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An exact derivation is given of the magnetic ground states for spin-% Ising models with

pure four-spin interactions on the cubic lattices. The ordered states encompass ferromag-
netic, antiferromagnetic, and ferrimagnetic degenerate components, and the order-
parameter dimensionality is n =38, 4, and « for the sc, the bec, and the fcc lattices. The
Landau-Ginzburg-Wilson Hamiltonians are derived for the sc and bec lattices. Monte Car-
lo calculations demonstrate that the phase transition in all three lattices is of first order.
The effects of a symmetry-breaking field are investigated for the bee lattice. The phase di-
agram is calculated and shown to include lines of first-order and continuous transitions as
well as critical end points. The results are compared with mean-field and renormalization-

group predictions.

I. INTRODUCTION

Phase transitions and critical phenomena of Ising
models with multispin interactions is a topic at-
tracting current interest since effects may be
discovered that are excluded when the conventional
pair-interaction approximation is applied. Further-
more, models with multispin interactions may serve
as useful microscopic models for systems with com-
plicated magnetic ground states that otherwise can
only be produced by using rather exotic position-
space and spin-space anisotropic pair interactions.
Often, symmetry considerations rule out these latter
complications and higher-order interactions must be
invoked, as, e.g., in the case of the magnetic phase
of solid *He.!

Much attention has been paid to two-dimensional
Ising models with three- and four-spin interac-
tions>~® to investigate whether nonuniversal
behavior may result as in the exactly solvable

Baxter model,” where the critical exponents vary

continuously with the ratio of the two- and four-
spin interaction strengths. The theoretical analyses
of three-dimensional discrete Ising models with
mixtures of pair and multispin interactions have
been carried out using series expansion tech-
niques,'~!¢ Frank-Mitran theory,'’~!° mean-field
theory,”® and Monte Carlo (MC) numerical simula-
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tions.!”?"22  Various field-theoretical continuum
approximations to three-dimensional Ising models
have also been investigated by renormalization
group (RG) analysis.?

In this paper we consider three-dimensional cubic
Ising lattices with interactions of the type

H=—J2 2 (T,'O'j—J4 2 0000y .
[i’j} [ivj’kvl’}

(1.1

J,>0 and J;>0 are coupling constants, and
o;=+1 is the Ising spin variable associated with
the ith lattice site. The first sum in Eq. (1.1) runs
over all distinct nearest-neighbor pairs {i,j} in the
lattice, and the second sum comprises the simplest,
distinct but geometrically equivalent four-spin clus-
ters {i,j,k,I} that can be embedded in the lattice
under consideration. We refer to these four-spin
clusters as the basic quartets.

In a series of papers on low-temperature series
analysis,'®~!* Griffiths and Wood treated the bcc
and fcc lattices with pure four-spin interactions as
well as mixtures of two- and four-spin interactions.
By assuming the transition to be continuous and by
analyzing the critical singularities in terms of power
laws, these authors argued that the pure four-spin
interaction limit represents a universality class dif-
ferent from the n=1 Ising universality class, and
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that the encountered variation of the critical ex-
ponents as a function of J,/J, indicates nonuniver-
sal behavior. The results obviously conflict with
the universality hypothesis since the models do not
fulfill the Kadanoff-Wegner criterion.!* This puz-
zle was resolved recently for the fcc lattice?? where
MC calculations revealed a tricritical point and a
crossover to first-order transitions for sufficiently
large values of J,/J,. Thus the nonuniversal
behavior is an artifact of the series analysis. A
similar behavior has been inferred for the other two
cubic lattices on the basis of a modified mean-field
theory argument.!® From a conjecture based on the
Frank-Mitran theory, a scaled phase diagram was
presented in Ref. 19 demonstrating the phase dia-
gram to be almost identical for the three lattices,
thereby indicating that an effective lattice-lattice
scaling is present with respect to the phase
behavior. The existence of a tricritical point is also
supported by mean-field calculations, RG
analysis,”>?* and a proper interpretation of the re-
sults from series analysis.?

In this paper we shall focus on the pure four-spin
interaction limit J, =0 and present evidence for the
first-order nature of the transition for all three lat-
tices. We determine the ground states exactly, dis-
cuss their symmetry, and derive the Landau-
Ginzburg-Wilson (LGW) Hamiltonians for the sc
and bee lattices. Furthermore we study the effects
of applying a symmetry-breaking field for the bcc
lattice that has a fourfold-degenerate ground state.
It is found that the resulting phase diagram is rath-

FIG. 1. Definition of the basic quartets for the three
cubic lattices. The basic quartets specify the four-spin in-
teraction in Eq. (1.1) and are indicated by the heavy solid
lines. The numbers in the corners indicate the sublattice
labeling employed in the ground-state analysis of Sec. II.

er complex, and that its structure is in agreement
with recent renormalization-group calculations.?>26

This paper is organized as follows: In Sec. I we
give the magnetic ground states of the three lattices
and derive the order-parameter index n. Also in
this Section the LGW Hamiltonians for the sc and
bee lattices are presented. The phase transition is
investigated in Sec. III on the basis of Monte Carlo
calculations, that in Sec. IV is extended for the bcc
lattice to include a symmetry-breaking field. A
complete phase diagram is presented. We conclude
the paper in Sec. V.

II. GROUND-STATE ANALYSIS
AND LGW HAMILTONIANS

It is possible to derive exactly the magnetic
ground states for the three cubic spin-% lattices. As
the basic quartets {i,j,k,!} in Eq. (1.1), we choose
the simplest equivalent and spatially the most con-
fined four-spin clusters that can be embedded in the
given lattice. These are indicated in Fig. 1. An im-
portant difference between the lattices is that the
basic quartets for the fcc lattice involve nearest-
neighbor bonds only, whereas the quartets of the sc
and bce lattices involve nearest- as well as next-
nearest-neighbor bonds. Thus the ground states of
the sc and bcc lattices are determined uniquely by
the ground-state configuration of a single basic
quartet. In contrast, for the fcc lattice a tremen-
dous ground-state degeneracy arises. In the “fer-
romagnetic” case J4 >0, that we focus on here, a
ground state for the sc and bec lattices consists of
quartets with sign combinations (+ + + +) or
(4 4 — —) exclusively, in contrast to the fcc lattice
where a ground state may involve mixtures of the
two.

