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The phase diagram of the q=3 state Potts antiferromagnet in a field is studied by exact

mappings and Monte Carlo methods, and it is shown that systems with macroscopic
ground-state degeneracy may exhibit conventional-type critical ordering. Our Monte Carlo
data for the square-lattice case indicate a finite-temperature ordering in a range of field

values where the entropy of the ground state is extensive. In a particular limit this phase
transition can be shown to be of the Ising type by mapping the Potts model onto a colored,
nearest-neighbor exclusion lattice gas. We also discuss the phase diagram of the body-

centered-cubic Ising antiferromagnet in a field in order to show that renormalization-group

arguments alone are not sufficient to restrict the diversity of possible low-temperature

phases occurring in systems with a macroscopically degenerate ground state.

I. INTRODUCTION

The existence and the nature of phase transitions
in systems with infinitely degenerate ground states
are problems of considerable interest. ' General
principles have not yet been found and presently the
accumulation of knowledge through studying partic-
ular examples is going on.

There are many examples of systems with an in-

finitely but not macroscopically degenerate ground
state (i.e., systems with zero residual entropy per
particle). They display a wide variety of ordering
properties, examples being the isotropic Heisenberg
ferromagnet (no transition in d=1 and 2 dimen-
sions; critical ordering in d & 2), the face-
centered-cubic Ising antiferromagnet (first-order
transition), the KDP model for the ferroelectric po-
tassium dihydrogen phosphate (no transition), ' the
hard-square lattice gas with second-neighbor repul-
sion (continuous transition with critical exponents
depending on the interaction), and many other
models " with behavior not established convinc-
ingly.

The variety is smaller among the systems with a
macroscopically degenerate ground state. The finite
residual entropy per particle usually implies a criti-
cal point suppressed to zero temperature (T, =0) as
in the cases of the triangular Ising antiferromagnet'
and the fully frustrated square-lattice Ising
model or it might prevent the development of

critical correlations even at T=O as in the so-called
"superfrustrated" models. '

In their recent work, however, Berker and Kadan-
off suggest that a macroscopically degenerate
ground state may induce a distinct low-temperature
phase with algebraically decaying correlations pro-
vided the ground state is sufficiently complex. A
possible candidate for exhibiting this algebraic order
was the q=3-component Potts antiferromagnet on a
square lattice. Initially, works based on Monte Car-
lo (MC) calculations' and approximate mappings'
seemed to support the existence of some kind of or-
der but more reliable phenomenological' ' and MC
(Ref. 21) renormalization-group calculations virtual-

ly excluded the possibility of finite-temperature or-
dering. Since the Berker Kada-noff argument ap-
plies only above a critical dimension, the cubic Potts
antiferromagnets were also studied but the MC re-
sults were not conclusive again and the nature of the
transition remained in question.

In this paper, we provide an additional piece of
information on systems with macroscopic ground-
state degeneracy. Namely, we show that the exten-
sive entropy at T=O does not exclude the possibility
of a finite-temperature critical ordering. The exam-
ple considered is the q=3-state Potts antiferromag-
net in a magnetic field H. Examining the phase dia-
gram of this model (Sec. II), we find that near the
critical field H =H, and T=0 the model may be
mapped onto a colored, nearest-neighbor —exclusion
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lattice gas which —although its ground state is ma-
croscopically degenerate —undergoes an ordinary
Ising-type transition. For the case of the square lat-
tice, we have also carried out MC calculations to
determine the phase diagram on the entire (T,H)
plane (Sec. III). Finite-temperature ordering was
found in the whole 0 &H &H, range, in spite of the
fact that the ground state is macroscopically degen-
erate. As a by-product, our results for the phase
boundaries help to understand why MC works run
into difficulties in the H=0 case.

Finally, Sec. IV is devoted to the phase structure
of the body-centered-cubic Ising antiferromagnet in
a field. By this example, we show that renor-
malization-group considerations alone do not re-
strict the variety of possible low-temperature phases
in systems with macroscopic ground-state degenera-
cy.

