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Monte Carlo studies of the Z(4) (or Ashkin-Teller) model on the triangular lattice were
carried out. In particular, we investigated whether the massless phase, which was shown to
exist on the boundary of the physical parameter space, may extend into a region of finite
width. The existence of such a phase would imply that N„ the critical value above which

Z(N) models have intermediate phases, is nonuniversal, i.e., lattice and interaction depen-
dent. Although, on the basis of our Monte Carlo results we cannot completely rule out this

possibility, most aspects of our findings indicate consistency with existing theories of the
Z(4) model which exclude the possibility of such an intermediate massless phase.

I. INTRODUCTION

V(8)= V(8+2sr)= V( —8) & V(0) . (1.2}

For hN
——0 the model exhibits at low temperatures a

massless phase. For hz~oo, an N-state discrete

model is obtained.
Jose et al. z have studied the model (1.1) with the

Villain form of the interaction V(8). They have

shown that the critical behavior of this model with

hN ——0 is governed by the Gaussian line of fixed
points, and they have analyzed the stability of this
line with respect to small hN perturbations. They
found hid to be relevant for temperatures T & Ti (N)
and irrelevant for T & Ti(Ã). They also found that
for N &4, Ti(N) & TKT, (where KT stands for Kos-
terlitz and Thouless), the temperature at which the
Gaussian line becomes unstable to vortex excitation,
while for N & 4, Ti (N) & TKT. Therefore, they
predict that the XY model will, in the presence of
small hz perturbations, exhibit an intermediate

The critical properties and phases of various
models in two dimensions are the subject of
numerous investigations. ' In particular, the XY
model in the presence of N-fold-symmetry-breaking
fields

b'av,

and its discrete version, the Z (N)
models, ' are of both theoretical interest and exper-
imental relevance.

Consider the Hamiltonian

8 t(8 I = $ V(8; —81 ) —hN icos(N8; ), (1.1)
&,J&

where —m & 0; &~ is an angle associated with site i,
and the nearest-neighbor ferromagnetic interaction

term V(8} is a periodic, even function

massless phase for N&4. For the case N=4 no
massless phase is predicted to exist.

They have also shown that the discrete Z(N}
model with the Villain interaction is self-dual; that
is, the dual model also has the Villain form. This
relationship, together with Griffiths-type inequali-
ties, was used by Elitzur, Pearson, and Shigemitsu,
who have shown that for N &N, the Z(N) model
with the Villain interaction has an intermediate
massless phase. They estimate N, &4; however, no
exact derivation of N, exists nor has the question of
the universality of N, been rigorously resolved.

In this paper we study whether N, may depend
on the lattice on which the model is defined, and on
the particular interaction V(8) chosen. To address
this issue, we have performed Monte Carlo studies
of the Z(4} model on the triangular and square lat-
tices.

Renormalization-group (RG) arguments indi-
cate that for N =4 no massless phase should occur,
independently of the lattice and the shape of the
nearest-neighbor interaction potential. Some of the
arguments leading to this conclusion, and the wide-

ly accepted fixed-paint structure of the model, are
briefly discussed in Sec. II. A simple argument'o
that proves the existence of a massless phase on the
boundary of the physical region for the triangular
lattice is also reviewed. If this "massless phase"
does extend into the physical region of the Z(4)-
model parameter space, this would indicate that the
commonly accepted picture has some serious flaws.

Our numerical results for the triangular lattice
are presented in Sec. III; where needed, comparison
with results obtained for the square lattice is also
given. Section IV summarizes our findings.
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II. THE Z{4) MODEL—A SHORT REVIEW

As shown by Fan" the Z(4) (or Ashkin-Teller)
model can be regarded as composed of two interact-
ing Ising models defined on the same two-
dimensional lattice. Denoting by s; and t; the Ising
variables on site i, the Hamiltonian of the Z(4)
model is given by

HH= = g (K,s;s;+K,t;t, )
AT ( ~ j}

+L g s;s~t;tJ .
&i,j }

(2 1)

We concentrate here on the case E& ——E2 ——E.
Notice that for L =0 the Ising models are decou-
pled whereas for K =L the four-state Potts model is
obtained. The Z(4} model can be parametrized con-
veniently by the Boltzmann factors:

