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Correlation theory for one dynamical variable: Application to EuO and EuS
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A self-consistent correlation theory is developed which is a systematic generalization of
the random-phase approximation and with an equally wide range of applicability. For sim-

plicity the theory is here given in detail for one dynamical variable. For a test of the theory
static and dynamic magnetic properties for EuO and EuS for T)T, are calculated. Quanti-
tative agreement with the comprehensive and detailed experimental data is obtained for
T) 1.02T, with no adjustable parameters. A dependence on the lattice and spin dimension

as well as the value of the spin is obtained and is in agreement with high-temperature-
expansion results.

I. INTRODUCTION

A theoretical framework in which one can calcu-
late both static and dynamic properties accurately
for a wide range of wave vectors q, frequencies co,

and temperatures T is useful in many areas of phys-
ics. The theory must be simple enough to make
self-consistent calculations possible and also to make
applications of realistic Hamiltonians possible. The
only theory having these virtues is presumably the
random-phase approximation (RPA), ' in which the
effect of many-body interactions is taken into ac-
count only as a static, wave-vector-dependent aver-

age field. It is valid when correlation effects are
small; this condition can be evaluated by the RPA
theory, yielding a kind of Ginzburg-Landau cri-
terion for the range of applicability. When correla-
tion effects are important, for example, near phase
transitions T, or in low dimensions, the accuracy of
the RPA theory is not satisfactory either with
respect to quantitative values of static properties or
with respect to even qualitative features of dynamic
properties, for example, when no damping of modes
is obtained. It is the purpose of this paper to
develop an interpolation theory which reduces to the
correct limits at T—+0 and T~ oo and also includes
an essential part of the correlation effects, thereby
being applicable at all temperatures and quite reli-
able near T, . Of course if all correlations are not in-
cluded one cannot expect to get exact results for T,
and the critical behavior. However, the dominant
features can be obtained when including the correla-
tions even in the lowest approximation and a
Ginzburg-Landau criterion may be applied. The in-
crease in the range of applicability relative to the
RPA theory is considerable yielding damping and

better temperature renormalization of modes, and
for static properties a dependence of lattice dimen-
sionality d, spin dimensionality n,, and the length of
the spin S, for magnetic Hamiltonians. The basic
physical principle underlying this correlation theory
(CT) is to calculate static properties using exact rela-
tions in terms of approximate, but realistic dynamic
properties, i.e., including damping and renormaliza-
tion; the whole calculation is made self-consistent by
making use of the mode-mode coupling approxima-
tion for the damping parameters. Mori and
Kawasaki have developed formal generalizations of
.the RPA theory in terms of slowly varying thermo-
dynamic variables and relaxation functions. Howev-
er, in their approach the static properties are not cal-
culated but assumed to be known ab initio. Further-
more, no prescription is given on how to define the
proper thermodynamic variables. The whole physi-
cal content of these exact theories is in fact hidden
in the choice of these variables. In this paper we use
a Green's-function approach which yields the static
susceptibility and also specifies the dynamical vari-
ables.

Another purpose of the present paper is to formu-
late a theoretical framework which can be straight-
forwardly generalized to complicated many-body
problems which have traditionally only been tract-
able by the RPA theory. A proximate problem is,
for example, that of the general anisotropic magnet-
ic system of spins interacting with anisotropic forces
and subject to anisotropic crystal fields. The
crystal-field problem is an example of the more gen-
eral class of problems of interacting objects with
internal degrees of freedom.

However, it is important first to test the range of
applicability of the correlation theory on the well-
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studied Heisenberg-model system, which in the
paramagnetic phase only has one dynamical variable

Aq ——Sq. Several particular theories have been
developed for this case: de Gennes, Resibois and de
Leener, Mori and Kawasaki, Tomita and Mashiya-
ma, Blume and Hubbard, Lovesey and Meserve,
etc. It is not our intent to go beyond these theories
in accuracy, but to formulate theory which can be
more easily generalized and applied to more compli-
cated cases.

Experimentally EuO and EuS represent the best-
known examples of the Heisenberg system, the rela-
tively weak dipolar interaction can be neglected in
the paramagnetic phase. The lattice structure is fcc
and there are essentially only nearest- and next-
nearest-neighbor exchange interactions. For EuO
(Ref. 8) they are both ferromagnetic J~ =0.625 K
and Jq ——0.12S K, but for EuS (Ref. 9) there are
competing interactions J

&
——0.253 K and

J2 ———0.096 K. This gives rise to interesting differ-
ences in the paramagnetic phase. For the other
chalcogenides the competing feature is predom-
inant': for EuSe, J2/J &

——1 and for EuTe,
J2/J&- —2. In these systems the dipolar interac-
tions play a more important role; they will be dis-
cussed elsewhere. A brief account of the results of
the CT applied to EuO and EuS was given previous-
ly." Subsequently Young and Shastry' made a
similar analysis using the spherical model for the
static properties and the Lovesey-Meserve theory for
the dynamic properties.