The LGW Hamiltonians are presented for the sc
and bec lattices. In the case of the fcc lattice the
high symmetry of the ground state precludes the
construction of the corresponding LGW Hamiltoni-
an. In the following, we present the ground-state
analysis for each lattice separately and derive the
index n that denotes the number of degenerate com-
ponents of the corresponding order parameter.

A. sc lattice

To facilitate the analysis we define eight sublat-
tices, labeled 1— 8 as shown in Fig. 1, and eight cor-
responding sublattice order parameters ¢;—dsg.
Each spin is engaged in 32 quartets.
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A basic quartet couples spins from four different
sublattices. When the ground-state ordering in any
four sublattices, for example 1—4, is determined,
the ordering in the remaining four sublattices fol-
lows uniquely in order to provide the state of lowest
energy. Therefore, the following ground states oc-
cur:

S1=0¢=¢3=¢4=ds=ds=¢71=03 , (2.1)
for the ferromagnetic ground state,
Pr1=—¢r=¢3=—ds=—¢s=ds=—¢7=¢3,

P1=¢r=—d3=—Py=—ds=—ds=0;=¢5 ,
(2.2)

Pr1=—¢r=—¢3=¢s=¢s=—ds=—¢;=¢3,

for the sc type-II antiferromagnetic ground state,
and

Pr1=¢r=¢3=—ds=¢s5=—ds=—d7=—¢s,
b1=—¢r=¢3=¢s=—¢s=—Ps=¢;=—¢3 ,
br=d1=—d1=bs=—bs=b6=—b1=—b5,
br=—¢r=—¢3=—ds=¢s5=¢s=¢7=—¢3,
for a special antiferromagnetic ground state.

For convenience we introduce the eight inter-
mediate order parameters

¢ =045,

¢2_=¢2+¢7 ’ (24)
¢;—-=¢3i¢6 )

¢Z‘L=¢4i¢5

It is then evident that the ground states defined by
Egs. (2.1) and (2.2) are given as linear combinations
of the ¢;¥, and the ground states in Eq. (2.3) as
linear combinations of the ¢,”. The order parame-
ters characterizing the ground states are therefore:

vi=¢1 +¢7F +6F +o1,
=91 —¢5 +6F —¢5 ,
v3=¢1 +95 -6 —o1,
Ya=¢1 —¢3 —¢F +61, 2.5
Us=¢1 +¢7 +63 —di ,
Ye=01 —¢2 +é3 +b4
Yr=¢1 +é; —¢3 +d5
VYs=¢1 —¢5 —d3 —di .

-

-

Thus for the sc lattice, the ground state is eightfold
degenerate and n=8.

The propagation vectors for the ground states
Y1~y are  K;=0, 277'/a( ,0,3),
K3=2m/a(0,5,+ 5 ), and k4—27r/a( 393 5,0), and for
the ground states Y5 —1/18 combmatlons of
k= 21r/a( > +,0,0), 21 /a(0, 2,0) 27 /a (0,0, 7 >), and
2 /a5 7 ;, ; ), where a is the lattice parameter.
The spin structures representing the peculiar states
s —1g may be visualized as a special bcc two-
sublattice antiferromagnetic structure where each
sublattice constitutes a sc superlattice (with lattice
constant 2a) of octahedra involving seven lattice
points of the original lattice and with corner sites
shared with the six neighboring octahedra in the
same sublattice.

In order to construct the LGW Hamiltonian we
define a new set of order parameters:

no=91 +¢5 +o5 +¢5,
Ne=¢1 —¢5 —¢5F +65,
N3=0¢1 -5+ -6,
N3=0¢1 +¢5 —¢F — R

(2.6)
m=eér —¢; +é3 —d; ,

N=¢1 +¢5 —d3 —ds ,
M3=¢1 +¢5 +é35 +é; ,
Mus=¢] —¢; —d3 +¢; .

Here the order parameters, for example, Mg
71, 7]12, and 7,3, are associated w1th k O
2m/a 2,0 0), 2m/a(5 > 2, 0), and 2m/a(+ 3> 2, 3 7
respectively. This definition of the order parame-
ters simplifies the counting of the fourth-order in-
variants appearing in the LGW model. We find
that there are seven fourth-order invariants, and the
LGW Hamiltonian takes the form

7
Hygw=Hy(n)+ 3 u0)(n), (2.7)
=1

where Hy(n) is the usual quadratic term and O;(n)
are fourth-order polynomials in % defined as fol-
lows:



O=ng+n13+ 277: + 277:1 s
ij

0,= 1702 N1 3 05 +nhani+13)
ij

+nhni+n)+nkhmi+03),
0;=1% 2775'4"'7%23 S af
W] i

+ 2 771177k1+ 2 77177] ’
ijk,1 ij
(i, j#k,1)

04=77(2)"7 %23 +77%77 %3 +n%ﬂ’§3 +77§77 53 ' (2.8)
Os=7n0M12M13M23+M123M1M2M3 »

06=7702"Iij71i77j+"7123 > NijMikN;j »
i,j ik
(ki)

O07=10M123(M 123+ 1302 +M2371) -

We have not studied the renormalization-group
recursion relations associated with the LGW Ham-
iltonian in Egs. (2.7) and (2.8) since, as shown in
Sec. IIID, mean-field theory predicts the model
to -exhibit a strong first-order transition.
Renormalization-group analysis in d =4 —e€ dimen-
sions is not expected to change this prediction.
However, the LGW Hamiltonian presented above
constitutes the necessary starting point in case one
would be interested in analyzing the model in the
presence of symmetry-breaking fields.

