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The features of the local magnon modes associated with magnetic impurities in antifer-

romagnetic insulators are studied in detail. A Green s-function theory is used to calculate

the frequency, the wave functions, and the dynamic response at T=O in the limit of very

small impurity concentrations and at arbitrary values of the applied magnetic field. The
theory is applied to MnF2. Fe + and to FeF2.Mn + and it explains quantitatively the large
enhancement of Mn impurity modes in the gap of antiferromagnetic FeF2. In this system

the local mode intensity is strongly dependent on the competition between the nearest

neighbor Jl and the intersublattice J2 Mn-Fe interaction parameters. This allows one to
determine the interaction parameters from Raman scattering data. Application to
FeF2.Mn yields

~
J~

~

=0.2 cm ' and J2 ——1.79 cm ', both antiferromagnetic, and this

confirms previous evidence that the two interactions compete in this system.

I. INTRODUCTION

The excitations in randomly disordered magnetic
systems have been the subject of continuing interest
for many years. Initial attention was focused on the
local modes associated with the defects in systems
with low impurity concentrations. The antifer-
romagnetic fluorides received particular attention
and were investigated by a number of experimental
techniques, such as neutron scattering, ' Raman
light scattering, ' far-infrared spectroscopy, opti-
cal absorption and fluorescence, and nuclear mag-
netic resonance. This early work on the fluorides
was mainly directed to systems in which the local-
ized modes have energies above the host spin-wave

band, and was reviewed in detail by Cowley and
Buyers. Relatively little work was done on systems
in which a local mode lies in the antiferromagnetic

gap, such as CoFz.Mn and FeFz.Mn. The former
system was investigated by neutron ' and light
scattering, "but apparently not much attention was

paid to the anomalously high intensity of the gap
modes in the earlier studies.

With the development of far-infrared lasers,
high-resolution studies of impurity modes became
possible and a number of antiferromagnetic systems
have recently been investigated in greater de-
tail. ' ' The Mn impurity modes in CoF2 and in
FeF2 have been found to be greatly enhanced due to
their proximity to the edge of the spin-wave band
(k =0 magnon). The frequencies of the impurity
and k =0 host modes, as well as their linewidths
and intensities have been studied in great detail' in

FeF2.Mn. This system has also been studied by Ra-
man light scattering' that shows an enhancement

of the impurity mode which is even more dramatic.
This is so because one-magnon light scattering is
usually not observed in manganese compounds due

to the weak interaction between the Mn + spins and

the radiation. But when minute amounts of Mn +

are substitutionally introduced in FeF2 the impurity
mode becomes as intense as the host mode of the
Fe + spins. This effect resembles the anomalously

high intensity observed in the light scattered from
certain molecules adsorbed onto metal surfaces. '

The experiments in FeF2.Mn have been ex-
plained' by a coupled equations-of-motion mean-

field calculation that accounts satisfactorily for the
influence of magnetic polaritons in the absorption
line shapes, the host-impurity frequency pulling,
and the enhancement of the impurity mode. In this
approach one assigns different magnetizations to
the impurity and to the host spins, and the normal
mode frequencies are the same as those given by the
Ising model. This model is known to fail when the
impurity mode frequency is close to the magnon
band, so one does not expect that the interaction
constants determined by the calculation are the )rue
ones.

In this paper we present a theory for the enhance-
ment of the impurity associated local mode, which
takes into account the spatial extended character of
the mode. The theory uses zero-temperature
Green's functions and allows for the existence of
two interaction constants between the impurity and
host spins, since they have been found necessary to
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explain several results in the (FeMn)F2 system.
In Sec. II we formulate the spin-wave problem

for an antiferromagnet with a single substituted im-
purity spin in order to obtain the eigenfrequencies
and eigenfunctions of the impurity associated local
modes. Section III is devoted to the calculation of
the dynamic response of the local modes. In Sec.
IV we apply the results to the systems FeF2.Mn and
MnF2. Fe. In the last section we present the con-
cluding remarks. Preliminary results for FeF2.Mn
have been previously presented. '

II. IMPURITY MODES
IN ANTIFERROMAGNETS

We write the Hamiltonian for FeF2 with a single
Mn + impurity at site i =0, or for MnF2. Fe +, as

4 =pgH p g g(Sf +2JQ S; S;+s

Dg(S('—) +2JqS QSs

—2 J'& Sp g Ss, —D'(Sp)

where the sums in l run over sublattices i and j but
exclude i =0. The first term is the Zeeman interac-
tion due to an external field Hp applied along the c
axis of the crystal (z direction). The second
represents the Heisenberg exchange interaction be-
tween host spins which are next-nearest neighbors
(on opposite spin sublattices) in the rutile structure.
As is well known, the interaction J& between nearest
neighbors in pure FeF2 and MnF2 is very small.
The third tenn is the anisotropy interaction which
is large and mainly of single-ion origin for Fe +

and small and of dipolar origin for Mn +. Since
the dipolar interaction is very small compared to
exchange, we write it in the form (1) for simplicity.
The last three terms describe the impurity spin in-
teractions. The impurity spin is assumed to interact
with its eight next-nearest host neighbors 52 (in-
teraction parameter J2) and with its two nearest
neighbors 5~ (parameter J& ) since there is experi-
mental evidence that both interactions are impor-
tant in the impure system. Note that the interac-
tion parameter J'~ is taken positive when ferromag-
netic.