The organization of the paper is as follows. In
Sec. II the theoretical scheme for one dynamical
variable is presented. In Secs. III and IV a detailed
comparison between the existing extensive theoreti-
cal and experimental material and the present theory
is made. The last section discusses the results, and
some technical details are provided in the appen-
dixes.

II. CORRELATION THEORY FOR ONE
DYNAMICAL VARIABLE: HEISENBERG

SYSTEM FOR T~ T,

The CT for one dynamical variable A~ is particu-
larly simple. The Heisenberg system in the
paramagnetic phase is an example of this case which
we will discuss in order to be explicit. Since there is
full symmetry between S", S~, and S' we may
choose Aq ——Sq as the dynamical variable. Let us
consider the Heisenberg Hamiltonian,

H =—g JJS; SJ = ——g JqSq Sq .
EJ q

We wish to derive X~(co ), the dynamical susceptibili-

ty using the Green's-function formalism. In order

to proceed beyond the RPA decoupling we use an
exact decoupling approach closely related to the
projection-operator formalism developed by Mori
and express the equations of motions in terms of the
exact frequency moments involving (S&),(S&S& )
where o, =x,y, z, and the remainder, which is ex-
pressed as a memory function. The memory func-
tion is formulated as a relaxation function, which
may be decoupled in the mode-mode coupling ap-
proximation. This method has been intensively used
in the theory of dynamic critical phenomena, in par-
ticular by Kawasaki. The advantage of using the
Green's-function formalism combined with the
decoupling approach is that then one directly ob-
tains results for both the dynamic and the static sus-
ceptibilities. In theories using the normalized relax-
ation functions and the Mori projection operators,
the static quantities are supposed to be known
ab initio and only the dynamics can be derived.

Let us consider the equation of motions to second
order for the Zubarev' Green's functions,

G,(t)=((A(t);At(0)) ) = —i8(t)([A(t},At]),

where A and A represent the spin operators Sq+,
Sq or Sq The corresponding relaxation function is
defined as

(A(t)At)= f dA(e A(t)e At) —(A)(At) .
0

The Fourier-transformed exact equations of motion
can be written as follows:

(co+a ~p)Gp(co )+G](co ) =b &p,

(a,pco+a2p)Gp(co)+(co+az) )G)(co)

+G2(a) )=b2p,

or by eliminating G~ (co ),

(co +coaq)+a2)a)p —a2p)Gp(to) —G2(co)

(2)

G„(~)= f ((X„(t);At) )e'"'dt, (4)

where the random-force operator X„(t} is the
remainder of the nth time derivative of A (t} after
the regular precession is projected out. Using the
Liouville operator I. to represent the time derivative

LA(t) =[H,A(t)] = idA(t) ldt—
one writes

b jp(to +a21 ) b2p (3)

where aI and bI0 are frequency-independent con-
stants and the higher-order Green's functions are de-
fined as
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LA(r) = a, oA( r)+X, (t),
L A(t) =a2oA(t)+a2iXi(t)+X2(t) .

In order to make (5) true for all r we must consider
the time dependence of Xi (r) in a moving frame cor-
responding to the regular precession. The decou-
pling (5) is exact and the coefficients ai are related
to the exact frequency moments of the relaxation
function. Using the Mori projection operator one
has

a io (LAA t)——/(AA t), o —( oiq )——,

aqo ——(L AA )/(AA ), o——(co@),

azi (L AX——i)/(XXi)~=o

=(&~q'& —&~q'&&~q&)/(&~q'& —&~q&') .

The constants

& [L'-'A, a] &

1

2'
are the thermal averages

1
bio= — (s'),2'
b20

2
/4( Jk Jk —q ) &sks —k &

k

(7)

where aq+Pq=(coq). This solution yields the ex-
act zeroth and second moments self-consistently,

In the paramagnetic case a&0
——a2& ——b&0 ——0, this

shows the necessity of going to second order in the
equations of motion. We notice that in the RPA
theory only the equation of motion (5) to first order
is used, Gi(co) is neglected in Eq. (2), and a decou-
pling approximation is introduced for the first mo-
ment a&o giving

(coq ) =2(s')(Jo —Jq) .