X(90)=exp[ 2(K+—L )],
X(180)=exp[ 4K] . — (2.2}

The physical region corresponds to the square
0&X(90),X(180)&1. For any particular interac-
tion (i.e., any specific value of the ratio K/L), varia-
tion of temperature define a trajectory in this
square that connects the zero-temperature point
X(90)=X(90)=0 with the infinite temperature one
X(90)=X(180)=1. In the regime X(90) &X(180),
the model exhibits two Ising transitions with an
intermediate partially ordered phase. For
X(90)&X(180),a line of continuously varying criti-
cal exponents is observed whose nature can be eluci-
dated by performing a duality transformation on
one of the two Ising variables. It turns out' that a
staggered eight-vertex model, believed to have con-
tinuously varying critical indices, is obtained [the
nonstaggered eight-vertex (8V) model was solved ex-
actly by Baxter]. ' This fact suggested possible con-
nections between the critical exponents of both
models. These connections were obtained by vari-
ous workers using different methods. Kadanoff
and Brown applied a universality argument
describing the relation between the correlation func-
tions of both models and the known correlations of
the Gaussian model. They noted first that at the
decoupling points of the Z(4) and 8V models, many
correlation functions have the same asymptotic
form as the correlation functions of the Gaussian
model with a coupling E= 1/m. . Second, they
showed that this holds true as well for other points
on the critical lines of both models, and calculated
explicitly the functions Fst(K) [Ezi4i(K)], w»ch

give, for each value of the Gaussian coupling K, the
point on the critical line of the 8V [Z(4)] model at
which the correlation functions should be com-
pared. Since these functions render critical Hamil-
tonians, an operator product expansion could be cal-
culated, thereby allowing the authors to obtain the
variation of the critical indices in the vicinity of the
decoupling points along the respective critical lines
of both models. Kadanoff pointed out, however,
that their conclusions could break down with the
appearance of an additional marginal operator
whose existence they could not rule out.

Knops employed renormalization-group tech-
niques and studied a generalized Villain model
which contains the 8V model as a particular case.
He showed that the correspondence between 8V and
Gaussian operators found in Ref. 6 was indeed an
equivalence under renormalization, and that this
equivalence breaks down when below a certain cou-
pling, the Gaussian model is repelling for trajec-
tories departing from the 8V model. This is
equivalent to the appearance of new marginal
operators as found in Refs. 6 and 7. Of course, this
carries on as weil for the Z(4) model. Knops and
den Ouden have recently extended this approach
and obtained more operator equivalences between
the models.

den Nijs' constructed a mapping between the SV
model and a one-dimensional quantum theory of
massless fermions (the Luttinger model) which is
integrable in the continuum limit as shown by
Mattis and Lieb. ' The Luttinger model is a quan-
tum version of the Gaussian model. In the map-
ping process he identified spin-wave and vortex
operators in the 8V model with a corresponding set
of fermion operators in the Luttinger model. By
computing correlation functions between these fer-
mion operators, den Nijs obtained the same rela-
tions between the critical indices of both models as
obtained in Refs. 6 and 8.

The above statements hold for the critical line of
the Z(4) model. We now consider a different line,
e.g., X(180)=0, and show that for the Z(4) tnodel
on a triangular lattice it is of particular interest. It
is found' that in the case of a triangular lattice a
massless phase occupies a finite portion of this line,
whereas for a square lattice no such phase is expect-
ed. The equivalence of the Z(4) model on a triangu-
lar lattice, with X(180)=0, to a solid-on-solid (SOS)
and XY model, has been presented elsewhere. '

Nevertheless, we proceed to give a proof, for com-
pleteness sake, along the same lines as has been pre-
viously done for the Z(5} model on a square lat-
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tice. '

Consider the low-temperature series for the Z(4)
model on the line X(180)=0 for the triangular lat-
tice. Any allowed state is characterized by integers

I n;] associated with site i, with n; =1,2,3,4 (corre-
sponding to 8; =em;/2), such that nearest-neighbor
pair (ij) cannot have

~
n; nj—

~

=2. For any given

jn; J configuration assign arrows to the bonds,
pointing from low to high n value, with the conven-
tion that if n; =4 and nj 1, t——he arrow points from
i to j, and if n;=nj, no arrow is assigned. The al-
lowed arrow configurations for a basic up-pointing
triangle are shown in Fig. 1(a). Each configuration