II. POTTS ANTIFERROMAGNETS
IN A FIELD: PHASE DIAGRAM

AND MAPPINGS

lifted, universality implies that the phase transition
for all H & 0 should be of the Ising type.

Of course, the behavior of the ordering line as
H~O —poses a problem since the ground state be-
comes macroscopically degenerate at H=O. This
problem has been investigated for the case of the
square lattice using Miiller-Hartmann and Zittarz s
interface method and an ordering temperature go-
ing to zero as H~O was found.

For the square lattice, an exact result is also avail-
able. Taking the limit T~O, H~O with HiT =a,
one can map the Potts antiferromagnet onto a lattice
gas with all the lattice sites occupied by colored par-
ticles and with nearest-neighbor exclusion of the
same colors being the interaction between the parti-
cles. There are three colors for the q=3 Potts
model and the parameter a is related to the fugaci-
ties of those colors with two of the colors having the
same fugacity. The lattice-gas problem is exactly
solvable and the critical value of a is a*=0, imply-

The q=3 state Potts antiferromagnet in a field is
defined by the following Hamiltonian:

H=J+5 . , H+5 .i-,
(ij) i

where the Potts spins have three components
(o;=1,2,3), 5 is the Kronecker 5 function and

l
the nearest-neighbor coupling is positive (J& 0). In
order to eliminate possible frustration effects arising
from geometry, we shall consider only bipartite lat-
tices which can be divided into two sublattices (A

and B) with the property that all the nearest neigh-
bors of a site on sublattice A belong to sublattice 8,
and vice versa.

The phase diagram of the model defined by Eq.
(I) is drawn schematically on Fig. l. Its characteris-
tic features —some of which are quite obvious —will
be discussed throughout this section.
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All the configurations with a spin being in the
states o.;=1 are excluded, so the system becomes an
Ising antiferromagnet. Thus, in the limit H —+ —oo,
the system undergoes an Ising-type critical ordering
at a finite temperature for dimensions d & 1.

B. —00 &H &0

The spin state 0.; =1 is still energetically unfavor-
able and the doubly degenerate ground state is the
same as that of an Ising antiferromagnet. Since the
ground state and the symmetry of the order parame-
ter are not changed as the H =—00 restriction is

FIG. 1. Schematic plot of three possible phase dia-

grams of the q =3-state Potts antiferromagnets in a mag-
netic field. Solid lines with no finite-temperature ordering
at H =0 are expected to describe the square-lattice case.
If two critical lines meet in a bicritical point
( T, & O, H =0) (dashed lines), a first-order transition
should take place between the H & 0 and H ~ 0 phases for
T&T,. Bulging of the phase boundary (dotted line)

would result in a finite-temperature transition at H=0,
but the ordering would be incomplete even at T=O.
Straight lines at the point H =H, correspond to the slopes
of the phase boundaries for various geometries (sq, square
lattice, sc, simple cubic lattice, bcc, body-centered-cubic
lattice). Typical spin-state configurations and the corre-
sponding values of the residual entropy so are also shown
for the square-lattice case. (The field favors state 1.)
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ing that the phase boundary of the q=3 square-
lattice Potts antiferromagnet starts out of the
(T=OgE=O) point with an infinite slope.

It is worth mentioning that the phase boundary
obtained by the interface method has a finite slope
at (T=O+=0). The situation is, perhaps, compar-
able to the case of the triangular Ising antiferromag™
net in a field. There is no ordering in zero field'
and it follows from scaling arguments that the
phase boundary should approach the (T=OgX=O)
point with an infinite slope. At the same time, cal-
culations based on the interface method give only a
finite slope.

C. H=O

The ground state is macroscopically degenerate.
A lower bound for the residual entropy per spin sp
can be given by counting the following ground-state
configurations. Let all spins on siiblattices A be in
state 1. Then the N/2 sites of the sublattice 8 can
be independently occupied by spins in the states 2
and 3. The number of such configurations is
8' =2, thus sp & 2 ln2.