The RPA theory is therefore not applicable in the
disordered phase. Using the exact relation

((X„A'))„,= —2~(X,A'). o.
and the fact that by definition the projection of X2
on A is zero, it follows that Gz(co=0)=0. At
cg =0 it is therefore exact to neglect Gq(co ) from the
equation of motions (3). This can be utilized to find
solutions valid for small frequencies (see Appendix
A). To lowest order one obtains a two-pole solution
for Go(co) of the form

Go(~ ) =Xq ( coq )
1 1

2~ (oi —uq iPq)(co+aq iPq) '——

g(Jk Jk )(S—ks' k) .
k

For small q one may expand in q and write

(9)

Xq —I/(~', +q') .

This defines the correlation length g=ai '. The
static correlation function is obtained from the exact
relation

(10)

It is insensitive to details in the line shape and is ex-
act in the high-temperature-expansion sense when
the first several moments are exact. Because

(S»+Sy+S» ) =S(S+1),
the following normalizing condition must be ful-
filled.

S(S+1)/3= g(sk—S' k) .

The real-space correlation functions are, by defini-
tion,

&S,S, &= ~grk"'&SkS' „),
k

where

rk"' ——+exp(i'„)/z„
R„

(12)

is the sum over the nth group of neighbors with z„
members. It is clear from (9) that Xq(coq) is pro-
portional to (Sos~ ) for a particular wave vector q.
This relation is simpler to use than (12) directly.

i.e., Xq and (coq ); the damping parameter p is re-
lated to the random force relaxation function
(XiXi), to be discussed below. The two-pole solu-
tion has, in fact, a simple physical interpretation. If
we consider the Green's function ((Sq+P q) ), it
has at T =0 only a pole at the spin-wave frequency
co =cosw. A spin flip, therefore, corresponds to the
creation of a spin wave in a fully ordered state with
spin up, say. In the disordered phase the fiuctua-
tions yield equally many small correlated regions
with spin up and spin down, and a spin flip then
corresponds to either creation or destruction of
short-lived spin waves, i.e., resonances at both
co =a+ip and at co = a+—ip

We can now discuss the determination of static
properties. Since by definition 2n.Go(—co =0) is
equal to the static susceptibility, we have exactly
from (3) and (7),

X.=—2~&2o/a2o
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The determination of the dynamical properties
proceeds as follows. For finite frequencies G2(co}
cannot be neglected and it is advantageous to ex-
press Gz(co) as a memory function times Gp(co } be-
fore approximations are introduced. This is dis-
cussed in Appendix A. The exact formal solution
by Mori for the Laplace-transformed relaxation
function is a convenient starting point for approxi-
mations,

(Sq ~S q)g= f (A(t) ~A )e dt

(XiXi), =Xq{coq }z+2 (14)

The corresponding line-shape function is
S(q, co )=ImGp(co ) /co,

frequencies on the scale of the spin-wave frequency.
The two-pole solution corresponds to assuming a
single relaxation time (2P) ' for (XiXi ), and writ-
ing

Xq
Z =le

z+(XiXi ),
(13)

s(q, ~)=—X & &

(co —co } +4P co

for co &co, . (15)
However, two problems must be solved before (13)
can be considered useful. In the following approxi-
mation scheme, which we shall refer to as CT, a sys-
tematic and general method to self-consistently in-
clude pair-correlation effects is presented.

The first problem is finding a realistic frequency
dependence for (SqS'

q ),. Guided by solution (8) for
the Green's function near co =0 and the physical in-
terpretation that the two poles correspond to
damped spin-wave excitations, we expect that the
two-pole approximation for (13) yields a realistic
parametrization of the frequency dependence for

For large co the damped harmonic oscillator form
(15) has wings that are clearly too large. The sim-
plest remedy is to introduce a cutoff at large fre-
quencies co =co„determined such that {coq ) is
correct. This ensures that all higher moments are
also finite. This is a generalization of the approach
by de Gennes, who assumed a cutoff Lorentzian
line shape for (15). The effects of introducing the
cutoff are described in Appendix B. The next
problem is to express (XiXi }, in known quantities.
Since ct ip is zero for T & T„Xi(t}=LA (t), and

(Xi(t}~Xt}=(Sq(t) ~S* )q=4+(J k Jk q)(Jk —Jk q)(S k(—t)S qsk(t) ~S" k~g q) .
kk'

(16)