In;J defines an allowed arrow configuration. To
identify the allowed graphs, rotate each edge clock-
wise by 90'. The rotated edges form now a honey-
comb lattice, with vortices that can have either no
arrows on the incident edges, or one incoming and
one outgoing arrow [Fig. 1(b)]. Thus each allowed

t n;J configuration on the triangular lattice defines

an allowed graph, consisting of closed nonintersect-

ing polygons on the honeycomb lattice. Each po-
lygon can have either clockwise or anticlockwise
oriented arrows. The partition function is given
by16

Z=gW(G)W ' '2"' ' (2.3)

FIG. 1. (a) Allowed arrow configurations for each ele-

mentary up-pointing triangle in the lattice. An arrow

represents a bond joining two sites for which the order
parameter 8;=en;/2 differs by +90 (or

~
n; nj

~

=1). —
The arrow points from low to high n. When no arrow is

present, the variable at both sides of the bond has the

same value. The diagram with two arrows also

represents two other configurations obtained from the

one shown by rotating the triangle by 120' and 240'. (b)

Allowed vertex configurations corresponding to each ar-

row configuration in (a).

where G is an allowed graph with a total of L (G)
arrows and n(G) disconnected closed polygons.
W(G) is the number of ways the graph G can be
embedded in the lattice and the factor 2"' ' appears
due to the two possible arrow orientations of each

polygon. W& is the Boltzmann weight for

fn; —n, /

=1.
Consider now the solid-an-solid model defined in

terms of integers [h; ] associated with each site i of
a triangular lattice; ao &h;& oo. Choose the in-
teraction

1, h; =hj.

exp[ —V(h; —h )]= Wi, ~h; —hj
~

=1
0, otherwise .

(2.4)

To obtain an expression for the partition sum Z, re-

peat the preceding procedure; assign arrows to
bonds with

~

Ii; —hj ~

=1, pointing from low to high
value of h; (h~ ). Again the same allowed graphs G

appear as in Fig. 1(a), and Z is given by (2.3). Since
this SOS model has a roughening transition for
Wi ~ W„one expects a massless phase (i.e., diver-

gent correlation length g) for the Z(4) model on the
line X(180}=0 as well.

The reason that allowed us to construct a map-

ping between the line X(180)=0 and the SOS model
is the fact that on this special line no Z(4) vortices
are allowed to appear. On the other hand, vortex
configurations are allowed when the model is de-

fined on a square lattice, so a similar mapping can-

not be constructed. We therefore do not expect to
find a massless phase on this line for the square-

lattice case. It is possible that as soon as X(180)& 0,
the massless phase disappears and g is finite. On
the other hand, if the massless phase extends into
the physical (X(90),X(180)) plane, as in the case of
the Z(5) model on a square lattice, the consequences
are quite far reaching. If so one can choose V(8) in

(1.1) in such a way that as the temperature is varied,

the model traces a trajectory from T=0,
X(90)=X(180)=0, to T =Do, X(90)=X(180)=1,
along which three phases occur: a paramagnetic

phase, a phase with long-range order, and an inter-

mediate massless phase. If such is the case, this

means that the critical value N, (beyond which a
discrete ¹tate clock model has an intermediate

massless phase} is nonuniversal, that is, lattice
dependent. Furthermore, for a given lattice, then,

N, depends on the particular interaction V(8)
chosen.

The question of whether there are three phases
for X(90)yX(180) (i.e., an intermediate massless

phase bounded by ordered and disordered phases)

has been addressed by many authors. Elitzur
et al. , Einhorn et al. ,

' and Alcaraz and Koberle'
have taken advantage of the self-duality of the Z(4)
Villain model when defined on a square lattice, and

have concluded that only two phases occur for
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X(90)& X(180) in agreement with the phase diagram
we have described above. The line of varying criti-
cal indices is in fact a self-dual line.

