. Note that the smaller the value of x = k/~, the
smaller is the magnetic field required to see the cen-
tral peak.
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