The square-lattice case has been studied intensive-

ly. The residual entropy per spin,
3 4

s =—ln—
2 3 (2)

is known exactly from works on the ice model and
on the three-coloring problem. Although MC cal-
culations' and universality arguments' pointed to-
wards a possible finite-temperature ordering, it is
now quite well established that the only critical
point of this system is at T=O. Actually, Berker
and Kadanoff's Migdal-type renormalization-group
result also suggests an algebraic order only in di-
mensions d & 3.

In d=3, MC results are available for the simple
cubic and the body-centered-cubic lattices. Al-
though there are indications of a continuous transi-
tion taking place at a finite temperature, these MC
simulations are susceptible to the same type of un-
certainties as in case of the square lattice, ' so the na-
ture of the transition (if it exists at all) is not estab-
lished reliably. We shall return to this question in
Sec. III.

D. 0&H &H, =mJ

For H & 0, there is a competition between the field
aligning all the spins into state 1 and the antifer-
romagnetic interactions favoring different spin
states on neighboring sites. The antiferromagnetic
interactions dominate for 0 ~H &H, =mJ, where m
is the number of nearest neighbors of a site. The
ground state is characterized by all the spins being

in state 1 on one of the sublattices while spins on the
other sublattice having an independent choice be-
tween states 2 and 3. The number of such configu-
rations is 8'=2)&2, and thus the ground state is
macroscopically degenerate and

sp= —,
' ln2. (3)

The MC calculations of Sec. III indicate that, in
spite of the macroscopic ground-state degeneracy, a
finite-temperature ordering takes place at least in
the square-lattice case (Figs. 1 and 3). As to the na-
ture of the symmetry breaking, the MC results indi-
cate that the essential feature of the ordering is the
breaking of the twofold sublattice symmetry. In
other words, the other parameter is presumably the
difference in the number of spin-1 states on the two
sublattices and the degeneracy arising from flipping
the spins between states 2 and 3 is irrelevant. If this
is true then the ordering is again in the universality
class of a simple Ising antiferromagnet. As we shall
see below, the existence of this type of ordering is
supported by our results on the behavior of the sys-
tem near the critical field H„where the ordering
temperature goes to zero.

E. H =H, +aT, T—+0

Most of our new and nontrivial results in Sec. II
are related to this limit so we shall discuss it in de-
tail. In the limit H =H, +aT and T~O, the Potts
antiferromagnet is reduced to a colored, nearest-
neighbor —exclusion lattice gas and —as it is shown
below —the fugacity z of the lattice gas is related to
the slope a of approaching the (T=OgS =H, ) point.
Then, by studying the lattice gas, we gain informa-
tion on the phase structure of the Potts antifer-
romagnet: A phase boundary which has a slope a ~

at the (T=O+I =H, ) point can be determined from
the lattice-gas model since it has a phase transition
at the corresponding z*=z(a~). As it turns out, the
colored, nearest-neighbor —exclusion lattice gas also
serves as a very simple and easily understandable ex-
ample of models in which the ground state is ma-
croscopically degenerate, but nevertheless, undergoes
a continuous ordering at a finite fugacity.

To see the correspondence between the Potts anti-
ferromagnet and the colored lattice gas, consider the
ferromagnetic configuration with all the spins being
in state 1. The energy of this configuration is

EF——Ã —J—Hm

2

Now, let us turn n nonneighboring spins into states
2 or 3. Since
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the temperature-independent term in the increase of
the magnetic energy, nH„ is canceled by the de-
crease in the energy of the nearest-neighbor interac-
tion, —nmJ, and so the change of energy can be
written as

P e
—)le (6)

becomes temperature independent.
In all the other possible configurations, there are

neighboring spins among the n spins turned out of
state 1. Then the decrease of the energy of the
nearest-neighbor interactions is smaller than nmJ so
the term nH, is not canceled by it and the change of
the energy is of the following form:

5E =E—EF——naT+lJ,
where l is a positive integer. As a consequence, the
Boltzmann weight of configurations with neighbor-
ing spins in states 2 or 3,

—na —(U/T)p=e
is negligible in the limit T~O.