Savit' has analyzed two types of Z(N) Villain
models on a triangular lattice. In the first version
the vortices occupy half the sites of the honeycomb
lattice dual to the original triangular one (T~
model). In the second, the vortices occupy half the
sites of the honeycomb lattice forming themselves a
triangular lattice (T, model). Savit claimed that
these two models belong to the same universality
class as the Z(X) Villain model on a square lattice.
Since the T, model is self-dual, he applied the same
reasonings as Elitzur et al. to prove the incon-
sistency of a three-phase picture for N &JV, =5.
Savit's conjecture that the T, and T~ models belong
to the same universality class was based on the
similarity of both theories, differing only on the lat-
tice structure of their vortices. No rigorous justifi-
cation was given. Nevertheless, Savit's result agrees
with the common belief, based on grounds of
universality, that the model has the same phase
structure, independently of the lattice on which it is
defined.

In contrast to the square-lattice case, the line of
varying critical exponents found for the triangular
lattice is not a self-dual line since the model itself is
not self-dual. Enting, however, has calculated a
special line by applying a star-triangle transforma-
tion to the dual model which is defined on a honey-
comb lattice. He has shown, that on this line the
three-site interactions (generated by the star-triangle
transformation) vanish; each point on this line maps
onto itself by the duality followed by star-triangle
transformation. The equation of this line is

2X (90)[1+X(180)]+X(180)=1, (2 5)

and Enting conjectures that for X(90)&X(180) this
is where the transition occurs. For X(180)=0 the
critical value ' of X(90)=1/v 2 is obtained.

At this point it will be convenient to consider the
renormalization-group picture of Jose et al. and
Kadanoff which connects the Z(4) model with the
XY and Gaussian models. Jose et al. analyzed a
generalized Villain model with symmetry-breaking
interactions. In the model, vortices were controlled

by a chemical potential yo and symmetry-breaking
excitations by y~. The stability of the Gaussian line
under both kinds of perturbations for the specific
case %=4 is depicted in Fig. 2. Their RG analysis
indicated the presence of three lines of fixed points,
i.e., the Gaussian and yo ——+y4 lines intersecting at
the transition point of the XYmodel.

FIG. 2. Parameter space of the generalized Villain
model (Ref. 2) (with vortex fugacity yo and four-fold-
symmetry-breaking y4), defined on a triangular lattice.
The Gaussian line E and line C are two of the three lines
of fixed points identified by the renormalization group
analysis of Jose et al. C is the sink of the critical mani-
fold spanned by D, C,B. The parameter space of the
Z(4) model intersects the y4 ——1 plane on the Villain line
and the SOS line E. For the Z(4) model on the square
lattice, the line E is not in the (X(90),X(180))parameter
space.

The plane y4 ——1 corresponds to an infinite
symmetry-breaking field, thus on this plane the or-
der parameter is restricted to take only four possible
directions. On this plane there must be a line of
transitions corresponding to the Z(4) line of varying
critical exponents (line 8). Furthermore, the line

yo ——y4 ——1 (line A) corresponds to the Villain form
of the interaction. The lines S,C,D lie on a critical
manifold. Under application of RG transforma-
tions, the points of this critical manifold are attract-
ed to the line of fixed points C. It must be pointed
out, however, that the analysis of Jose et a/. was
done in the vicinity of the Gaussian line and
amounts to an expansion in the small parameters yo
and y4. Therefore, the flows, the stability, and the
nature of the fixed lines are correct only in the
neighborhood of the multicritical point. Thus the
intersection of line C with the Z(4) plane as depict-
ed in Fig. 2 is based on various conjectures.

The conclusions reached by Jose et al. are not
altered if the cosine interaction is used instead of
the Villain form; Amit et al. have proved that the
more severe nonlinearities inherent in the cosine in-
teraction, which do not permit the factorization of
the partition function into spin-wave and vortex
parts, are irrelevant near the Gaussian limit.