B. bcec lattice

The bec lattice is divided into four interpenetrat-
ing fcc sublattices labeled 1—4 as shown in Fig. 1.
Each spin participates in 24 quartets. The basic
quartets couple spins from each of the four sublat-
tices, leaving us immediately with the following
four ground states:

P1=0¢1=¢3=¢, (2.9)
for the ferromagnetic ground state,
dr1=¢2=—¢3=—¢4 (2.10)

for the bee type-I antiferromagnetic ground state,
and

¢1=_¢2=¢3=_¢4 (2.11)
S1=—¢r=—¢3=¢,

for the bce type-II antiferromagnetic ground state,
and the four corresponding order parameters
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V1=¢1+d2+d3+04,
Yr=¢1+d2—d3—d4,
b3=d1—b1+43—0s , 212
Ya=¢1—¢r—d3+d, .

Thus we have n=4 degenerate ground states in the
bec lattice.

The symmetry properties of the order parameter,
Eq. (2.12), are the same as those associated with
type-II fcc antiferromagnets.?’” The LGW Hamil-
tonian takes the form

Hygw= -—%rZzﬁiz——% 2(V¢i)2

—u Etﬁ, —v 3% 1/’1 w31, .

i#j
(2.13)

C. fcc lattice

It is convenient to consider the fcc lattice as built
up of layers of rhomboid-shaped triangular lattices
each with R “rows” and R “columns,” the rows be-
ing along the x direction and the columns being
along the y direction as defined in Fig. 2. This rep-
resentation has been used by Danielian?® for the fcc
Ising lattice with nearest-neighbor antiferromagnet-
ic pair interactions. A layer [denoted (1)] is shown
in Fig. 2 for R=6, with toroidal periodic boundary

A \@/+\@/ \@/+\@/ A4 \@/ \@/

N A A A AU

/ \@/ \&/2 \@/ PATA NN

/ \@/ \@/+\@/+\@/+\@/ A \@/

/ \@/ +\@/+\@/ \®/ NN \@/

/+\@/ \®/+\@/+\@/ \6"/ A

/ AVAYA \®/+ e/+\@/ VAV

(I) (2) (3) (L) (5) (6) (I) (2)

FIG. 2. Representation of three neighboring triangular
layers (1)—(3) of the fcc lattice, normal to the fcc body
diagonal. The layers are composed of R columns and R
rows subject to periodic boundary conditions (R =6).
The middle layer (1) consists of points connected by solid
lines. The circles of centers of the triangles denote sites
on layer (2) immediately below layer (1), and points at the
centers of the remaining triangles denote sites on layer (3)
that is immediately above layer (1). In each lattice point
is placed a spin with value o;=+1. The spin configura-
tion given corresponds to a ground state of the model.
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conditions—the circles of the centers of the trian-
gles denote sites on layer (2) which is immediately
below layer (1), and points at the centers of the
remaining triangles denote sites on layer (3) which
is immediately above layer (1). Each triangle of
layer (1) is the base of a tetrahedron, the vertex of
which is a site either on (2) or (3). Also, each site
on a given layer is the vertex of two tetrahedra the
bases of which are triangles on adjacent layers.

First, to determine the energy of the ground state
we note that an fcc lattice of N sites can be subdi-
vided into 2N tetrahedra (each site is a vertex of
eight tetrahedra, and each tetrahedron has four ver-
tices). The lowest energy possible for any
tetrahedron is —J4, and, as one may arrange for all
tetrahedra to have energy —J, simultaneously (e.g.,
by having all spins with o;=+1), the ground-state
energy for the system is —2NJ,.

Moreover, there is a one-to-one correspondence
between each ground state of the entire fcc lattice
and the configurational state of any one of its tri-
angular layers. This is because each site on a layer
adjacent to layer (1) is the vertex of a tetrabledron
the base of which is a triangle in layer (1), and
therefore whatever the configuration of this trian-
gle, the vertex (and therefore the entire adjacent
layer) is determined by the ground-state require-
ment that each tetrahedron have an energy of —J,.

We can immediately derive a relation for the
ground-state degeneracy, W <28’ R~N'/3. The
equality sign would hold if each spin configuration
of the triangular layer corresponded to a ground
state of the entire lattice. Thus at this stage it is
seen that the ground-state entropy per spin vanishes
in the thermodynamic limit

S(T=0)/N <kgR*In2/N—0 as N— oo .
(2.14)

We now proceed to determine the degeneracy ex-
actly. We focus our attention on clusters of eight
tetrahedra consisting of a central spin on layer (1),
its six nearest neighbors in layer (1) that form a hex-
agon, and its six neighbors in the adjacent layers (2)
and (3), and ask which configurations of the seven
spins (“septet”) in layer (1) allow for an energy
—8J4 of this cluster. For so small a cluster, one
can consider all the possible septet configurations in
turn. As an example, Fig. 3(a) shows a septet con-
figuration that is not consistent with the ground
state. This may be seen by fixing the adjacent-layer
configurations to give the ground-state energy —J,
for each of the six tetrahedra with triangles in layer

VAVANRWAVAN
(VAVERVAVS

(a

FIG. 3. Spin configuration of a cluster of eight
tetrahedra, that does not correspond to a ground state.
(a) Septet configuration of layer (1) violating Eq. (2.15).
(b) Configuration on layers (1)—(3) satisfying the
ground-state requirements for all tetrahedra except those
with base in layer (2) or (3).

(1) as their bases. This is illustrated in Fig. 3(b)
which shows that the energies of the two tetrahedra
with the central spin as vertex have the excited
value +J,. The sole criterion for a given septet
configuration to be consistent with the ground state
of the system is

IM oi=+1, (2.15)
i €hex

where the product is over the sites of the six spins
in layer (1) which form the hexagon of the septet.

The problem of enumerating the ground-state
configurations of the fcc lattice with four-spin in-
teractions then reduces to the following six-spin in-
teraction problem. Consider a system of R? spins
on a triangular lattice with the Hamiltonian

N
H2—d=*J62 [ H 0’,-] , (216)

ji=l1 iEhexj

where Jg >0, and hex; represents the hexagon of six
spins surrounding the spin j (note, we label each
hexagon by its central site). Then the degeneracy of
the ground state of the fcc four-spin interaction
Hamiltonian is, because of Eq. (2.15), exactly equal
to the degeneracy of the ground state of H, .