Using an approximate decoupling of the x and y modes and the full symmetry between x, y, and z we then have
I

Xi} =4k'(Jk Jk q) f(SkS't, );(Sq kSk q)g g
k 2&l

(17)

Under the sum over k and the integral over z' the precise frequency dependence of (SkS' k), is not important.
It is therefore justified to approximate (17) further by simply using a Lorentzian line shape for

(S,'S', ),-X,r(z+r, )

with the same area and halfwidth as the cutoff two-pole line shape. The halfwidth frequency is given by

Pk =ak —pk+ [2(ak +pk )]', ak ={cok ) pk . — (18)

(19}

Using (14) and (17) one then has the following equation for the self-consistent determination of Pq and thereby
of (XiXi),. We write

=4k'~ Jk Jk q)'XkXk q---z+ q k z+ k+ q —k z=I'

It is clear from (14) and (15) that when the charac-
teristic frequency Iq is much smaller than 2Pq,
(XiXi ), is nearly constant in the frequency range of
interest for (SqS' q},. We therefore shall require
that (17) or (19} is fulfilled for z=I q. The above
procedure breaks down if Pq becomes too small; this
can be tested a posteriori Equation (17). or (19)
gives, by integration over the frequency,

{ }= g(J —J )X X
Xq

(20)

which in combination with the exact relation (9), al-
lows a determination of the susceptibility gq by the
same decoupling as used for the dynamical proper-
ties. Finally we need to calculate {coq }.For short-
range exchange interactions it is advantageous to



2984 PER-ANKER LINDGARD 27

calculate (co» }approximately using a decoupling of
four spin-correlation functions' in real space and
calculate the resulting pair-correlation functions by
means of (12). More details are given in
Appendix B.

The exchange interaction may be written

(n)
Jq =J—op&.yq (21)

A
I!/ g J (23)

where Jo g„z„J——„ is the sum over all interactions
and r„=J„/Jo is the relative contribution of the in-
teraction with the neighbor group with z„spins.
For cubic, hexagonal, and several other lattices the
following important relation is true for an arbitrary
function E~ of k:

g(Jk Jk —q)~k =Jog(1 yq )r yk ~k .
k k, n

(22)

Finally, for the self-consistent solutions of (19) and

(20) it is convenient to use a functional form for the
wave-vector dependence of Xq and P». Analysis of
(20) shows that we obtain the exact wave-vector
dependence given by (9) for Xq(ro» },when X» has
the RPA functional form

~ ~ ~ ar
mA+yA =f(r)

A
' (25)

where f(t) is a random force, the last term is a ther-
modynamic force, and m and y are phenomenologi-
cal constants assumed to be slowly varying with
temperature. The problem focused on in the
Ginzburg-Landau theory is the influence of the stat-
ic properties on the dynamic properties. The static
properties represented by the free energy F are sup-
posed to be known ab initio. For small A one may
write

ticular for temperatures not too close to T, .
This completes the description of the scheme of

approximations. It is, without loss of accuracy,
simpler than previous schemes mainly because of
the use of the two-pole approximation (8) and the
parametrization (24) which makes the simultaneous
self-consistency calculation of static and dynamic
properties possible. It is also simple to generalize to
systems with more than one dynamical variable.
The singlet-doublet problem for S=1 has nine
dynamical variables; this problem will be discussed
in a separate paper.

In recent years it has been very popular to discuss
dynamic properties using the Ginzburg-Landau
theory. ' This amounts to solving the generalized
Langevin equation for a thermodynamic variable A,

where A and 8 are to be determined by self-
consistent solutions of Eqs. (9)—(11), (19), and (20).
Since the detailed dynamics, i.e., the value of P»,
plays a subordinate role for the static properties, the
dynamic corrections entering in Eq. (10) can be in-
troduced by an iteration procedure. The first itera-
tion corresponds to the spherical approximation, i.e.,
replacing (10} by (SqS q) =k'1X», It is, however,
important to include the dynamic corrections to ob-
tain accurate values for A and 8 particularly near
T, . All static properties and the moments can now
be calculated for a given P».