The connection between this RG picture and the
parameter space [X(90),X(180)] can be described as
follows: Suppose we define a general Hamiltonian
for the Z(4) model containing the parameters
X(90),X(180) and in addition a plaquette interaction
with Boltzmann weight XI' which in some way con-
tols the vorticity. The three-dimensional space
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III. RESULTS

We performed Monte Carlo (MC) simulations of
the Fan version [see Eq. (2.1)] of the Z(4) model by
the standard Metropolis method. The Z(4) variable

at each site was updated sequentially. In order to
speed up convergence, a parameter p controlling the
relative probability of flipping the variable by 180'

(i.e., flipping both Ising variables} versus the proba-

bility of flipping it by +90' was introduced. We
found that our results were almost insensitive to the

2
value of P, and generally the value p = —,, which as-

signs equal probability to each of the three possible
directions was used. Reliability of the results was

established by comparing the values of the physical
quantities calculated on the basis of independent

MC sequences. Typically each site was visited

11.000 times during a single MC sequence. In order
to ensure independence of the results of the initial

configuration chosen, about 10%%uo of the generated
configurations in the beginning of each Markov
chain were not taken into account in the computa-
tion of the quantities of interest. The following'

thermodynamic averages were calculated:

(a) the specific heat per spin,

=&H'& —&H &',
kgN2

(3.1)

where H is the reduced Hamiltonian given by Eq.

(X(90),X(180),XP) contains then the Z(4) plane

(y4 ——1} of Fig. 2, as well as the (X(90},X(180))
plane. These two planes intersect at the line corre-
sponding to the Villain form of the interaction [line
A in Fig. 2, and a corresponding trajectory in the
(X(90),X(180)) plane (line V) with a specific value
of the ratio K/L, see Fig. 9].

In order to understand how the existence of the
massless phase on the X(180)=0 line of the tri-
angular lattice fits into this picture, the following
should be noted. On this special line, the Z(4)
model does not allow vortices; therefore, this line
can be identified with the line E, e.g., y4= 1, yo =0
of Fig. 2. Indeed, a section (corresponding to high
temperatures) of line E flows under the RG
transformation, onto the high tempe-rature section
of the Gaussian line. Therefore, according to the
above presented (commonly accepted) picture, as
soon as yo+0, [or X(180)&0] the massless phase
should disappear. It is this aspect of the Z(4}
model in the triangular lattice that we have set out
to investigate.

(2.1).
(b) the susceptibilities per spin in the x and y

directions,

, [&g.;"; &-&(g.,')'&],
l, m I

where s; is the ith component (i =x,y) of the Z(4)
variable s at site l.

These quantities were calculated as a function of
temperature, for various trajectories in the
[X(90)Q(180)]plane. A trajectory is defined by

[X(90)X( 180)]=(Xo Yo ) (3.3)

thus all trajectories extend from (0,0) to (1,1), as
0&T& oo. For each plot the coordinates (XO, I'o)
are specified.

The region to be probed is the X(90)&X(180) sec-
tor in which a single transition is expected. The
specific heat for various trajectories in this sector is
shown in Fig. 3. For temperature trajectories that
pass between the decoupling [X(180)=X(90) ] and
the SOS [X(180)=0] lines, the calculations show
the presence of two peaks; for trajectories passing
near the point (X(90),X(180))=(0.9,0.1) the low-

temperature peak is very sharp and the other one
very wide. Neither of the peaks scales with the size
of the system. As the decoupling line is ap-

proached, the peaks approach one another until
they coalesce into a single one, which corresponds
to the decoupled Ising models. At the decoupling
point the specific heat scales with the size of the
system as C,„-lnN, in agreement with finite-size
scaling theory.

Although we see some growth as the lattice size
is increased even before the decoupling line is
reached, a plot of the specific-heat maxima as a
function of in% bends down indicating that from a
certain size on no growth is observed; the specific
heat saturates. No results are shown in the figure
for trajectories between the Potts and decoupling
lines. In this region the specific heat exhibits only
one peak which scales with the size of the lattice ac-
cording to C~,„-n,with u )0.

For the SOS line we observe only one peak which
does not scale, as expected for an infinite-order
transition. It should be noted that for trajectories
between the decoupling and SOS lines, the expected
transition temperature as given by Eq. (2.5) lies be-
tween the two specific-heat peaks. The expected
transition point is indicated on the temperature axis
of each plot. The speciflc-heat maxima approach
these values of T, as the decoupling line is ap-
proached; for trajectories between the decoupling
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FIG. 3. Specific heat per spin as a function of temperature for various trajectories [defined by Eq. (3.3)] in the
X(90)&X(180) sector for the triangular lattice. The point (xo,yo) on each trajectory, at which the temperature is normal-
ized to unity, is specified on each figure. The arrow on the temperature axis specifies the temperature at which the partic-
ular trajectory intersects the Enting line. The solid lines are guides to the eye.

and four-state Potts lines, the observed (single) max-
imum does coincide with T, .