Thus we arrive at the following lattice-gas pic-
ture. If a lattice site is occupied by a spin in states 2
or 3 then this site is considered to be occupied by a
particle which may have two colors corresponding
to states 2 or 3. The contribution of a configuration
into the partition function is given by Eq. (6) if no
nearest-neighbor sites are occupied; otherwise its
contribution is zero. This means that, independently
of colors, the interaction between the particles is a
nearest-neighbor —exclusion interaction and every
occupied site carries a factor exp( —a), i.e., the fuga-
city of the lattice gas is related to the ratio
a =(H H, )/T by—

z=e (9)

The ground state of this colored lattice gas is ma-
croscopically degenerate. One of the sublattices is
fully occupied in the limit z~00, and every occu-
pied site may have two different colors. Since the
color of an occupied site is independent from the
others, the number of ground-state configurations,
W=2 X2N/2, is equal to that of the Potts antifer-
romagnet for 0 &H &H, . This equality is not
surprising since the limit z~00 corresponds to ap-
proaching the (T=O~ =H, ) point along the T=O
axis from the H &H, side.

In spite of the macroscopic ground-state degen-
eracy, the lattice gas undergoes an Ising-type transi-

5E =E Ez —n( ——mJ—+H) =naT .

Thus, choosing E~ as the zero of the energy scale,
the contribution of such a configuration into the
partition function,

tion at a finite fugacity. To show the existence of
the transition, let us write the partition function of
the lattice gas as

N/2
Z= g a„2"z", (10)

n=0

where A„ is the number of ways n lattice sites can be
chosen so that none of them are nearest neighbors
and the factor 2" follows from the 2" different ways
the n-occupied sites can be colored.

Introducing (=2z, the partition function can be
rewritten in the form

N/2z= g w„g".

This sum, however, is the partition function of the
colorless, nearest-neighbor —exclusion lattice gas
with fugacity g. Thus, apart from an irrelevant
change of scale g =2z, the colored and the colorless
lattice gases display the same thermodynamic
behavior. Physically, this is the consequence of the
fact that the color is just an internal degree of free-
dom not affecting the interaction of the particles.

The phase transition in the colorless lattice gas is
well understood. At low densities (small values
of g), the system is disordered. Above a critical
value of the fugacity (g & g~), however, the density
of particles becomes so large that, as a result of the
nearest-neighbor exclusion, the particles are Inainly
constrained to one of the sublattices, i.e., the sym-
metry between the two sublattices is broken. Ac-
cordingly, the transition is expected to belong to the
Ising universality class. Indeed, for the square-
lattice case the existence of the ordering is mell es-
tablished ((~=3.7960+0.0001) (Refs. 29 and 33)
and the critical exponents of the order parameter
(P =0.1249+0.0001) (Ref. 29) and of the correlation
length (v=0.999+0.001) (Ref. 30) are known to a
high accuracy. Less is known about the simple cu-
bic and body-centered-cubic models but there is no
doubt about the existence of a phase transition in
them.

Since z~ is related to the slope a* of the phase
boundary of the q=3 Potts antiferromagnet at the
(T=O+I=H, ) point, and z~=(~/2, results for the
colorless lattice gas imply the existence of the Potts
phase boundary. Also, it is now established that, at
least in the limit T~O, the phase transition across
this phase boundary is of Ising type although the
ground state of the system is macroscopically degen-
erate.

The values of a* for different lattices can be
found in Table I. There, besides the bipartite lat-
tices, one can find the triangular lattice as well. Al-
though the gross features of the phase diagram of
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TABLE I. Slope of the phase boundary (a ) of the

q =3 Potts antiferromagnets at the ( T=O,H =H, ) point.
The estimates are from calculations of the critical fugaci-
ty g* of the corresponding hard-core lattice gases (Refs.
30, 34, and 35). The accuracy of the estimates are given
between parentheses in units of the last significant digit.