The frequencies of local modes associated with
impurities in antiferromagnets were first calculated
by Lovesey' and Tonegawa 20 Tonegawa ' and
Shiles and Hone later extended the calculations
for impurities with two interaction constants, such
as the one considered here. We present here the cal-
culation of the frequencies not only for complete-

ness but also because we need to obtain the wave
functions to find the dynamic response. To our
knowledge these have not been calculated explicitly
for actual systems of interest.

We assume that the dominant interaction on the
impurity spin S' at site i =0 is the antiferromagnet-
ic J2 ( & 0), so that in the ground state it points in
the positive z direction, while its eight 52 neighbors
are in the down sublattice. The Hamiltonian (1) can
be diagonalized by first introducing spin deviation
operators a; and bj associated with the two sublat-
tices and then transforming them into normal mode
boson operators by means of

c =g I,'a; +g I 1 b~,
l J

cp ——g I ~~a; +g I &~bj .
(2)

The wave functions obey the orthonormality rela-
tions

$ pApA, 4 $ pApA, t +5 (3)

where r is a 2X)& 1 column matrix,

G =(L0 8) ' is the p—ure-crystal Green's-function
matrix, H is the pure-crystal Hamiltonian, and V is
the impurity perturbing potential. This set of secu-
lar equations gives the normal mode frequencies
and wave functions, subject to the condition of Eq.
(3). Owing to the finite range of the perturbation
caused by the impurity the solution of Eq. (4)
reduces to solving a set of 11X 11 secular equations.
The calculation of the corresponding determinant
can be simplified by block diagonalization of the
matrix G V. This can be accomplished via a uni-
tary transformation from a basis of individual sites
to linear combinations that transform according to
the irreducible representations of the group of the
cluster formed by the impurity and its interacting
neighbors. The 11X11 unitary transformation for
this case has been given by Shiles and Hone. In-
stead of the site wave functions a more convenient
set of normal mode amplitudes ' can be used to
solve (4). They are represented by the 11X11

where the positive sign holds for the u mode and
the negative for the P one. The equations of motion
for the wave functions which diagonalize the Ham-
iltonian can be written as

(4)
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column matrix A obtained from I by the transfor-
mation,

Equations (4) and (6) lead to a new set of secular
equations,

(I VG—' )A =0 . (7)

These determine the eigenfrequencies and the nor-
mal mode amplitudes associated with the impurity

Ao and its interacting neighbors A~ and A~, subject

to the orthonormality condition (3). With the
knowledge of these amplitudes and the crystal
Green's functions one can find the wave function at
any site in the crystal. From (6) and (7) one has

+&2g +Eg +E„. The three A~g modes have s-like
wave functions which are even and nonzero at the
impurity site. For the s modes we make A& =—A&

and As =Az and Eq. (7) leads to

Q]1 Q]z Q]3 Ap

Q21 Q22 Q23 A 1

Q31 Q32 Q33 A2

where

Q]1=1—co+(]'Upp —a]3 p Up]/4)+yzUzp,

Q]2 ——2co+[a]~p(Upp+ U]1 )/8

—(v+CO Xz)U]pl

or

I =GoA,

I ] (+co ) = G]p(co )A p+ g G]s, (co )As,
5)

~ g G]s, (co)As, .
5~

(8)

Q]3 —8(yzco +v)( 1 —co +co Upp)

+2a]~PCO+co Up],

Qz] =co+Pa](Upp/3 P —Up])/8

Qzz ——1+co+Pa](2U]p/~P —Um] —U]1 )/8,

Q23 Pa 1 [co+Co ( Up] Upp/~—P )+1/~P 1

(12)

There are four types of pure-crystal Green's func-
tions that can be expressed in terms of their Fourier
transforms,