These results were compared with those obtained
for a square lattice. For the square lattice the
specific heat also exhibits two peaks for trajectories
below the decoupling line; but the narrow, low-
temperature peak closely follows the (self-dual)
transition line (see Fig. 4).

Our results for the susceptibility are shown in
Fig. 5. On the SOS line we see a high-temperature
phase in which the susceptibility scales, indicating
the presence of a massless phase as expected (the
SOS model is dual to an XF model and therefore

the massless phase appears above the transition).
As can be seen in the figure, it is very hard to ascer-
tain whether a finite region with massless behavior
exists as we leave the SOS line. The decay (if any)
in the susceptibility in the region above the transi-
tion is very weak for trajectories sufficiently near
the SOS line, as exemplified by the line passing
through the point (0.9,0.1); the system sizes we

studied do not allow us to conclude whether scaling
with size will saturate or not in the region in ques-
tion.

This is not the case for trajectories far from the
SOS line and approaching the decoupling point.



27 Z(4) MODEL ON THE TRIANGULAR LATTICE

- c
0.8-""

0.6—
SQUARE LATTICE

T=l AT X(so)=0.8 X(leo)=0.2

7x7 LATTICE

0.2—

0.0 I.O 2.0
TEMPE RATURE

FIG. 4. Specific heat per spin as a function of tem-

perature for a square lattice. The normalization of the
temperature is specified in the figure. The maximum of
the low-temperature peak coincides within the computa-
tional error with the point at which the trajectory crosses
the self-dual line. Simulation of a 10)&10 system (not

shown in the figure) yields the same curve. The solid line

is a guide to the eye.

X(90)(0.7 the points obtained deviate drastically
from a straight line even for small lattices, and
therefore are not plotted in the figure.

In the case of the square lattice, the curve ob-
tained shows that X(N) saturates, indicating clearly
that no massless phase exists on this line. In order
to check the precise influence of the vortices on the
behavior of the model on this lattice, we made some
runs at the same point but restricting the MC rou-
tine to probe only configurations within the zero
vorticity sector of the phase space. The results, de-

picted in the same figure, show a straight line, as in

the triangular case.
The susceptibility data of Fig. 5 for the triangular

lattice show a sharp peak at the low-temperature
boundary of the apparent scaling region. This
peaks follows closely the critical line of Eq. (2.5);
the positions [in the X(90),X(180) plane] of this
peak as well as the specific-heat maxima are shown
in Fig. 9.

Here it is clear that no scaling region exists after the
transition and the peaks are sharper and sharper as
the decoupling trajectory is approached.

In order to obtain further information concerning
the question of whether the massless phase
penetrates into the phase diagram or not, additional
runs, with fixed X(90) and varying X(180}, were
made for X(90)& I/v 2 (the transition point of the
SOS model). The results are shown in Fig. 6. A
complete flattening of the susceptibility near the
SOS line [as the one observed in Fig. 5, for
X(180)=0] is not observed. The results indicate
that the width [in terms of X(180), near X(180)=0]
of the region where scaling seems to occur shrinks
with increasing lattice size. The width of this cross-
over region increases as the X(90) coordinate de-

creases towards X(90)= I /O 2.
A similar calculation for the square lattice yields

the results of Fig. 7. As the X(180}=0line is ap-
proached with fixed X(90), we see a small change
for the two sizes shown but presumably there is no
change at all for larger lattices. This is borne out

by the results of Fig. 8. In this figure, the depen-
dence of the susceptibility on N is calculated for
different points on the X(180)=0 line, for the
square and triangular lattices. From finite size scal-
ing we know that the dependence of the susceptibili-

ty on N in the case of the SOS model is of the form
N ". Therefore, a plot of 1nX vs InN should yield
a straight line with slope 2 —g. For the triangular
lattice this is indeed the case for X(90) &0.7. For

IV. DISCUSSION AND SUMMARY

From the results we have presented, we can see
marked differences in the behavior of the Z(4)
model when defined on a square or on a triangular
lattice, although no conclusive evidence for a three-
phase picture was found in the latter case. The
scaling behavior of the specific heat in both cases is
in accord with the accepted theoretical picture. Be-
tween the Potts and decoupling trajectories the
specific heat scales, indicating that in this sector

2a &0, as expected (a is —, for the four-state Potts
model and 0 for the Ising model}. Between the
decoupling and X(180)=0 lines the specific heat
does not scale with the size of the system; therefore
we conclude that a & 0 in this sector.