The wave-vector dependence for the damping
parameter P» was for the fcc lattice found to be well
represented by a Fourier expansion

Equation (25) is, in fact, exactly equivalent to the
Mori continued fraction to second order, i.e., the
two-pole approximation. In this light the CT is a
bridge between the Ginzburg-Landau and the Mori
theory, providing additionally a simple scheme for
calculating the static properties F and the dynamical
properties m and y self-consistently. The methods
developed for discussing the Ginzburg-Landau
theory are, of course, useful for getting a good start-
ing point for the iterative solutions searched for in
the CT. In the following sections the accuracy of
the CT is tested.

n=0
(24) III. HEISENBERG MODEL IN DIFFERENT

LATTICE DIMENSIONS d

where b„are temperature-dependent constants
which can be solved in terms of the static properties
by considering four different wave vectors of Eq.
(19). Expansion (24) is general, but other forms may
be more rapidly converging. Near T, it may be
better to expand P» as (24). Such an expansion is
similar to (23}for X». However, with the use of (24)
only a few iterations are required for obtaining the
self-consistent static and dynamic properties in par-

For nearest-neighbor interaction J, the Heisenberg
model has been studied intensively theoretically by
many methods. There are no experimental realiza-
tions of this case. In Fig. 1 we show the uniform
static susceptibility calculated by the CT for S=1.
The transition temperature T, is for the three-
dimensional (3D) fcc lattice found to be 2% lower
than that obtained by the high-temperature expan-
sion (16) for S=1 which probably is within the ac-
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REDUCED TEMPERATURE (T/2Jo}

FIG. 1. Calculated inverse static susceptibility at q =0
for lattice dimension d=1, 2, and 3. Full lines are for
S=1. Thin lines are for S=—and S= 00 for d =3. Ar-
rows indicate the results of high-temperature expansions
(Ref. 16).

0.1

curacy of the latter. By thin lines we also indicate
1/Xo for S= 1/2 and 300—oo. The scale is such
that they are identical at T= Qo. The agreement is
excellent with the high-temperature-expansion re-
sults for T, indicated by arrows. We also notice
that although the asymptotic value of 1/Xo is identi-
cal to the RPA value for T= oo there is a substan-
tial difference at temperatures much larger than T, .
This is again in agreement with the results found by
the high-temperature expansions.

IV. HEISENBERG MAGNETS EuO AND EuS

The best experimental realizations of the Heisen-

berg model are EuO (Ref. 8) and EuS (Ref. 9) in
which there are both nearest-neighbor (NN) and also
significant next-nearest-neighbor (NNN) interac-
tions. We include the isotropic part of the dipolar
interactions. Interactions to more distant neighbors
are small and of the order of the dipolar interaction;
these interactions are neglected in the following.

A. Self-consistent calculation
of static properties

Using the exchange parameters J& and J2 the cal-
culated transition temperatures are shown in Table

0.0
0 0.5

(T-T, jIT
1.0

FIG. 2. Calculated normalized nearest neighbor and
next-nearest neighbor correlations as a function of tem-
perature.

I. We obtain agreement with the observed T, within
a few K. The deviation is of the magnitude expect-
ed from the dipolar interactions. The contribution
to T, estimated from the NN and NNN isotropic
part is 3 and 2 K for EuO and EuS, respectively.
We notice that the CT gives a substantial reduction
of T, relative to the mean field T, ". The reduction
is larger for EuS because of the competing interac-
tions J~ & 0 &Jz. A consequence of this shows up in
the short-range correlation functions shown in Fig.
2. The NN correlation (SoS~) is larger for EuS
than for EuO at T„because T, is relatively lower.
The NNN correlation (SOS&) is smaller because of
the negative sign of Jz. However, J2 is not large
enough to make (SOS2) change sign as a function
of temperature at a so-called disorder point. ' EuSe

TABLE I. Calculated and measured transition temperatures.

T, (mean field) T, {CT) T, (expt)' T, (CT)/T, (mean field)
(K) (K) (K)

EuO
EuS

'Reference 8.

86.6
25.8

66.6
17.1

69.1

16.6
0.768
0.662
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FIG. 3. Calculated second moment as a function of
temperature for EuO and for nearest-neighbor sc and fcc
lattices. Choosing J=J&+J2 ——0.75 K equalizes the (111)
zone-boundary spin-wave energies at T=0.

ox Als
The

10-~ )00
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REDUCED TEMPERATURE (T-T,I/T, OR (T- T,)/T

FIG. 5. Calculated reduced susceptibility gq 0(T)/go
for EuO as a function of (T—T, )/T compared with
scaled experimental data (Ref. 8). Mean-field susceptibili-

ty (MF) is also indicated. Calculated inverse correlation
range ~& multiplied by the nearest-neighbor distance aNN

agrees with no adjustable parameters with the measured
points (Ref. 8) down to (T—T, )/T, =0.02.