Q3] — (3 2N+ Upp —
pUzp )/8,

Q3z= —~+(1'2+] ~ )U]p/4,

Q33 ——1+(Pco +1'2) Uzp

where 0.=1 for m and I in sublattice i, 0.=2 for
m =i, I =j, 0.=3 for m =j, l =i, and cr=4 for
m =j, l =j'. These Green's functions can be easily

obtained,

U, ,'= G,,' =—g~

CO+

(2) 1
UJ, —— coEGCJ. ————gN

ik ~ r;;e

(Co —Cok ) /COE

ik r,"
'Vke

(CO —Cok ) /COE

(13)

+COg+CO&
Gk (co)=,z

CO —Nk

Gk"(co ) =—Gk"(co )=-
N —Nk

(10)

where P=S'IS, a, =J', /J, a,=J', /J, yz
=(azv p —1), p=ag —1, 5'=(2S' —l)D'/2SzzJ,
5 =cog IcoE,

v = (g g')pEHp/ficoE +5'p ——5+az —1+a,/4,

co —(coE +cog )
Gk"'( )=-

CO —COk

where co'=co+coH, ~H =gpaHo AcoE ——2Sz2J,
fico& ——(2S —1)D, yk is the usual structure factor
which appears in the spin-wave frequencies,

~=k+a

~k =[(~E+~~ )' 1'k~E]'"—

The cluster formed by the impurity, its two nearest,
and its eight next-nearest neighbors in the rutile
structure belongs to the symmetry group D4~ whose
irreducible representations are 3A~g +2A2„+8~„

and co- = (co'+co~ +coE]/coE. 0 is the impurity site, 1

and 1' are the nearest neighbors in the up sublattice,
and 2 represents the next-nearest neighbors in the
down sublattice. The frequencies of the s modes are
given by

det(Q) =0 . (14)

Note that the elements of the determinant Q for
Ho ——0 are not exactly the same as the ones given by
Shiles and Hone. This is so because we work with
spin deviation operators whereas they use the spin
operators themselves. However, the zeros of the
determinant are the same as they should be because
the two treatments must give the same energies at



27 THEORY OF THE RESPONSE OF LOCAL MAGNON MODES IN. . . 3035

T =0. With (11) we can also obtain relations be-
tween the normal mode amplitudes for the s modes,

A) ——a)Ap,

A, =a2Ao,

where

Q11Q23 Q13Q21
a~ ——

Q22Qi3 —Qi2Q23

Q21Q12 Q11Q22a2=
Q22Q13 Q12Q23

(15)

CO
I'g ——A o

COE
(1+8a2ai )Uo+ai U;1

Sa2
+ ai Uii — &Io

CO

Ao
I

z
—— [ ( I+8a2co ) UJO

COE

+a1Uji +ai Uji j .

(16)

The amplitude Ao can be obtained using (16) in the
normalization condition (3}:

COE

Ao ——
P

where

and

P = (8a2) +(I+8a2co ) Soo

+.2a, (S„+.Si 1 )
2

+4(1+8a2co )(a 1S10—4a2co+ Uoo)

—32a Ia2+ Uo&

Using (15) and various relations betwixt:n the
Green's functions2 the wave functions for the s
modes can be written as

X++(co,q =0)= +mimi «Si+;Si ))„,fiV ll,

(20)

where V is the volume of the crystal and the term in
double angle brackets is the time Fourier transform
of the retarded Zubarev Green's functions for the
positive and negative components of the spin opera-
tors. In order to find the susceptibility one must
solve the equations of motion for the Green's func-
tions of the impure spin system. This is easily done
if the spin operators are expressed in terms of the
normal mode operators ck and ck by means of the
inverse of (2). The equations of motion for the
Green's functions of the various pairs of operators
c~ and c~ can be solved exactly, leading to

«c;c ~ )& = 2' co —cog

2K co +cog

«„;„,»„=«„t;„t.»„=o .

(21)

infrared laser absorption and in Ram an light
scattering experiments. In both cases the Hamil-
tonian for the interaction between the external exci-
tation and the spin system can be written as

a t a g~gcF 1
= —g miSi Hi e

l, a

where in the far-infrared absorption Hi e '"' is the
a component of the magnetic field of the radiation
and ml ——glpz. In the Raman scattering experiment
Hi is an effective field proportional to the prod-
uct of the electric fields of the incident laser and of
the scattered light, co= ~coL, —io,

~

is the Raman
shift, and mi expresses the strength of the coupling
between the radiation fields and the spin Si. The
+ + component of the susceptibility of the spin

system for uniform (q =-0) excitation is given by
4

S;;=
4 + 2E ~ 'Yk ik (r, —r;, )

k (ro ~k}
(18) The Green's functions appearing in (20) can be ob-

tained with (2) and (21):
Numerical results for the frequencies and wave
functions of the so mode will be given in Sec. IV for
the (FeMn}F2 system.

«S;;S; )&.