The enumeration of the ground-state configura-
tions of the triangular lattice with six-spin interac-
tions is accomplished by constructing upper and
lower bounds for the degeneracy W. These bounds
turn out to be identical in value even for finite R,
and this recognition allows one to construct all
ground states explicitly.

The upper bound is obtained by starting with a
set of spins, called the “no-hexagon-completing”
(NHC) set consisting of all spins located on the first
two columns and the first row of the triangular lat-
tice (cf. Fig. 2). For a given set of NHC spin
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2 X . X
1.
6 X
5 X X
4 X X X
3 X X X X
2 X X
1. .
1 2 3 4 5 6 1 2

FIG. 4. Pattern of reversed spins (X ) corresponding
to the energy-conserving symmetry operation that re-
verses the (2,2) spin of the NHC set. For explanation, see
Sec. IIC.

values, the spins in columns 3 to R, rows 2 to R,
when filled in succession, are fixed by the require-
ment that all hexagons they complete (and each
may be taken to complete at least one hexagon) are
in their ground states. Since some spins necessarily
complete more than one hexagon simultaneously
(due to the periodic boundary conditions), it is not
obvious that any given NHC set of values leads to a
ground state of the entire triangular lattice. A
given NHC set of values certainly cannot lead to
more than one ground state, and since there are
23R =2 NHC sets of values (there being 3R —2 spins
in the set), we have

W<23R-2 (2.17)

that is our upper bound for W.

To find a lower bound for W, we start with the
ferromagnetic ground state o;= 4+ 1 and we apply
various symmetry operations to the spin system,
consisting of spin reversals that (i) leave all hexagon
configurations (] i€hex; o;) unaltered and therefore

the energy unchanged, and (ii) reverse only one spin
of the 3R —2 spins in the NHC set. We shall in
this way obtain 23% —2 different spin configurations
each of which corresponds to a ground state of
H,_ 4. We now set up our system of symmetry
operations.

For the symmetry operation satisfying (i) and (ii)
that leads to the reversal of a (j,1) spin (j >3), we
take the reversal of all the spins in the jth column.
Reversing the sign of all the spins in any column (or
row) does not change any individual hexagon index
(I]o:)- This is so because each hexagon in the lat-
tice involves two spins from each of the three
columns (or rows) it inhabits.

For the symmetry operation that leads to the re-
versal of the (2,2) spin, we take the reversal of spins
of the pattern described in Fig. 4 for R=6. For the
symmetry operation that leads to the reversal of a
(2,) spin (j >2), we take the appropriate combina-
tion of the pattern of spin reversals generated from
the pattern of Fig. 4 by a translation by the vector
(0,j —2), and the symmetry operations previously
described that lead to reversals of the (j,1) spins
(7 >3). For the symmetry operation that leads to
the reversal of a (1,j) spin (j >2), we take the com-
bination of a reversal of all spins in the jth row and
the symmetry operations previously described that
lead to the reversal of the (2,/) spin. For the sym-
metry operation that leads to the reversal of either
the (1,1) spin or the (2,1) spin, we take the reversal
of all spins in column 1 or in column 2, combined
with those symmetry operations considered previ-
ously, that lead in combination to the reversal of all
spins (1,) (j5£1) or (2,)) (j~1), respectively.

Taking into account that, starting from the con-
figuration with o; 4- 1 for all j, we can use our sym-
metry operations in combination in order to gen-
erate 2°R—2 distinct lattice configurations wherein
each of the NHC set of 3R —2 spins may have its
0= *1 retaining, moreover, by condition (i) that all
hexagons remain in their ground state, we conclude
that

W >23R-2, (2.18)
Together with Eq. (2.17) we then have, exactly,
w=2R-2, (2.19)
whence
S(T =0)=kplnW =kp(3R —2)In2 . (2.20)

In addition we conclude that whenever we start
with a given NHC set of spin values, we may con-
struct one and only one ground state without fear
that some hexagons will not “fit” when a given spin
completes more than one hexagon. We stress that
for the full fcc lattice also, the ground-state degen-
eracy is, by our reasoning above, given by Egq.
(2.19). Thus not only has the number of ground-
state configurations of the fcc lattice been deter-
mined, but also an explicit prescription has emerged
for the construction of these configurations.

The dimensionality of the order parameter associ-
ated with this transition is given by n =3R —2.
This follows immediately from the above construc-
tion in that the magnetic structure is uniquely
determined by the spin configuration of the NHC
set, and this set has 3R —2 linearly independent
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spin configurations. The various components are
found to correspond macroscopically to ferromag-
netic and antiferromagnetic, as well as to ferrimag-
netic spin structures.

III. PHASE TRANSITION FOR PURE
FOUR-SPIN INTERACTIONS

In this section we primarily present results from
MC calculations on the sc and bec lattices. In Ref.
21 we have demonstrated for the fcc lattice with
pure four-spin interactions that the phase transition
is of first order associated with pronounced hys-
teresis effects in the internal energy and the order
parameter. From the evidence presented below it is
clear that the phase transition in the sc and bcc lat-
tices is also of first order. The first-order nature of
the transitions is consistent with predictions from
simple Landau theory.

Using a standard MC importance sampling pro-
cedure we have calculated the temperature depen-
dence of the internal energy per spin E=(H)/N
and the n components of the order parameter

N .
2 nj';
j=t

¢i=N—1< >, i=1...,n,

(3.1

where n}“:i—l is a staggering index pertinent to
the ith-order-parameter component. The models
are arrayed on finite lattices with N spins and sub-
jected to toroidal periodic boundary conditions.
Our use of distribution functions and coarse-
graining techniques, the applied convergence cri-
teria, and the methods for detecting first-order
versus continuous transitions are described in detail
elsewhere.”>?® Our results are based on statistics
representing from 100 to 14000 MCS/S, depending
on whether the temperature is outside or inside
transition regions (MCS/S is equal to the Monte
Carlo steps per site).