Lattice

Honeycomb
Square
Simple cubic
Body-centered-cubic
Triangular

a ~ = —1n(g*/2)

—1.37(1)
—0.6408(1)

0.60(7)
0.95(7)

—1.7129. . .

the triangular Potts antiferromagnetics are different
from that shown in Fig. 1, the lattice-gas mapping
around the upper critical field K, =6J is the same as
for the bipartite lattices. The resulting hard-
hexagon problem has been solved by Baxter; thus

a*= —ln[ —,(11+5V5)] (12)

is exactly known in this case. It is worth mention-

ing that changing to the triangular lattice changes
the universality class of the transition. The ground
state of the hard-hexagon model is threefold degen-
erate and its ordering belongs to the universality
class of the q=3 Potts ferromagnet. Consequently,
the triangular Potts antiferromagnet in the limit
K =H, +aT,T~O and the q=3 Potts ferromagnet
are in the same universality class.

It may be of interest to note that the lattice-gas
mapping around T=O and H=H, can be carried
out generally for a q-component Potts antiferromag-
net. The only difference from the q=3 case is that
the 2" factor in the partition function [Eq. (10)] is
replaced by (q —1)", i.e., the particles of the
nearest-neighbor —exclusion lattice gas may take on

q —1 different colors. The colors, however, play a
role only in scaling the fugacity to that of the color-
less nearest-neighbor —exclusion lattice gas [g=
(q —1)z], and thus, in the neighborhood of the
(T=O+ =H, ) point, the critical exponents of Potts
antiferromagnets are independent of q.

F. H~H,

The ground state is ferromagnetic: All spins are
state 1. Since the ground state is not degenerate,
phase transition is not expected in this region except
slightly above H, . As can be seen from Table I, a*
is positive for the simple cubic and the body-
centered-cubic lattices. Thus, for those lattices, the
degenerate antiferromagnetic phase discussed in Sec.
IIE bulges above the critical field (see Fig. 1). As a

consequence, decreasing the temperature in the re-
gion H &H„one can observe first an ordering, then
a disordering transition. A similar phenomenon is
known to occur in the body-centered-cubic Ising an-
tiferromagnet near its critical field.

with

Mk= g & „k—g ~...k (14)
iCA iCB

where A and 8 stand for the two sublattices and k
denotes the Potts states. This order parameter is a
simple generalization of the sublattice magnetization
in Ising antiferromagnets. It is equal to unity for
both kinds of sublattice orderings expected to appear
in the H &0 and the 0 &H &H, regions in the limit
T~0, and it is obviously equal to zero in a corn-
pletely disordered system. In our simulations,
lowering the temperature, we observed a quick in-
crease of M(T) from a low value M =0.1 to 1.0 in a
narrow region of temperatures depending on the
field T,(H) (Fig. 2). This relatively sharp transition
has been observed without any remarkable fraction
of defects in the new phase. (Note that for H=O
the situation is quite different because in that case
calculations show a saturation of the order parame-
ter near the value M=0.64.) Unfortunately, it
would have required prohibitively large computing
times to calculate the critical exponents associated
with the transition detected by the sudden change in
the order parameter. It can be seen, however, that
the behavior of M for H & 0 is very similar to that in
the H &0 region, where a simple Ising transition
should take place (Fig. 2).

The MC runs were typically carried out on
50&(50 cells with periodic boundary conditions.
The subsequent configurations were generated by
flipping spins according to a standard MC technique

III. MONTE CARLO SIMULATIONS
FOR THE SQUARE LATTICE

We carried out MC calculations in order to detect
the phase transition predicted in Sec. II and to make
the schematic phase diagram (Fig. 1) more quantita-
tive. The simplest case of the square lattice was
studied and we concentrated mainly on locating the
critical temperatures as a function of the magnetic
field T, (H). Besides, some additional calculations
were carried out with the purpose of understanding
the transitionlike behavior at nonzero temperatures
in the fieldless case.