(SS )1/2—+ y I a«i.a

III. DYNAMIC RESPONSE
OF THE LOCAL s MODES

—g I ii'*I iI!
N +COp

(22)

In this section we derive an expression for the in-
tensity of the response of the local s modes in far-

where the plus sign holds for l and l' in the same
sublattice and the minus sign for / and l' in opposite
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sublattices. The result for the susceptibility de-

pends now on the knowledge of the wave functions.
For the simple case of a pure crystal, with SI——S,
m~ ——gjM~, the susceptibility becomes

2yMcog
Xp++(pi, q =0)=

2 2 '(~+~H)' —~P
(23)

where yM =Kg pES lfiV and cop is the k =0 mag-
non frequency in the absence of the field Hp. This
is the well-known result' for the magnetic suscepti-
bility of a uniaxial antiferromagnet under a circu-
larly polarized rf field perpendicular to the easy
axis. In the case of a crystal with an impurity at
i =0 the wave functions can be related to the nor-
mal mode amplitudes of the impurity cluster by
means of Eq. (8). Then the sums in (20) over the

I

X++(co =—coax, q =0)=pi++, , (24)

where

whole crystal can be reduced to sums of the pure-
crystal Green's functions which are evaluated exact-
ly. For a uniform excitation they will all be related
to the q =0 components of the Green's functions
(10). In order to calculate the sums in (20) we add
and subtract to all terms involving the impurity site
a term with the host spin parameters. We are then
left with two sums, one that contains the impurity
parameters and one that does not. For co near the
frequency of a A, local mode, only the terms with a
resonant denominator need to be kept, and the sus-
ceptibility becomes

g (I.", 'I', —r~ r,'—r~r', +r,"'r'),
fiV co —cog

(25)

(m'~S' —mv S
X2

pA)mVS p ~(l i. I i.)~+
CO —Ng

l&J

(26)

Using (8) the single sum in (26) becomes

(G( ) G( ) )+ y A A, (G(2) G(4) ) (27)

and the double sum in (25) is

X=X X *.

From (27) one can see that the s modes are the only ones which respond to a uniform excitation, since only for
them Ap, gs As, and gs As are nonzero. For the s modes we can use (10), (15), and (24) —(27) to find the
final result for the susceptibility. If we assume that there are cX impurities in the up sublattice and that their
local modes are noninteracting, the total susceptibility becomes

Xr(co -=(o»0)= cpm S 21'(MB (a) ) B(a))' 1

[(~.+~H)' ~0] [(~,+~H)' ~0]'
(28)

where
m'

p= I
i/2S'

S

B(co)=A proE[ (1+2ai )(ro+ —1)

—8ap(co +1)j .

(29)

Thus we see that in the noninteracting impurity ap-
proximation the intensity of the s local mode
response is proportional to the impurity concentra-
tion c and it increases rapidly as its frequency co,

(which decreases with increasing field) approaches
the down-going host magnon frequency Np —coH.
Note that the cX impurities in the down sublattice
contribute to X but not to X++. Therefore, g
is enhanced as the s-mode frequency that increases
with increasing field approaches the up-going mag-
non frequency Np+N~. This conclusion has been
verified in the experiments with FeF2.Mn. Con-
versely, in CoF2.Mn there is an enhancement when
either impurity mode approaches the lower magnon
frequency, owing to the mixing of the two modes in
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this system.
In the far-infrarcxl absorption the radiation-spin

coupling factor is m =gpss, and the product m'v S'
for the impurity is close to that of the host, so that

p is small. In fact, for the FeFq.Mn system g'=2. 0,
S'=2.5, g =2.23, S =2, and p =—0.03, so that the
first term in the large parentheses in (28} is negligi-
ble. One can define the enhancement A of the im-

purity response as the ratio between (28} and the
"isolated" impurity susceptibility

X; „=cNg p,&S/AV(co —co, ),

& (co)A=

(30)

cop 2I'p p8 (co)
71=

(co& +coH ) —coo
2 2

8(co)+ 2 22
[(co +coH } —coo]

(32)

This parameter corresponds to the ratio of the areas
under the Raman lines at co, and at cop, divided by
c. It can be readily measured in inelastic light-

scattering experiments' in which the line shapes do
not suffer the distortions due to the effect of mag-

netic polaritons that are present in the case of the
infrared absorption. '

Before proceeding to the numerical applications
it is instructive to examine the results obtained so
far in the limiting case where the s-mode frequency
lies in the antiferromagnetic gap just below the
k =0 magnon. In this case one can obtain simple
analytical expressions for the wave functions and
for the enhancement. When co p

