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Freezing transition of xenon on graphite: A computer-simulation study
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The freezing transition of xenon adsorbed on graphite at high coverage and temperature
is studied by constant-pressure and constant-area molecular dynamics. The transition is
found to be first order, in contrast to a recent x-ray-diffraction experiment [P. A. Heiney
et ai., Phys. Rev. Lett. 48, 104 (1982)]. Also, recent objections for using computer
experiments to study the melting transition [A. Novaco and P. Shea, Phys. Rev. B 26, 284
(1982) and S. Toxvaerd (unpublished)] are shown to be invalid for the two-dimensional

Lennard-Jones system.

I. INTRODUCTION II. COMPUTER MODEL AND NUMERICAL
SIMULATION METHOD FOR STUDYING

XENON ON GRAPHITE

Over the past decade, the study of phase
transitions of physisorbed systems has gained the
attention of a large number of experimentalists and
theorists in the physics and chemistry communities.
Numerous novel innovations in experimental surface
science has led to the discovery of a vast richness of
adsorption phenomena at solid surfaces, which have,
in turn, stimulated a great deal of theoretical
activity in the study of the phases of quasi two-
dimensional systems, such as rare gases on graphite. '

Computer simulation has added a new dimension to
the scientific investigation of this field, as evidenced

by the great variety of computer experiments which
have established the important features of the phase
diagram for two-dimensional simple atomic
systems. An obvious next step is to study, by the
simulation approach, the phases of the quasi-two-
dimensional systems, and pioneering efforts have
been made in this direction (e.g. , see Refs. 3 and 4).

In this study we investigate the freezing transition
of xenon adsorbed on graphite at high coverage and
temperature by employing the constant-pressure and
constant-area molecular dynamics simulation
techniques. The transition is found to be first order,
in contrast to a recent x-ray-diffraction experiment.
But before we discuss the xenon-graphite
experiments, we present the essential requisites for
understanding the simulation details. Also, evidence
is presented for the validity of using computer
experiments for studying phase transitions, in
answer to some misgivings of certain researchers.

A. Potentials of interaction

We have adopted the well-known I.ennard-Jones
6-12 pair potential,
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where simple pair-wise additivity of the interatomic
interactions is assumed.

In order to reduce computational time in the
evaluation of the potentail energy, certain approxi-
mations and procedures were implemented. The
xenon-xenon potential is truncated at 3'. Further-
more, Hockney's chainlink method is employed so

(2.2)

to represent the van der Waals interaction between
the various atoms of the xenon-graphite system.
The parameters e and 0. are determined empirically.
We take the xenon-xenon parameters to be
e/k=225. 3 K and tr=4.07 A and the xenon-carbon
parameters to be e/k=79. 5 K and o =3.74 A.

The total potential energy U for a given configu-
ration of N xenon atoms r(i), i =1,. . .,N, above a
fixed configuration of carbon atoms defining the
graphite semi-infinite solid R(j), j=1,. . ., ao, has
the form
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more, Hockney's chainlink method is employed so
that the tests for locating atoms within 3cr of any
subset of the total number N of the xenon atoms.

The xenon-atom —graphite-substrate interaction
may be evaluated analytically by expanding this po-
tential as a Fourier sum in the surface reciprocal-
lattice vectors. While the analytical expression is
useful for many applications, its use in computer
simulations can be very costly in terms of computer
time because of the occurrence of sums over tri-
gonometric and exponential functions. To overcome
this difficulty, we use a fast and efficient algorithm
recently proposed by Dion et al. The algorithm
breaks up the semi-infinite graphite solid into three
regions (see Fig. 1). Region I is the surface layer
and its contribution to the atom-substrate potential
is obtained by explicitly summing over some subset
A of the surface atoms and integrating over the rest.
The first few underlayers comprise region II, and
their contribution is obtained by integrating over
each layer. The remainder of the graphite solid is
region III, and its contribution is approximated as a
single integral. We take 36 atoms in subset A of re-
gion I and three layers for region II, this being suffi-
cient to reproduce Steele's results for the xenon-
graphite potential. For the majority of our simula-
tions, we neglect the detailed atomic planar struc-
ture of the graphite surface, i.e., model the graphite
surface as if the atoms are uniformally distributed
as a constant-density x-y sheet. In this case we use
the Dion algorithm, but simply set the number of
carbon atoms in subset A of region I equal to zero.

dimensional crystal. Periodic boundary conditions
are imposed at the four faces of the computational
cell which pass through the sides of the basal paral-
lelogram at normal incidence to the surface. In
those simulations where the atomic-substrate struc-
ture is taken into account, the basal plane of the
computational box must be compatible with the gra-
phite structure, otherwise periodic replication
creates unphysical size dependencies. The graphite
surface structure is shown in Fig. 2(b). It can be
constructed by replicating a basic cell with two
atoms, the cell's shape being a parallelogram and its
x extension "a" equalling 2.46 A. The x extension
of the computational XL cell has to satisfy the rela-
tion

XL =ma, (2.3)
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where m is a nonzero integer. Thus the possible XL
values are very restricted, and the size of the basal
plane cannot be varied continuously. In a constant-
pressure simulation, XL must be allowed to vary
continuously; hence for this case, we neglected the
atomic structure of the graphite basal planes
described in Sec. IIA.