A possible choice for the order parameter of the
q =3 state antiferromagnetic Potts model is

3
M= —g Mk, (13)

Nk
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FIG. 2. Order parameter M of the q =3 state square-

lattice Potts antiferromagnet as a function of the reduced

temperature T/J for three values of the magnetic field H.
Data for the H =0 case are taken from Ref. 17.

described in Ref. 37. Of course, a finite-cell, finite-
time MC calculation suffers from the well-known
problems: The transition is less sharp, the corre-
sponding critical temperatures are usually higher
than those of the infinite system, and it cannot be
guaranteed that true equilibrium was reached. In
order to investigate the finite-size effects we made
several 32& 32 runs as well, without finding any sig-
nificant change in the transition temperatures. In
addition, our simulations starting from various ini-
tial configurations lead to the same final order-
parameter values; therefore, the finite-time effects
seem to be also irrelevant.

To obtain a point of the phase boundary, the or-
der parameter [Eqs. (13) and (14)] was determined
either by lowering the temperature in small steps at
a fixed value of the magnetic field or by decreasing
the field at a fixed temperature. Then the critical
fields and temperatures were determined from the
maximum of the following quantities:

Obtaining one value of the critical temperature re-
quired typically 1200—1500 MC steps per spin
(MCS/S). As a check of the method we made
several simulations in the region H =H, and T=O,
where the behavior of the phase boundary is well
known from the mapping onto the hard-square lat-
tice gas (see Sec. II). The hard-square lattice-gas re-
sults imply a value a*=0.64 for the slope of the
phase boundary, while our numerical data lead to
the estimation a ~ =0.57, which is in accord with the
theory.

Results shown on Fig. 3 suggest that the transi-
tion temperature is suppressed to zero in the field-
less system and the phase boundaries lie rather close

-4.0
I

-2.0 0.0 2.0 &.0

FIG. 3. Critical temperatures of the q =3 state
square-lattice Potts antiferromagnet as a function of the
magnetic field determined from MC simulations. Dotted
line shows the well-known Ising transition temperature in

the limit H —+ —ao, while dashed line corresponds to the
slope of the phase boundary as calculated from lattice-gas

mapping.

to the H=O axis for temperatures T&0.4J. The
possibility of a nonzero transition temperature, how-
ever, is not entirely excluded. In that case, (H=0,
T=T, ) would be a bicritical point (Fig. 1., dashed
lines), and a first-order transition would be expected
to take place between the low-temperature phases
existing in the H &0 and H &0 regions. In our
MC simulations aimed at clarifying this point, how-
ever, the characteristic two-time-scale relaxation
accompanying such transitions could not be detect-
ed.

The shape of the phase boundary might be the
reason for the inconclusive results of Grest and
Banavar' concerning the transition at T&0. Con-
figurations obtained by MC simulations in the re-
gion between the two nearby phase boundaries
(T &0.4J) are dominated by the large fluctuations
having the symmetry of the H &0 and 0&H &H,
ground states, thus giving in average an apparent
nonzero order parameter in a finite system.

An analogous situation arises in the triangluar Is-
ing antiferromagnet, where T=O is the only critical
point' for H=0, and the T-H phase diagram has a
similar shape to that of the q =3 square-lattice Potts
antiferromagnet for H & 0. Correspondingly, an
order-parameter definition analogous to Eqs. (13)
and (14) results in a plot (Fig. 4) showing an ap-
parent transition in contrast to the exact result.

Similar arguments may be applied to the three-
dimensional q=3, H=O case, where at low tern-

peratures M is saturated near the value 0.9 and the
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FIG. 4. Order parameter M of the triangular Ising an-

tiferromagnet as a function of the reduced temperature

for H =0 from MC simulations of 30&(30 (6 ) and

54)& 54 (o ) lattices.

symmetry of the ordered state is the same as that of
the ground state in the region 0&H &H, . A higher
value of the order parameter does not necessarily
mean a true transition. It may be due to the fact
that the phase boundary for H &0 is closer to the
H=0 axis than the phase boundary in the region
H &0. In this case we expect those fluctuations to
be dominant which have the symmetry of the
ground state in the region 0&H &H, . From the
definition (13) and (14) it follows that domination of
one kind of fiuctuation results in a greater order
parameter. This effect is further enhanced if finite-
size cells are studied.