C
Q

3 —N

C
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o2x
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0.4

302

Two 5-FcT.
I I

and EuTe are better candidates for this effect. The
calculated temperature dependence of the second
moment (cos) for q at the (111) zone boundary is
shown in Fig. 3 for EuO and for NN-model sc and
fcc lattices with J=0.75 K, which gives the same
(111)zone-boundary spin wave at T=0. The second
moment depends on J~ and J2, and therefore (co~ )
is much smaller for real EuO than for a NN model
with J=J~+J2. This is the main reason for the
discrepancy between the dynamic calculations for
the sc lattice by Hubbard and EuO. In Fig. 4 the
magnitudes of (cos)'~ and (cos)'~ are shown for
EuO at T=2T, for q along the (111)direction. Al-
though the difference does not appear to be large,
the line-shape parameter'

a = (co,')/3(co,')' —1

0.0
0.0 0.2 0.4 0.6 0.8

WAVE VECTOR q('l11)
1.0

FIG. 4. Line-shape parameter a = (co~ ) /3(co~ ) —1

and comparison between the calculated moments (co~ ) '

and ( co~ ) '~2 for q along (111).

varies dramatically from (a= ac ) given a Lorenztian
line shape for small q to (a&0) giving a double-

peak line shape at large q. We notice by comparing
Figs. 2 and 4 that the double peak appears despite
the fact that short-range correlations are quite small,
i.e., less than 10% of the maximum value
S(S+1)/3. The correlated regions are far from well
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-u+iP

C3

UJz
UJ

u+iP

+peak +HW

defined. Figure 5 shows the calculated reduced sus-
ceptibility X» p(T)/Xp where

Xp ——$(S+1)/3kT .

The agreement with the experimental points (scaled)
is satisfactory for (T T,—)/T larger than 2%. The
comparison between the calculated and measured
correlation length ~& involves no adjustable parame-
ters. Again the agreement is satisfactory for
(T T, )/—T, larger than 2%%uo. The difference be-
tween EuO and EuS is small for these quantities. It
is possible that dipolar effects become important for
temperatures within 2&o of T, .'

B. Self-consistent calculation
of dynamic properties

u=iP
I

0.0

u=0 u=P
I

0.5
WAVE VECTOR q(001)

1.0

FIG. 6. Two-pole line shape and parameters +a+i P
Calculated (co»), P», couw, and co~k, where couw is the
halfwidth at full maximum frequency and co~k is the
peak-value frequency. For T&T„AH-q, whereas
(co» ) -q . At T„coHwq, in agreement with dynamical
scaling.

0.10

0.08—

TEMPERATURE

2Tc
I I l I l I I I I

Pq = Eb„(1-Vq)"

0.06
N
X

0.04
C9
lX

z 0.02

0.00

-0.02—

0.0 0.5 1.0
INVERSE TEMPERATURE T, /T

FIG. 7. Calculated temperature dependence of the
parameters determining the damping parameters P» in

Eq. (24).

Given the calculated (co») and (co») as a func-
tion of temperature it now remains to calculate the
line shape in more detail than given by the qualita-
tive arguments shown in Fig. 4. For this purpose we
use the cutoff two-pole approximations. The only
parameter to calculate is then the inverse relaxation
time for the random forces 2P». This is found using
representation (24) and solving (19). Figure 6 shows
the wave-vector dependence along the (001) direction
of (co»),P», and the frequency at half maximum
co Hw for T=2T, in EuO when we neglect the cutoff
correction. There are poles at +a+iP When .q~0
we find that because a ~iP the halfwidth frequency
decreases more rapidly than the second moment