A. sc lattice

Figure 5 shows the temperature dependence of
the order parameter ¥/(T) and the normalized inter-
nal energy E(T)/E, for a system with N=216
spins. Two branches of the curves are observed cor-
responding to increasing and decreasing tempera-
ture series. Close to the termini of the branches,
pronounced discontinuities are encountered for both
functions. Together with the occurrence of meta-

100rs—5 . .
—_

099+ =00y, w .

vm .

097 b
096+ b
<

A
V-

0.07+ 1
0.06+ ——0-0-0-
0.05}- 4

1.00- 4

EMVE, T 1

0.90- i

<

012} ]
009- oo oo0s]
0.06f | 1 ! 1 L ]
12 ke VJL 13 14

FIG. 5. Variation of order-parameter ¥(T) and nor-
malized internal energy E(T)/E, with temperature for
the sc Ising lattice with pure four-spin interactions. The
data points are obtained from Monte Carlo calculations
on a system with N=216 spins. The vertical arrows indi-
cate directions of transitions observed for increasing and
decreasing temperature series.

stable states and coexistence of phases this une-
quivocally demonstrates that the transition is of
first order? Within our observation time
(< 14000 MCS/S) the order on the low-temperature
branch resides in one of the eight components 1;
and the one under consideration is then termed the
order parameter ¥(T). The values of the remaining
components v}, ji are the same and small but fin-
ite due to the finite size of the lattice. On the high-
temperature branch the finite-size order is distribut-
ed equally among the eight components. When the
system undergoes the transition from the disordered
phase to the ordered phase, it is equally likely to
enter any one of the eight degenerate ordered states
and the corresponding finite-temperature internal
energy is found to be independent of whichever
order-parameter component becomes dominant.
This shows that the eightfold degeneracy is retained
for all temperatures in the ordered phase.

The hysteresis loops in Fig. 5 cover an extended
temperature range and it is therefore not possible
directly from these static data to estimate accurate-
ly the equilibrium transition temperature. Conse-
quently, we have performed a calculation of the
lifetime 7 of the metastable states in the transition
region. Defining 7 as the number of MCS/S to be
performed before a metastable state undergoes the
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transition to the stable state in course of the charac-
teristic two-step relaxation process,’® we have ob-
tained the curve 7 ~!(T) displayed in Fig. 6. A pro-
nounced asymmetric relaxation behavior is observed
and the relaxation times on the disordered meta-
stable branch are found to be extremely long. This
accords with previous observations for the fcc lat-
tice?! and for all three cubic lattices with mixtures
of pair- and four-spin interactions.!* The equilibri-
um transition temperature is the temperature where
7! attains its minimum. This leads us to the esti-
mate kzTMC/J,=11.4+0.3.

Alternatively, the equilibrium transition tempera-
ture can be determined from the free-energy func-
tion F(T) that in turn may be derived from the
internal energy using the relationship 7 dS =dE.
For the two phases we then have the formulas

/T
Eo+T [ " [E(D—Eold(1/T),
T<T, (3.2)
)= /T
FO=1_rs 41 [ Emaq/m,

T>T., (3.3)

where E, 1is the ground-state energy and
S, =Nk In2 is the infinite-temperature entropy. In
performing the integration in Egs. (3.2) and (3.3) we
use that for kT /J,>12 the MC data for E(T)
coalesce with the first term in the high-temperature
series expansion, E(T)=—2J4/kgT + ---, and
that deviations from E, are negligible for
kgT/J,<2. The equilibrium transition tempera-
ture is obtained from the intersection point of the
two free-energy branches. This leads to
kpT,./J,=11.32+0.10 which is consistent with the
estimate from the lifetime measurements. For com-
parison, we quote the result for the transition tem-
perature as obtained from the theory of Frank and
Mouritsen,'® (FM) kpTfM/J,=12.06. Although
this theory is not strictly valid for first-order transi-
tions, the agreement with the MC result is close.

B. bcce lattice

The MC results derived for the bcc lattice are
similar to those reported above for the sc case and
we therefore only give a brief account of the results.
We obtain definite evidence for a first-order transi-
tion with an equilibrium transition temperature es-
timated from the free-energy function to be
kpT,/J4=8.40+0.08. This value compares favor-
ably with the theoretical values kpT:™/J,=8.52

and kpTSV /J,=8.73 obtained from the theory of
Frank and Mouritsen!® and from the series analysis
by Griffiths and Wood'! (GW) although both of
these latter approaches are not strictly valid for
first-order transitions.

C. fcc lattice

The MC calculations that demonstrate that the
phase transition in the fcc lattice is of first order are
presented in Ref. 21, where the results are discussed
in connection with a conjecture’”!! by Wood who,
on the basis of a comparison between high- and
low-temperature series expansions, argued that the
model is self-dual. In Ref. 21 only one phase transi-
tion is found, and the transition occurs at a tem-
perature, kpT, /J4=2.66, which is far above the
self-dual Onsager temperature,

kpTC/J,=—2/In(V2—1)~2.27 .

Therefore, the authors of Ref. 21 questioned the
self-dual property of the model pointing to the in-
finite degeneracy of the ground state as invalidating
Wood’s argument. However, in the meantime two
independent definite proofs have been delivered for
the self-duality of the fcc lattice with pure four-spin
interactions.’>** Therefore, in this section we dis-
cuss the status of the MC simulation of the phase
transition in the fcc lattice and thus attempt a reso-
lution of the discrepancy.