—co, « coE the con-2 2 2

tribution of the center of the Brillouin zone dom-

In the Raman scattering experiment the coupling
of the radiation with the impurity and host spins
can be quite different from each other. In fact, in
the case of FeFq.Mn the coupling with the impurity
spins is negligible and m'/m —=0, so that p=- —1.
In this case there is no meaning in comparing the
local mode and the isolated impurity intensities. In-
stead, a convenient quantity to be compared with
the Raman scattering measurements is the intensity
of the local mode relatiue to the host mode, normal-
ized with respect to the impurity concentration c.
Defining the ratio

[(co —co, )XT(co )]~
'9= (31)

c [(co —cop)Xp(co )],
one obtains from (23) and (28)

inates the expression for the Green's function (13).
One can then use the parabolic approximation for
the dispersion relation and replace the discrete sum
in (13) by an integral,

4 ik R
Uip-= —

i Jd k
(2ir )' b'+k'

where k ri=k Ri, Ri=(l +m +n )'~ is the nor-
malized distance of the site l (coordinates la, ma, nc)
to the origin, and b is a range parameter defined by

2 I2

b=2 (34)
COE

(33)

For 1+0 and b sufficiently small the upper limit of
the integral can be extended to infinity and the
Green's function takes the form of a Yukawa poten-
tial,

—bRi
1 e

UIp=-——
RI

(35)

—bRI
s s

+ 8I i~o ———Ao (1+8apco )
7TCOE RI

(36)

where (=1/b can be identified with the impurity
mode radius, which varies with frequency as

(cop —co'~) '~. This dependence of the local mode
disturbance on the distance to the impurity can also
be obtained by a semiclassical treatment of the
motion of the spins. Actually it is found in other

types of impurity problems in crystals since the
electron energy also varies as k near the edge of
the bands. As shown by Ivanov and Pogorelov a
substantial change in the spectrum of the excita-
tions occurs when the impurity concentration is
comparable to the value cp ——(erg) . For the
FeFq.Mn system at a field of 50 kOe, (-=2.2 and

cp-8X10, and indeed impurity banding effects
are observed at impurity concentrations as low as
this value.

One can also express the enhancement in terms of
the local mode radius. When (cop —co, ) «coE the
term in Spo dominates the denominator in (17).
With the same approximations used to derive (35)
one can show that

coE(co+ —1)
Spp= 2 i2}1/2

7T Np —N
(37)

Using this frequency dependence of Sop in (17}and

If for the sake of simplicity we assume that the
nearest-neighbor impurity-host interaction J

&
is

zero, a i
——0 and the local s-mode wave function (16)

becomes approximately
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(29), and neglecting the slow frequency dependences
of a i and a2 in (30), one finds that the enhancement
varies with the third power of the radius A ~g .
Of course g represents an effective volume occu-
pied by each impurity, and one expects that a sys-
tem with dimension d will have an enhancement

Accord.

This explains why the enhancement in
one-dimensional magnets is smaller than in three-
dimensional ones. We should note at this point that
the presence of a competing J

&
interaction modifies

the wave function considerably, and the simple
form (36) does not provide a good description for
the local mode. This will be shown in the numeri-
cal calculations of the next section.

IV. APPLICATION TO (FeMn)F2

In this section we apply the previous results to
find the local s-mode energies, wave functions, and
dynamic response of the system Fe„Mn& „F2 in the
two impurity regime limits, x~0 and x~1. This
system has now been extensively studied experimen-
tally by various techniques but the lack of a detailed
theory has thus far precluded the determination of
their interaction parameters. Table I shows some of
the relevant physical parameters of pure FeF2 and
MnF2. The mixed Fe Mn& F2 system was first
studied throughout the whole concentration range
by Enders et al. '

by Fourier-transform far-infrared
spectroscopy. Those authors observed the strong
Mn defect mode in the gap of FeF2 close to the
magnon band which had been predicted theoretical-
ly by Tonegawa. They found that as the Mn con-
tent increased the "defect" frequency gradually de-
creased to become the 8.7-cm ' antiferromagnetic
resonance mode in pure MnF2. On the other hand,
the host Fe mode in FeF2.Mn increases in frequency
as x decreases, to become the so Fe impurity mode
in MnF2. This mode had previously been stud-
ied ' by Weber and Johnson with infrared tech-
niques, and by Oseroff and Pershan with light
scattering, who determined that its frequency was
94.8 cm '. The Mn impurity mode in FeF2 was
studied in greater detail by high-resolution far-
infrared laser spectroscopy' and by light scatter-
ing' techniques, and its frequency at Ho ——0 was

determined to be 50.27 cm '. Several of these stud-
ies showed that contrary to pure FeF2 and MnFz, in
the impure system the Mn-Fe nearest-neighbor in-
teraction J

&
is sizable at both ends of the concentra-

tion. Thus we have calculated the features of the
Mn impurity mode in FeF2 and of the Fe mode in
MnFz allowing Ji to vary from —2 cm ' (antifer-
romagnetic) to + 2 cm ' (ferromagnetic).