such that coHw ——Dq . Since the line shape then is
nearly Lorentzian this means a diffusional behavior
at small q for T & T, . However, near T„P» p~0,
so both poles go to zero and one finds dynamical
scaling coHw-q' '; this is; of course, well known in
the mode-mode coupling approximation. The tem-
perature dependence of the parameters b„ is shown
on Fig. 7. The constant bo is well determined for
different temperatures. Near T, the wave-vector
dependence of P» varies strongly with temperature.
With expansion (24) there is a substantial correlation
between the parameters in particular between b2 and
b3 Near T, it may be better to Fourier expand P»
The qualitative features obtained with the simple
two-pole approximation are correct without calcu-
lating (co» ). At large q a peak appears at co =co~,q
when a» &P». In this region (co» ) is a good mea-
sure for the halfwidth. On an absolute scale the
linewidth calculated by the pure two-pole approxi-
mation is too narrow by about 40%. The reason is
that the wings contribute too much to the second
moment. By introducing a cutoff of the wings so
that also (co» ) is obtained correctly (see Appendix
B) the halfwidth coHw increases by 40%%uo. A compar-
ison in Fig. 8 between the calculated and measured
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the middle of the zone. In fact the dispersion curve
resembles that for an antiferromagnet compared
with the ferromagneticlike one for EuO. In the
(001) direction the behavior of EuS is similar to that
for EuO because the spin waves are higher in energy
in this direction. This is in agreement with experi-
ments. For small q the line shape is Lorentzian and
the calculated and experimental diffusion constant
Ar are compared as a function of temperature on
Fig. 10. For T=T, and small q a calculation of
coHw gives dynamical scaling behavior for
q &0.1q„„,shown on Fig. 11. The calculated and
experimental points are in reasonable agreement up
to 0.2q„„„where the theory curves away and agrees
with the halfwidth measured at q=0.5q„„,. The
discrepancy between theory and experiment may be
due to the fact that in the quite involved unfolding
of the experimental results from resolution effects a
Lorentzian line shape was assumed. It has been
shown here that significant deviations from this
occurs for finite wave vectors.

FIG. 8. Calculated and measured (Ref. 18) line shapes

for EuO at T=1, 1.27, and 2T, . Dashed line indicates
the effective nearest-neighbor model calculated by Hub-

bard (Ref. 6). q = 009k'
012 A

I I
i

I I I I

Eu0

line shape for EuO (Ref. 18) shows excellent agree-
ment for q=0.5q,», (111) for T=T„1.3T„and
2T, . At the zone boundary the cutoff becomes im-
portant near T„but the agreement is again good for
T=1.3T, and 2T, . Figure 9 shows a comparison
between the calculated halfwidth coHw and peak po-
sition for EuO and EuS. The influence of the
change of sign of J2 is evident. For EuS the peak in
the (111) direction only appears close to T, and in

2

I I I I

0.5 1.0
Q5 I I I I Irl I I I I I I III

0.005 0.01 0.05 0.1
REDUCED TEMPERATURE {T Tc )IT

FIG. 10. Spin-diffusion constant Az calculated at

q =0.1 A ' compared with the measured (Ref. 8) AT as a
function of temperature,



27 CORRELATION THEORY FOR ONE DYNAMICAL VARIABLE: . . . 2989

1.5

5/2 {g-5/2)

0.1 0.2

1.0
E
x
Q

LLJz

z 0.53

0
0 0.2 0.3 0.4

WAVE VECTOR (q/q7ona) (111)
0.5

FIG. 11. Linewidth at T=T, . Dynamical scaling,
AH~-q', is found for q &0.1q„„,. Experimental data
(o ) by Dietrich et al. (Ref. 8) appears to fulfill dynamical
scaling to 0.4q„„„but seems not to agree with the data by
Mook (Ref. 18) at q =0.5q„„,.

n &6 are also calculated self-consistently. A cutoff
is introduced by assuming a three-pole line shape.
This cutoff is rather weak and all higher moments
for n &6 are therefore infinite. The parameter z
describing the central purely imaginary pole is not,
in principle, determined from (cos ) and (to~ ).
However, Sears' suggested in the theory of liquids
that ~ could approximately be related to these mo-
ments and Lovesey showed this correponds to using
a Gaussian line shape for the random force relaxa-
tion function for large frequencies. In CT one needs
near T, a strong cutoff at quite low frequencies.
This can only be obtained in the three-pole approxi-
mation by giving a large weight to the central pole.
This results in the appearance of a central peak for
which there is no evidence in EuO. It was, in fact,
found independently' that the damped harmonic-
oscillator (two-pole) line shape yields the best fit to
the experimental data even at T, .

However, the overall agreement between the re-
sults obtained here and in Ref. 11 and those ob-
tained by the independent calculations by Young
and Shastry' is a good test of both calculations,
which differ considerably both in philosophy and in
technical details.