In Ref. 21, T is estimated from the terminus of
the upper branches of the E(T) and ¥(T) curves.
The position of the terminus is only weakly depen-
dent on the lattice size. However, only for a very

1-\\ |

o- ~o_ o0 4

1 1

1 12
kel/j,

1
10 1

FIG. 6. Plot of inverse relaxation time 7~ in ‘arbitrary
units vs temperature in the transition region for the sc Is-
ing lattice with pure four-spin interactions. The data are
obtained from Monte Carlo calculations on a system with
N=216 spins. A pronounced asymmetric relaxation
behavior is observed.
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FIG. 7. Free-energy F(T) vs temperature for the fcc
Ising lattice with pure four-spin interactions. F(T) is in
units of NJ,.

small system N=128 was it found possible within a
reasonable number of MCS/S to make the system
enter the ordered phase in the decreasing tempera-
ture series. This was interpreted as being due to the
presence of metastable states with extremely long
lifetimes, and the lower limit of the transition tem-
perature was therefore estimated by using data for
the N=128 system exclusively. Evidently, this
latter procedure must be incorrect, and we have
therefore undertaken a reanalysis of the MC inter-
nal energy data for the larger systems, N=1024 and
N=2000, that give the same results for E (T) for all
temperatures and therefore presumably represent
the large-N limit. Firstly, we have determined the
free energy using Egs. (3.2) and (3.3). To minimize
errors in the integration procedure we have integrat-
ed in the low-T range the analytical expression for
the low-temperature series expansion to order
[exp(—4J,/kpT)]? derived by Griffiths and
Wood.!!" For kgT/J, <2.52 the bare series agree
with the MC results within the statistical accuracy.
Furthermore, we have calculated additional MC
data in the high-T regime to make the data connect
with the high-temperature series expansion to
lowest order in 1/T. The results for the free energy
in the two phases are given in Fig. 7. From this fig-
ure the equilibrium transition temperature is found
to be kpT,/J4=2.2710.02 that is precisely at the
Onsager value but far below our previous estimate,
2.66. Thus a proper interpretation of the MC simu-
lation data leads to consistency with the self-dual
property of the model. Similar conclusions have re-
cently been drawn from MC work by Liebmann®*
and Alcaraz et al.>*

In Fig. 7 we see that the low-temperature free-
energy curve enters the transition point almost hor-
izontally implying that hardly any entropy is
present throughout the ordered phase, e.g., at
T =T, we have F/J,=—2.0024 and the entropy

contribution to F is around 1%. By contrast, the
free energy at T =T, is strongly entropy dominat-
ed. This may explain why a small system N=128
exhibits a lower transition that is close to the upper
one?! simply because the small system does not pos-
sess enough microstates to produce the entropy
necessary to remain at the lower branch and there-
fore undergoes a transition to gain internal energy.
For completeness we give the discontinuity at T of
the order parameter Ay /10=99.73% as calculated
from the low-temperature series.!!

We now want to demonstrate that the Onsager
transition temperature for the pure four-spin in-
teraction model also follows from an extrapolation
to J, =0 of transition temperatures for models with
mixtures of ferromagnetic pair interactions (J,) and
four-spin interactions [cf. Eq. (1.1)]. In Fig. 8 we
present a plot of the phase diagram for this model
by using a convenient set of mean-field-like scaled
variables,!®

~ | ng Js ng J4
J=|—*+— — 1, (3.4)
np J 2 np J 2
1 T T T T
o fee
0,/.
08 o""o,, b
- "0
A %, PARA
0.5( 1
Tricritical point
S
04 i
FERRO & 2
&,
oy
0.2+ 1 =
e
\._.r.o
0 1 1 1 L c

0 0.2 04 06 3 08 1

FIG. 8. Scaled phase diagram (J,T,) for the fcc Ising
lattice with mixtures of pair and four-spin interactions,
Eq. (1.1). Jis the field variable and T, is the temperature
variable, Eqs. (3.4) and (3.5). The diagram gives the
phase boundary between the ferromagnetic and paramag-
netic phases and contains a region of continuous transi-
tions and a region of first-order transitions, separated by
a tricritical point (). The position of the tricritical
point is calculated in Ref. 19 from a modified mean-field
theory. O denotes results obtained from Monte Carlo
calculations. On the riggt-hand axis is given the Onsager
self-dual temperature T, to which the phase boundary
extrapolates in the pure four-spin interaction limit, as

~%
well as T, that denotes the position of the upper transi-
tion in a system with N=2000 spins.
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and
Tc =T, /

ng and n, are the numbers of quartets and pairs
that a given spin participates in, and T (pair) is the
critical temperature in the pure pair-interaction lim-
it expressed in units of J,(pair), the pure-pair cou-
pling constant. In addition to the data presented in
Ref. 21, the plot of Fig. 8 contains some new points
in the high-J,/J, regime, that are derived for a sys-
tem with N=432 spins. By performing an extrapo-
lation to J=1 in this plot to determine T.(J,=0)
we circumvent any problems that may arise from
the high degeneracy of the ground state in the pure
four-spin interaction limit. In the scaled represen-
tation chosen, the phase boundary is linear within
the statistical errors and extrapolates neatly to the
Onsager self-dual temperature, 7. The linear
property of the phase boundary in Fig. 8 as well as
an effective lattice-lattice scaling property of the
three cubic lattices with mixtures of pair and quar-
tet interactions are investigated in Ref. 19.

Before closing the section on the fcc lattice it
should be mentioned that no problems with respect
to determining 7T, directly from EMS(T) and
YME(T) seem to have been encountered for other
lattice models characterized by a high ground-state
degeneracy, e.g., the fcc Ising lattice with nearest-
neighbor antiferromagnetic pair interactions,*® anti-
ferromagnetic Potts models,*” and Ising representa-
tions of discrete lattice-gauge theories.’

T, (pair) (3.5)

g
Jo+—J4
np

D. Landau theory

Taking all n ordering fields equal (denoted ¢),
the Landau free energy takes the following form for
all three cubic lattices with pure four-spin interac-
tions

4F = —nyJ4¢*+2kpT[ (1+¢)In(1+¢)
+(1—¢)In(1—¢)]
=2kpT>+(shkgT —nJg)d*+ -+ . (3.6)

This free energy leads to a first-order transition
since the second-order term is positive. Thus sim-
ple Landau theory accords with our results of the
MC calculations. At this point it should be em-
phasized that the model therefore does not probe
the fluctuation-induced first-order regime studied
by Kerszberg and Mukamel.?*26

Minimizing the free energy in Eq. (3.6) with
respect to ¢ we determine the transition tempera-
ture within Landau (mean-field) theory,
kpTMF /J,=0.36295 n,, leading to 11.61, 8.71, and
2.90 for the sc, bee, and fcc lattices. Thus TcMF is
not far above TMC,

IV. EFFECTS OF SYMMETRY-BREAKING
FIELDS. PHASE DIAGRAM FOR
THE bcec LATTICE

The bee Ising model with the n=4 component
order parameter constitutes a useful and simple mi-
croscopic model that produces a magnetic symme-
try group that attracts current attention.?® It is of
particular interest to study the influence of
symmetry-breaking fields on the properties of the
phase transition.”®* We have therefore applied a
symmetry-breaking field g to the bcc Ising model
with pure four-spin interactions. The field g may
correspond to a magnetic field or an uniaxial stress
that only couples to even orders in the order param-
eter. We consider symmetry-breaking fields that
split the n=4 degeneracy into an n=3 and an n=1
representation. We wish to determine the phase di-
agram in the (7,g) plane.