However, we find the appearance of two peaks in
the specific heat intriguing. These appear for tra-
jectories lying between the decoupling and
X(180)=0 lines, but not between the Potts and
decoupling lines. In the latter region the energy
fluctuations manifest themselves fully in the diver-

gence of the specific heat, whereas in the other sec-
tor this divergence is suppressed and the fluctua-
tions manifest themselves in a narrow peak and a
broader one at higher temperatures, both of which
do not scale. In the square-lattice case, in which the
model is self-dual, the sharp low-temperature peak
is observed to follow the self-dual line even for
small lattices such as 7)&7, allowing us to associate
it with the transition. We believe the broad high-
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FIG. 5. Susceptibility per spin as a function of temperature for various trajectories [see Eq. (3.3)] in the X(90)&X(180)
sector for the triangular lattice. The point (xo,yo) on each trajectory at which the temperature is normalized to unity is
specified in each case. The arrow on the temperature axis specifies the temperature at which the particular trajectory in-
tersects the Enting line. The solid lines are guides to the eye.

temperature peak represents a region of short-range
order.

The location of the specific-heat maxima on the
phase diagram for the triangular case is depicted in
Fig. 9. The two lines of maxima in the region be-
tween the decoupling and SOS lines join at the criti-
cal point of the decoupling line and neither of them
falls on the line calculated by Enting (line E). This
behavior persists for all the lattice sizes for which

we made runs (up to a 2GX20 lattice). For trajec-
tories between the Potts and the decoupling line, the
maximum of the specific heat falls on line E.

The most dramatic difference between the
behavior of the model when defined on a triangular
versus square is shown by the susceptibility. For
the triangular lattice, the susceptibility decreases for
temperatures above the transition at a rate that gets
slower as the trajectory approaches the SOS line.



27 Z {4)MODEL ON THE TRIANGULAR LATTICE 3051

I00-
K TX

N

50

I0

IKb Tg I

N~

-0.9
20o
I4 o

IO ~

IGO

KbTX
50- N'

10—

I I I
I

I $ $ I

(l80) = Q.Q

X(90)=Q,7
X(90)=Q.8
X(90)= Q.9

50

I

: KbTX
N2

X(Ieo)

I
'

I

KbTX
2

X{Ieo)

KbTX

50- ~

I. . . . I
~ i I ~ i ~

0)=I.O X {ieo)=OO-

RIANGULAR LATTICE
QUARE LATTICE
QUARE LATTICE

ITHOUT VORTICES

l0

0.2

X{I80)

I I

04 00

X(Ieo)

I I

02 0.4

I

KbTX

IO- N

ATTICE

FIG. 6. Susceptibility per spin for fixed X(90) as a
function of the Boltzmann weight X(180), for the tri-
angular lattice. The value of X(90) is specified in each
case. The solid lines are guides to the eye.

5 10 20 50
SYSTEM LINEAR SIZE

FIG. 8. Dependence of the susceptibility per spin on
the linear size of the system for the X(180)=0 line. In
the upper figure the results for the triangular lattice are
plotted for different values of X(90) on the SOS line.
Below X(90)=—0.7, no scaling with size was observed. In
the lower figure a comparison is drawn between the
behavior of the model on a triangular lattice, a square lat-
tice, and a square lattice without vortices at the same
point of the X(180)=0 line. For a square lattice we see
saturation indicating that no massless phase is present.
The solid lines are guides to the eye.
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FIG. 7. Susceptibility per spin, for X(90)=0.8, as a
function of the Boltzmann weight X(180), for the square

lattice. No appreciable scaling is observed in this case
and the value of the susceptibility near the X(180)=0 line

is small as compared to the corresponding value for the
triangular lattice. The solid lines are guides to the eye.