The Green's functions in Eq. (13) were calculated
for frequencies outside the magnon band by
transforming the sums in k into integrals and ap-
proximating them by coarse sums, which were
evaluated in a PDP-10 computer. For frequencies
close to the bottom of the band the dominant con-
tribution to the sum comes from the center of the
Brillouin zone, so the octant of the zone was divid-
ed into 30X30)&30 points and the center volume
was further divided into 20&20)(20 points. For
frequencies not close to the magnon band the finer
sum in the center volume was found unnecessary.
The Green's functions obtained with this procedure
agree within four decimal digits with those tabulat-
ed by Walker et al. Once the Green's functions
are known, the frequencies, the wave functions, and
the enhancement of the intensity of the s modes are
calculated in a straightforward manner with Eqs.
(14)—(18) and (28).

A. FeF2.Mn

The calculations were made with the host param-
eters given in Table I and with the following impur-
ity parameters: P =1.25, 5'=0.013, co, =50.27
cm ' (1.509 THz) at zero applied field and in the
limit c—+0. For each value of J& in the range —2.0
to 2.0 cm ' the value of the (antiferromagnetic) J2
necessary to fit the s-mode frequency was found
with Eq. (14), and the result is shown in Fig. 1.
Note that for J'i ——0 the value of J2 which fits the
frequency is 1.74 cm '. These values correspond to
an impurity mode Ising frequency of 56.58 cm
which lies inside the magnon band 52.54—78.4
cm '. For Ji +0 the discrepancy between the Ising
value and the actual frequency is even larger (e.g.,
Jj = —2.0, J2 ——2.5 yield col ——64.6 cm '), which
shows the inadequacy of the Ising model when the

TABLE I. Relevant physical quantities in MnF2 and FeF2 used in the calculations.

FeF2 (Refs. 15 and 40)
MnF2 (Refs. 41 and 42)

2.23
2.0

cop (cm ')

52.54
8.69

co~ (cm ')

58.24
48.80

cog (cm ')

20.20
0.77



THEORY OF THE RESPONSE OF LOCAL MAGNON MODES IN. . . 3039

3.0 100

2.0

50

1.0

0-2.0
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J, (cm ')

I
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2.0

FIG. 1. Dependence of the impurity-host interaction
parameter J2 (antiferromagnetic) on the nearest-neighbor
parameter Ji (ferromagnetic if positive) to fit the fre-
quency of the so local mode in FeF2.Mn to 50.27 cm
Also shown is the variation of the relative Raman inten-
sity, as defined in the text.

100— FeF, : Mn

I {u&s )

c 1 huo)
50 —Ma'

-4
du) (cm '

)

0 0.5 I.O

c {%)
FIG. 2. Measured relative Raman intensity and fre-

quency separation between the local and host modes in

FeF2.Mn for several impurity concentrations (Refs. 15
and 16).

impurity mode is near the magnon band.
In order to determine the correct impurity-host

interaction parameters one needs another indepen-
dently measured quantity. The other two s-mode
frequencies lie inside the magnon band and cannot
be observed. At finite impurity concentrations
there are several pair modes whose frequencies can
be fitted to a two-impurity Green's-function
theory. A simpler measurement in this case is the
relative intensity of the Raman impurity mode i},
which is very sensitive to the value of Ji, as shown
in Fig. 1. This was measured' for three concentra-
tion values, as shown in Fig. 2. Extrapolation to
c =0 gives g=75, which corresponds to J~ ———0.2

cm ' and J'z ——1.959 cin ', both antiferromagnetic.
The sign of Ji agrees with Refs. 15 and 35. How-
ever, their conclusion that the magnitude is much
larger than J& in the pure crystals FeF2 and MnF2
is not confirmed by our calculations. The cause of
this discrepancy probably lies in the fact that when
the local mode extends over many neighbors, the as-
signment of a magnetization to the impurity site
masks the microscopic interaction parameters.