In the microscopic Hamiltonian, g is simulated
by suitable pair interactions defined on subsets of
the four interpenetrating sublattices given in Fig. 1.
Note that the four-spin term couples these four sub-
lattices. Here we single out one or three sublattices
by introducing ferromagnetic fcc nearest-neighbor
(bee third-nearest neighbor) interactions in the sub-
lattices. The effective Hamiltonian then takes the
form

. QL (24344
II==——J2 :S 0}0}—-12 :S O}Gy
{i.J} {i.j}
~Jy 3 oiojoxo, JF>0,J7 >0,
{bak. 1}
(4.1)

where the first sum is defined on sublattice 1 and
the second sum on sublattices 2 —4.

In terms of the fields ¢, —¢, defined in Sec. II
(cf. Fig. 1), the corresponding Landau free-energy
functional may be written (to fourth order in ¢)

4F = —ngdu$1$r$3bs+2ksT —nd 3 )p}

4 koT 4
+2kyT—nyd7) S ¢,~2+—§— S 6.

i=2 i=1

4.2)
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FIG. 9. Schematic phase diagram (r,g) for the model
in Eq. (4.1) solved within the mean-field approximation.
For small values of |g | there is a first-order transition
from the fourfold degenerate phase [¢,d,,¢3,84] to the
paramagnetic phase. For large positive values of g there
is a four-state Potts-type transition within the ordered
phase to the one-component phase [¢;] that for high
temperatures undergoes an n=1 Ising-type continuous
transition to the disordered phase. For intermediate neg-
ative values of g there is also a first-order transition line
inside the ordered phase. This line terminates in a
liquid-gas-like critical point, C. For high temperatures
there is an n=3 Heisenberg-type (with cubic anisotropy)
transition to the paramagnetic phase. CE1 and CE2 are
critical end points. First-order and continuous transition
lines are given by ( ) and (----), respectively.

For convenience we introduce the scaling fields r
and g defined by?¢

g=m,J5 —J7),
r=2kgT—5n,(J§ +3J7). 4.3)

r is the temperaturelike variable. The mean-field
phase diagram (r,g) resulting from the free energy
in Eq. (4.2) has been calculated by Kerszberg and
Mukamel?® for a similar n=4 model and its quali-
tative characteristics are shown in Fig. 9. The dia-
gram is rather complex including first-order and
continuous transition lines, two critical end points,
and a liquid-gas-like critical point. For low values
of |g | there is a single first-order transition from
the fourfold degenerate phase [¢1,¢,,03,04] to the
paramagnetic phase. For larger values of g there is
a four-state Potts-type first-order transition within
the ordered phase to the one-component phase [¢,].
In this phase the fluctuations of the fields ¢,, ¢3,
and ¢, are quenched and for high temperatures the
system undergoes an rn=1 continuous Ising-type

transition. For an intermediate range of negative
values of g there is also a first-order transition
within the ordered phase. The corresponding phase
line, that terminates in a liquid-gas-like critical
point, is not associated with a change of symme-
try.26 Since the order parameters ¢,, ¢, and ¢, in-
duce a field «<@,¢34, that couples linearly to ¢,
all four fields are nonzero on the high-temperature
side of this transition. For still higher temperatures
there is a line of continuous phase transitions to the
paramagnetic phase. This transition line, that be-
longs to the universality class of the n=3 Heisen-
berg model with cubic anisotropy, persists for large
negative values of g.

We have carried out MC temperature scans for a
series of values of g in order to map out the phase
diagram. In Fig. 10 we give, in the case of g=1.5
and 6, the results for the internal energy and the
two types of order parameters, ¥ and ¢;. ¥ is one
of the four components ¢,, a=1, ..., 4, defined in
Eq. (2.12). The internal energy is split into its two
contributions from the pair interactions (E?) and
the four-spin interactions (E?). For g=1.5 the fig-
ure shows a pronounced discontinuity in all func-
tions implying that the phase transition is of first
order. A very narrow hysteresis loop is encountered
as well. For g=6 the behavior has drastically
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FIG. 10. Temperature dependence of internal energies
and order parameters for a bee Ising model with four-
spin interactions and subjected to a positive symmetry-
breaking field g [cf. Eq. (4.1)]. EP and E7 are the pair-
interaction and four-spin interaction energies. 1 is the
order parameter governed by the four-spin interaction,
Eq. (2.12), and ¢, is the order parameter governed by the
pair interaction defined in sublattice 1 (cf. Fig. 1). Monte
Carlo data are given for systems with N=432 (0) and
N=2000 (OJ) spins. All energies are in units of NJ,. g is
simulated by pair interactions with J5 >0 and J; =0.