Although studies of larger systems would be

desjred, our findings indicate that off the SOS line

the susceptibility does not exhibit scaling with the
size of the system over a region of finite extent, in

spite of the considerable flatness seen near the SOS
line. Furthermore, the width of the apparent scal-

ing region of X seems to decrease as the lattice size
is increased. This supports the two-phase picture of
the model. It is found that the temperature associ-
ated with the maximum of the susceptibility
changes as the lattice size is increased. %e find
that the maximum of the susceptibility occurs close
to the Enting line for a 20X20 lattice; for smaller

sizes the maximum deviates from this line. The ap-



3052 YOEL STAVANS AND EYTAN DOMANY 27

x(iso)

X(~o)
sos

FIG. 9. Phase diagram of the Z(4) model on a tri-
angular lattice. Line V represents the Villain trajectory,
P is the critical point on the four-state Potts trajectory,
and DI is the critical point of the decoupling line. The
point SOS is the critical point of the equivalent SOS
model on the X(180)=0 line. The Enting line (line E)
passes through P, DI, and SOS. The open circles
represent the approximate location of the specific heat
maxima for different trajectories. In the X(90)&X(180)
sector two lines of maxima join at the point DI. The bars
represent the approximate location of the susceptibility
maxima for different trajectories for a 20)&20 system.
The dashed lines in the X(180)&X(90) section represent
two Ising transitions. These lines end up on the
X(90)=0 and X(180)=1 lines at which the Z(4) model
behaves as an Ising model.

proximate location of the susceptibility maxima for
a 20)&20 lattice is depicted by bars near the Enting
line in Fig. 9 for different trajectories. This stands
in sharp contrast to the square-lattice case where
for a 7)&7 lattice we already see the maxima very
near the self-dual line. Our results then indicate
that the transition takes place on the Enting line. It
is puzzling, however, that the low-temperature peak
of the specific heat does not coincide in location
with the transition temperature as in the case for
the square lattice.

The data presented in Figs. S and 8 strongly sup-
port the fact that the X(180)=0 line for the triangu-
lar lattice has a massless phase. The clearcut scal-
ing behavior shown in these figures is not observed,
however, when the Z(4) model is defined on the
square lattice (Figs. 7 and 8). We therefore con-
clude that no massless phase exists on the X(180)=0
line in this case. Vfe also demonstrated the specific
role played by the vortex sector of the theory for the

square lattice, Fig. 8. When vortex configurations
are not included in the Markov chain, the model
can be mapped onto the SOS model and scaling is
observed. On the other hand, when vortices are in-

cluded, no scaling over a region of finite extent is
observed.

Our susceptibility data are consistent with the
theoretical picture of Fig. 2. For trajectories close
to the SOS line it seems that the true divergent (and
therefore scaling) behavior of X occurs at a single
temperature, reflected by a sharp peak in X(T). The
apparent scaling region above this peak is a cross-
over effect, due to the proximity of the trajectory to
the SOS line, which does exhibit scaling behavior
for T) T, .

Our results can be summarized as follows:
(a) We find evidence for a single transition for

both square and triangular cases.
(b) In the case of the triangular lattice, the transi-

tion takes place on the line calculated by Enting, as
shown by the behavior of the susceptibility.

(c) For both lattices the specific heat of the model
has two peaks for temperature trajectories in the re-
gion bounded by the decoupling and X(180)=0
lines. Between the Potts and decoupling lines, only
one peak is observed.

(d) For the square lattice, the low-temperature
peak of the specific heat falls on the self-dual line;
thus we can associate it with the transition. On the
other hand, the same peak in the triangular case
does not follow the Enting line, and so we cannot
associate it with the transition.

(e) For the triangular lattice, we find a very wide
crossover region in the vicinity of the SOS line, on
which the susceptibility definitely scales.

These results seem to be in accord with the two-
phase picture of the model and thus confirm the
universality of N, . Nevertheless, they raise new
questions concerning aspects of the Z(4) model de-
fined on a triangular lattice, such as the width of
the crossover region mentioned above, and the ap-
pearance of the susceptibility maxima and low-

temperature peaks in the specific heat at different
temperatures for the triangular lattice, and at the
same temperature for the square lattice.
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