The strong dependence of the Raman intensity on
the value of Ji (with fixed co, frequency) can be un-
derstood from the behavior of the wave functions of
the impurity and its neighbors. Table II shows the
wave functions I I' of the so mode at 50.27 cm
obtained from Eq. (16), for several sites labeled by
(I,m, n), which have position vectors
r/a =Ix+my+c/anz with respect to the impurity
at i =0 (a and c are the lattice parameters). The
parentheses under the indices indicate the number
of equivalent sites and the last column gives the
sum S=g I'; —g I J evaluated over a cluster with

97 spins, limited by the thirteenth-nearest neigh-
bors. Notice that for a large antiferromagnetic in-
teraction Ji, the nearest neighbor (001) and the im-

purity (000) wave functions have opposite phases.
Since they are in the same spin sublattice, they pro-
duce competing interactions on the other neighbors,
causing the phase of the wave function to oscillate
from site to site. As the coupling between the radi-
ation and the Mn + impurity spin is zero, the light
scattering by the local mode is entirely due to the
participation of the Fe + host spins around the im-

purity. Therefore, the response of the local mode
decreases as J'i increases antiferromagnetically (neg-

ative). It is interesting to note also that as the com-
petition between J~ and J2 increases the local mode
tends to spread out over a larger number of neigh-
bors, as indicated by the smaller values of I o and of
1 (52). In this case the local mode wave function is
not described by the simple relation (36) obtained
with J~

——0 and its radius is larger than b . So the
antiferromagnetic interaction Ji in FeFz.Mn favors
impurity-impurity interaction effects even at very
small concentrations.

The effect of the magnetic field Ho is to displace
both the local mode and k =0 magnon frequencies
downward in the case of an impurity in the up-spin
sublattice. Since the g factor of iron is larger than
that of manganese the frequency separation hm de-

creases as Ho increases. ' Figure 3 shows the
behavior of b,co, the infrared absorption enhance-
ment A, and the relative Raman intensity g as a
function of Ho in FeF2-.Mn. As expected, as hco de-
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TABLE II. so local mode wave functions at the impurity site and its near neighbors in FeF2.Mn for several values of
J1. In each case the value of Jz is the one that fits the frequency ~,=S0.27 cm '. The parentheses below give the num-

ber of equivalent sites. The last column shows the sum S= QI,' —QIJ~ computed in the cluster limited by the

thirteenth-nearest neighbors (r -2a).

J1 cm ')

—2.0
—1.5
—1.0
—0.5
—0.2

0
0.5
1.0
1.5
2.0

(000)

(1)

0.864
0.923
0.933
0.918
0.904
0.894
0.868
0.842
0.819
0.800

(001)

(2)

—0.324
—0.176
—0.050
—0.049

0.097
0.124
0.180
0.224
0.258
0.286

1 1 1

( ———)

(8)

0.075
0.085
0.090
0.092
0.092
0.092
0.091
0.090
0.089
0.088

(100)

(4)

0.096
0.112
0.120
0.123
0.124
0.124
0.123
0.122
0.122
0.120

(101)

(8)

0.046
0.063
0.074

'-0.081
0.084
0.085
0.088
0.089
0.090
0.091

1 1 3
( ———)

(8)

—0.012
0.002
0.013
0.022
0.026
0.028
0.032
0.036
0.038
0.039

(002)

(2)

—0.013
0.006
0.021
0.032
0.037
0.040
0.046
0.050
0.054
0.055

(110)

(4)

0.063
0.075
0.081
0.084
0.085
0.085
0.085
0.085
0.085
0.084

0.986
0.971
0.958
0.949
0.945
0.942
0.938
0.935
0.933
0.931

creases the local mode radius increases and its
response to the external excitation is enhanced
dramatically.

D'=10. 1 cm ' (Ref. 36) and 8.1 cm ' (Ref. 37),
P =0.8, and the host parameters of Table I. The re-
sults are shown in Fig. 4. Also shown in the figure
is the Ising model impurity frequency given by

B. MnF2. Fe2+ fm)1 ——g'pgIIg+2Sz2J2+2Sz) J) . (38)

Since the single-ion anisotropy of the Fe + im-

purity in this sytem is large, the value assigned to
the parameter D' will have a strong effect on the
values of J~ and J2 that fit the local mode frequen-
cy. Unfortunately, the values for D' used in the
literature differ by as much as 20%. We have cal-
culated Jz as a function of J~ which reproduce the
so local mode frequency at 94.8 cm ' using

The local mode wave functions at several neigh-
bor sites for D'=10. 1 cm ' and various pairs of
the parameters J~ and J2 are given in Table III.
The last column in this table is the sum

S=g,.
~
I;

~

—g ~

I'z
~

evaluated over the clus-

ter limited by the fourth-nearest neighbors. Its
proximity to 1 gives an indication of the localiza-
tion of the mode. Table III shows that, as is well

I05

2.0
250

200

l50
I.O—

I00

E
O

3
—95

IOO

I.O
0

i i I I I I i i I I

50 IOO

H0(KOe)

FIG. 3. Frequency separation to the host mode and in-

tensity of the local so mode in FeF2.Mn as a function of
the magnetic field applied along the c axis in the zero im-

purity concentration limit.