V. DISCUSSION

The CT includes, beyond the average effect con-
sidered by the RPA theory, the effects of pair corre-
lations, which are introduced in a systematic way.
In the theory, sum rules and a number of frequency
moments (co~) for n &6 are fulfilled exactly (self-
consistently), and all higher moments (n & 6) are fi-
nite and approximately correct. The moments basi-
cally contain information on high-frequency proper-
ties. In addition exact information about small-
frequency properties are also fulfilled in the theory.
The theory describes the lattice- and spin-
dimensionality dependence and spin dependence of
the NN Heisenberg model in good agreement with
the best available alternative theories. For the
NNN Heisenberg model the theory is in agreement
with a large amount of detailed experimental results
for EuO and EuS with no adjustable parameters
both for static and dynamic properties for all q, co,

and T. The limit for the global applicability of the
correlation theory based on this comparison is
T) 1.02T„or until the correlation length is about
ten lattice spacings. For small q the dynamic prop-
erties are correctly described even at T, . EuO and
EuS have recently also been analyzed' in terms of
the continued-fraction theory of Lovesey and
Meserve. In this theory the sum rule and (co~ ) for
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G2(co)F0(co)= —2co(con 10+c220)(co+a21)G0(co}+(co1210+c220)[c210(co+2a21)—a20][G0(0)—Go(co)]

~[b30 b20(~+2u21)+2b10(u10u21 c220)] cco(co+u21) (XIX1) (A2)

where

F0(co)=co +coc221 +c2211210—c220 (A3)

is the same factor as that multiplying G0(co) in Eq.
(3). Equation (A2) serves several purposes. First, it
shows explicitly that G2(co=0)—:0, second, that
(X1X1)„doesnot have a singularity at zero frequen-
cy of the type co " with n & 1, and third, that a part
of the memory function M(co) is explicitly known.
By the memory-function technique one expresses
G2(co) as M(co}G0(co). Inclusion of this explicit part

I

of the memory function removes the 5-function
singularity at co =a20 found from Eq. (3}if G2(co) is
simply neglected for T&T,. Equation (A2) also
shows that the solution of (3) together with (A2)
does not depend on (X1X1)„for co=0 and —a21.
At these most important frequencies the solution is
therefore not sensitive to any approximations made
in evaluating (X1X1)„. For T& T„a21——0. Conse-
quently, the two-pole solution is exact to order m
for small frequencies. The result of this analysis
was first mentioned in the short summary of the CT
by the author and Yang in Ref. 11.

APPENDIX B: CUTOFF DETERMINED BY (coq &

I.et us assume as the linc-shape function, as cutoff harmonic oscillator form with poles +a+iP such that
u 2 a2+P2

E 1
for —co~ (co (co~

F(co ) . ~ (~ 2 u 2)2+4p2~ 2

0 otherwise .
(Bl)

We require F(co) to be normalized and to yield the correct moments (co& &
= f co "F(co)dco for n =2 and 4.

Direct integration yields

[( ,'& —2( '—P')(,'&+"],
2E

p co, +2aco, + a co, —a
4m pa —ln 2 +2 arctan

co, —Zasta, +a
toe+a

+arctan (a' & 0)

roc
m.a1 (P+a1)arctan —a1

coc—(P—a1)arctan
p+a1 (a &0)

(B2)

2E
a

m'
arctan +arctan (a &0)

2
P2' toe toe

(P+a1)arctan + (P—a1)arctan
p —a1 p+a1

+(a —P ) ' (a &0)

where a =i a& when a & 0. The equations are solved
iteratively for a for fixed (co &, (co &, and P. When
the cutoff frequency coc decreases from an infinite
value the real part a increases in order to satisfy the
second moment. The larger value for a is used in
(15) to determine a new larger characteristic

I

halfwidth frequency j. . %hen m, is large the
correction of a is small and may be neglected. The
fourth moment is

(cos&=([L A, LA ]&/X
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It was calculated for the Heisenberg model by Col-
lins and Marshall. For NN interaction it consists
of terms of the type

J g (1—e'q")(1 —e ' )(SpSqS&+sSe+c ) /&q
A, B,C

where A, B, and C are NN vectors. The four-spin
correlation function is decoupled into pairs in analo-

gy to the mode-mode decoupling. The temperature
dependence of the NN correlation function is simply
related to the second moment. %e write

&S,S„),=+7;&S„S,& =X, & ', &/4J, ,
k

where 7k =Jk/Jp and q, is the (111) zone-boundary
wave for the fcc structure. Terms of the type
(SpSpSa St't )T are not decoupled but calculated as

(SpSpgSg ) (SpSa )T/(SpSa )

This real-space method yields the exact (coq) at
T= &x) and the summation over the NN vectors is
rapid to perform. The method can now be general-
ized to further neighbor interactions. In previous
calculations (coq) has been decoupled in q space
which gives rise to an additional summation over all
wave vectors and it is not possible to reproduce ex-
actly (roq) at T=eo. Since (coq) is only used to
determine the cutoff frequency ro„ the final results
are not very sensitive to approximations in (coq ).
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