27 CUBIC ISING LATTICES WITH FOUR-SPIN INTERACTIONS 3029

changed. Now we observe two consecutive transi-
tions. The lower one is of first order signaled by
discontinuities in E? and . This transition is
described by an effective four-state Potts-type Ham-
iltonian, and our finding of a first-order transition
accords with the theoretical predictions for three-
dimensional Potts models with three or more com-
ponents.*’. The functions EP and ¢, pass smoothly
through this first transition. At the upper transi-
tion, E? and ¢, change in a continuous manner. In
going from g=1.5 to 6, the discontinuities in E?
and ¢ decrease. In Fig. 10 the data for g=6 are
given for two different lattice sizes, N=432 and
2000. We note that the lower transition is not signi-
ficantly affected by finite-size effects, that is ex-
pected for a first-order transition. However, the
upper transition becomes significantly more sharp
but remains continuous when N is increased. ¢, is
more affected than EP. Furthermore, we find that
the heat capacity peak increases in intensity and
moves towards higher temperatures when the lattice
size is increased. All this evidence is consistent
with the upper transition being continuous. Howev-
er, we do not have sufficient information to deter-
mine critical exponents and thereby identify the
universality class. It should be noted that only one
quarter of the system goes critical at this upper
transition. The order parameter ¥ is nonzero in the
intermediate phase because ¢ via Eq. (2.12) involves
¢ 1. Therefore, also 1 decreases continuously at the
upper transition, and the high-temperature tail of
this order parameter, as well as that of ¢, is due to
conventional finite-size effects.

We now turn to negative values of the
symmetry-breaking field g. For small negative g,
we observe a single clear and pronounced first-order
transition. In the case of larger negative g values,
g=-—7.5 and 12, Fig. 11 displays the MC results
for E?, E9 and the order parameters ¥ and
¢=1(d,+¢3+0s). Data for N=432 and 2000
are shown, and for the sake of clarity only results
for the larger system are plotted in the case of the
order parameters close to and above the transition.
For g=—7.5 simultaneous discontinuities in all
four functions indicate the presence of a single
first-order transition. However, for this value of g
the finite-size effects are much more pronounced
than for the values of g given in Fig. 10. These
finite-size effects (not shown in the figure) tend to
diminish the discontinuities and lead to a partial
smearing of the transition. Thus we conclude that
significant thermodynamic fluctuations have come
to play a role and the system may not be far from a
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FIG. 11. Temperature dependence of internal energies
and order parameters for a bee Ising model with four-
spin interactions and subjected to a negative symmetry-
breaking field g [cf. Eq. (4.1)]. ¢ is the order parameter
governed by the four-spin interactions, and ¢ is the order
parameter governed by the pair interactions defined in
sublattices 2—4 (cf. Fig. 1). The remaining symbols are
explained in Fig. 11. g is simulated by pair interactions
with J¥=0and J; >0.

critical point. For g = —12, Fig. 11 shows that the
discontinuities in EP, ¢, and E? now have disap-
peared, but a small jump in ¥ remains. The tem-
perature and finite-size variation of E? and ¢ show
characteristics of a continuous transition, in con-
trast to that of i that definitely still undergoes a
first-order transition, although E? is now changing
smoothly in the transition region. As always in nu-
merical simulations we cannot exclude that a seem-
ingly continuous transition is actually a first-order
one with a very small discontinuity that is veiled by
the finite-size effects. However, we shall here as-
sume that the transition in E? and ¢ is continuous.
It is more important that there appears to be a
separation between the two transitions indicated by
the fact that the inflection point of E? and ¢ ap-
pears slightly above the jump in ¢. Thus our data
are consistent with two very close-lying transitions.
This supports the mean-field phase diagram in Fig.
9. According to this diagram, the first-order line
terminates, for increasing negative g values, in a
critical point simultaneously with an increase of the
separation between the two transitions. However,
since the discontinuity in ¥ decreases when the crit-
ical point is approached and since the discontinuity
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FIG. 12. Phase diagram (T,g) for the model in Eq.
(4.1) as obtained from Monte Carlo calculations (cf. the
mean-field phase diagram in Fig. 9). The scaling field g
is defined in Eq. (4.3). O denotes first-order transitions,
O denotes continuous transitions, and the corresponding
phase lines are indicated by solid and dashed lines,
respectively. The approximate positions of the two criti-
cal end points CE1 and CE2 are also given. The dot-
dash line signifies the pure pair-interaction limit for the
fce lattice.

found in the MC calculations for g=—12 is al-
ready close to the limit of our resolution, we have
not found it fruitful to search for a more well-
separated set of transitions by choosing a slightly
larger negative value of g. For g = —14.25 we en-
counter only a single transition, and all quantities
change smoothly in the transition region indicating
that the transition is continuous.

Our complete MC information on the transitions
in the model is collected in the composite phase dia-
gram shown in Fig. 12. In terms of the variables
(T,g) the diagram has a kink for g=0. When using
the scaled variables in Eq. (4.3) this kink disappears
and the phase boundary varies smoothly through
g=0. The various phase lines are indicated and the
approximate positions of the two critical end points
CE1 and CE2 are indicated. The position of
CE2 is of course rather wuncertain, —7.5
<8(CE2) < —12. The dot-dash lines in the figure
&)n%pond to the limit of J5 /J;— oo, i.e., pure
pair interactions on an fcc lattice*! This limit
seems to have been reached effectively for
g§<—14.25.

V. CONCLUDING REMARKS

We have studied the phase behavior of Ising
models with four-spin interactions defined on the

cubic lattices. The magnetic ground states are de-
rived exactly and turn out to be complicated, in-
volving degenerate order parameters with n=8, 4,
and oo components for the sc, bee, and fec lattices.
All ground states are shown to have zero residual
(T =0) entropy per site. The LGW Hamiltonians
have been constructed for the sc and bec lattices.
Monte Carlo simulations demonstrate that the
phase transition in all three lattices is of first order,
in accordance with simple mean-field and
renormalization-group predictions. The results for
the transition temperature of the fcc model are
shown to be consistent with a self-dual property re-
cently proved for this model. We have investigated
the phase diagram for the n=4 bcc model with
four-spin interactions in the presence of a
symmetry-breaking field g. The resulting phase di-
agram, shown in Fig. 12, is rather complex with
lines of first order and continuous transitions as
well as two critical end points. The overall struc-
ture of the diagram is in agreement with
renormalization-group calculations. It turns out
that simple Landau (or mean-field) theory in a qual-
itatively correct way describes the phase diagram
for this model. Although not very precise, the
Monte Carlo results for the position of the critical
end points in Fig. 12 are in accordance with the
renormalization-group prediction for the amplitude
ratio, g(CE2)/g(CE1)=—3+0(e).
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