On the basis of our studies of the phase boun-
daries, we suggest another possible explanation for
the incomplete ordering at H =0 with a true transi-
tion at a finite temperature. In principle, it is possi-
ble that the phase boundary starting at the
(T=O,H=H, ) point first crosses the H=O axis at a
temperature T, g 0 and then arrives at the
(T=O,H=O) point, showing a bulging as in the
H =H, region. This type of bulging results in an in-

complete ordering in the body-centered-cubic Ising
antiferromagnet at its critical field. We think this
problem should be clarified by further MC calcula-
tions in three dimensions. Also a numerical study
of the critical exponents and the ground-state entro-

py of the three-dimensional q =3, H =0 case would
be of interest.

cient complexity is not invariant under rescaling
transformations or, in other words, the T=O point
is not a fixed point of approximate or exact
renormalization-group transformations. They add
an assumption to this observation: They assume
that the possible phase transformations are ade-
quately described by a one-parameter renormaliza-
tion group (only the temperature is affected by the
rescaling). Under this assumption, they find con-
straints on the possible orderings in systems with a
macroscopically degenerate ground state, namely,
low-temperature phases with algebraically decaying
correlations may exist in such systems, but the usual
second-order transitions are excluded.

The problematic point in Berker and Kadanoff's
argument is the assumption. We show below that
the constraints on the possible phase structure fol-
low from the use of a one-parameter renor-
malization-group transformation. Enlarging the
parameter space, one might obtain new features in
the phase diagram and it can be shown that
renormalization-group ideas do not contradict the
existence of critical ordering in systems with macro-
scopic ground-state degeneracy.

The example which we consider is the body-
centered-cubic Ising antiferrornagnet in a field. The
ground state of this system is macroscopically de-
generate at the critical field H„where H, is the
value of the field for which the energies of the fer-
romagnetic and antiferromagnetic configurations are
equal. As it has been mentioned in Sec. IIF, the
phase boundary of this system bulges above H, .
Thus, cooling the system at H=H, (dotted line in
Fig. 5), it undergoes a continuous transition at a fi-
nite temperature although its ground state is macro-
scopically degenerate. The only strange feature of
the transition is that the antiferromagnetic ordering
is not complete as T—+ 0. Clearly, a one-
parameter renormalization-group calculation with
the magnetic field fixed at H, would not reproduce
the above features. It is natural, however, to allow

IV. FINAL REMARKS

In closing, we discuss how to reconcile Berker and
Kadanoff's argument with the existence of ordinary
critical phenomena in systems with a macroscopical-
ly degenerate ground state.

Berker and Kadanoff's main obseruation is that a
macroscopically degenerate ground state of suffi-

0 Hc H

FIG. 5. Possible flow diagram of a two-parameter
renormalization-group transformation for the body-
centered-cubic Ising antiferromagnet in a field.
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the magnetic field to be renormalized as well; then
the resulting flow diagram of a two-parameter
renormalization-group calculation might look as
sho~n on Fig. 5. A similar fixed-point structure has
been found in simple real-space renormalization-
group approximations for Ising antiferromagnets on
different lattices. ' '

The meaning of Fig. 5 is quite obvious. The
(T=To,H =H, ) point is attracted to the Ising fixe
point (T=TI,H=0), so the ordering properties of
the system with a macroscopically degenerate
ground state (H=H, ) are determined by the field-
less case, i.e., the system undergoes an ordinary
Ising-type transition at T=X'0. Actually, as more
sophisticated approximations reveal, the fixed-
point structure shown in Fig. 5 should be more corn-
plicated. The magnetic field is a relevant perturba-
tion4 ' s and there are additional fixed points along
the critical line connecting the (T=O,H =H, ) point
with the Ising fixed point. This complication, how-

ever, does not change the main point of our argu-

ment, namely, that the type of ordering which might
occur in the H =H, case is not restricted a priori by
the possible fixed-point arrangements.

Thus, the conclusion of this section, and also of
the whole paper, is that the macroscopic ground-
state degeneracy does not seem to restrict the variety
of low-temperature orderings. In particular, we
have shown that a system with macroscopic
ground-state degeneracy may exhibit the usual criti-
cal transition into a low-temperature phase with
simple order parameter and exponentially decaying
correlations.
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