0
-2.0

90
2.0I.O-1.0 0

J,' (cm ')

FIG. 4. J2 vs J1 that reproduce the so mode in
MnF2. Fe at 94.8 cm '. The solid line corresponds to
D'=10. 1 cm ' and the dashed one to 8.1 cm '. Also
shown is the impurity frequency obtained with the Ising
approximation, Eq. (37).



27 THEORY OF THE RESPONSE OF LOCAL MAGNON MODES IN. . . 3041

TABLE III. so local mode wave functions at the impurity site and its near neighbors in MnF2..Fe for several values of
J1. In each case the value of J2 is the one that reproduces the frequency co, =94.8 cm ', with D'=10. 1 cm '. The
parentheses below give the number of equivalent sites. The last column shows the sum S = g I'; —g I'J computed in
the cluster limited by the fourth-nearest neighbors.

J1 (cm ')

—2.0
—1.5
—1.0
—0.5

0
0.5
1.0
1.5
2.0

(000)

(1)

0.997
1.004
1.008
1.010
1.008
1.001
0.989
0.970
0.955

(001)

(2)

0.130
0.097
0.059
0.018

—0.027
—0.076
—0.128
—0.183
—0.240

0.069
0.066
0.062
0.057
0.052
0.046
0.039
0.032
0.024

(100)

(4)

—0.036
—0.034
—0.032
—0.030
—0.027
—0.024
—0.020
—0.016
—0.012

(101)

(8)

—0.018
—0.017
—0.016
—0.014
—0.013
—0.011
—0.008
—0.006
—0.003

1 1 3
( ———)2 2 2

(8)

0.003
0.002
0.001

—0.001
—0.002
—0.004
—0.006
—0.008
—0.010

(002)

(2)

—0.002
—0.001

0.000
0.000
0.001
0.002
0.003
0.004
0.005

(110)

(4)

—0.017
—0.016
—0.015
—0.014
—0.013
—0.011
—0.010
—0.008
—0.006

0.998
0.998
0.999
0.999
0.999
0.999
1.000
1.000
1.000

known, the impurity mode is very localized because
its frequency lies well above the spin-wave band.
However, the degree of localization is not high
enough to allow one to neglect the wave function at
the nearest and the next-nearest neighbors. As a re-
sult, though the Ising expression for the impurity
mode frequency describes this system much better
than FeF2.Mn, it departs from the Green's-function
value as much as 10% in the range of variation of
J~ studied. The approximation becomes better as
J'i increases ferromagnetically because this favors
the localization. Unfortunately the impurity mode
response cannot be used to help in the determina-
tion of the impurity host parameters in this case.
The relative (local)/(host) mode infrared absorption
varies only from 1.3 to 1.5 in the range of Fig. 4.
This is not surprising since the strong localization
of the mode prevents the host neighbors from in-

ducing an enhancement on the impurity spin
response. The other measurements available in the
literature on MnF2. Fe, such as the frequencies of
several pair modes, determined by infrared'
and Raman"' spectroscopy, and the behavior of
the magnetizations of the impurity and its neigh-
bors, measured by NMR, cannot be interpreted in
the context of the theory presented here and so they
are not to give an independent set of values of J2 vs
J'i. But it is evident from Fig. 4 that our results are
in disagreemerit with the values J~ ——0.7 cm
J2 ——1.42 crn ' given in Ref. 4 and with J& ——2. 1

cm ', J2 ——2.3 cm ' given in Ref. 7. The former
set gives energy values which are smaller than the
actual energy both in the Green's-function calcula-
tion and in the Ising approximation, whereas the
latter corresponds to too-large energy values.

V. SUMMARY

We have studied the features of magnetic impuri-
ty associated local modes in antiferromagnetic insu-
lators in the limit of very small impurity concentra-
tions and zero temperature using a Green's-function
approach. With the theory developed we calculated
the so local mode frequencies, wave functions, and
response to external excitation in FeF2.Mn + and
MnF2. Fe +. In the first system the local mode lies
just below the spin-wave band of FeFz. As a conse-
quence the mode spreads over many impurity
neighbors and its dynamic response is enhanced
dramatically with respect to the situation where the
impurity is isolated. It is found that the degree of
localization, and therefore the enhancement, de-
pends strongly on the value of the nearest-neighbor
impurity-host interaction parameter. Thus the data
on the enhancement and the frequency of the im-
purity mode provide enough information to deter-
mine that J~ ——0.2 cm ' and J2 ——1.79 cm ', both
antiferromagnetic. These values are in good agree-
ment with the ones obtained by Belanger et a/. In
MnF2. Fe + on the other hand, the so local mode
lies well above the magnon band and is very local-
ized. Thus the enhancement is small and the rnea-
surement of intensity of the impurity mode does not
allow an unambiguous determination of the
impurity-host interaction parameters.
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