A reflecting wall is placed at the top of the com-

B. Computational cell geometry

In Fig. 2(a) a schema of the computational cell
geometry is presented. The atomic carbon positions
of the graphite surface define the x-y plane at z =0,
which is also the basal plane of the computational
box. This base is a parallelogram compatible with
the triangular lattice of a close-packed two-

~ Xenon Atom (b)

X

Graphite
Substrate

FIG. 1. Model for calculation of graphite-xenon in-

teraction potential. Shown are the three regions summed

over in computing the potential: region IA, surface layer,
near region; IB surface layer, far region; II, first three un-

derlayers; III, remainder of the solid.

FIG. 2. (a) Geometry of the computational box for the
simulation of xenon on graphite. The graphite surface de-

fines the x,y plane at z=O. The extensions of the compu-
tational box are XL, YL, and ZL, respectively. (b) Struc-
ture of the graphite surface. Shown are four graphite unit
cells with two carbon atoms per cell {indicated as dots).
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putational box, at z =ZL. The contact density
p(ZL ) of the xenon fluid at this wall is proportional
to the fluid pressure P(ZL ) at this wall, where

P(ZL) =kTp(ZL) . (2.4)

58'=AU+PAV —XkTln 1+ AV
V

(2.5)

is negative, this "scaled" configuration is accepted.
If it is positive, this configuration is accepted only
with the probabihty equal to exp( —b, W/kT). The
time evolution is still governed by the numerical in-

In the simulation we set ZL =2.20.. This is to be
compared with the first- and second-layer mean nor-
mal distances from the graphite surface of 0.9o. and
1.840, respectively. Also, we show that for a hard-
wall distance of 2.20. the xenon profile is not "dis-
torted" by the presence of the wall.

C. Molecular dynamics simulation method

Simulation techniques of classical statistical
mechanics enable one to carry out systematic studies
on the structure and energetics of many-particle sys-
tems, where only the form of the intermolecular in-
teraction energy is assumed and the external condi-
tions (e.g., temperature and pressure) are specified.
Recently, these simulation techniques have been ex-
tended to a variety of surface-physics problems asso-
ciated with physical microclusters, liquid surfaces,
liquid-vapor interfaces, and two-dimensional phase
transitions, to cite just a few of the growing areas of
research. The two main simulation techniques are
the Monte Carlo method of Metropolis et al. ' and
the molecular dynamics method. " For this study
we use a new procedure for simulating by molecular
dynamics a system under conditions of constant
pressure and temperature. ' Conventional molecular
dynamics consists of integrating Newton's equation
of motion to obtain the trajectories of the atoms,
where the total energy is a constant of the motion as
the system evolves along its trajectory in phase
space. In the isobaric-isothermal molecular dynam-
ics method the following two changes from the con-
ventional molecular dynamics are adopted: (1) In
order to simulate a constant temperature, the atomic
velocities are renormalized at every numerical time
step, so that the mean kinetic energy corresponds to
the specified temperature T; (2) in order to simulate
a constant pressure, the volume of the computation-
al cell is changed randomly by AV within some
prescribed range at every time intervaL ~z, requiring
the scaling of all the atomic coordinates by an ap-
propriate factor, and with an accompanying total
energy change hU. Adopting the Metropolis test, if
the quantity

tegration of the classical equations of motion, but
with the velocity renormalization and position being
periodically performed at the specified time inter-
vals. To describe this molecular dynamics method
succinctly, the stochastic dynamics of the individual
atoms in the isobaric-isothermal Monte Carlo
method is replaced by the deterministic equations of
motion with the added feature of velocity
renormalization —everything else remains the same.
For equilibrium phases, time averaging of the state
variables over a sufficient temporal evolution of the
system by this molecular dynamics method will
yield the proper isobaric-isothermal ensemble aver-
ages.

In our simulations we use a fifth-degree numerical
integration scheme (see Ref. 12 for details), and rp is
taken to equal two time steps. In the volume scaling
we allow the area A of the basal plane to fluctuate in
size with the constraint that the height of the com-
putational box remains constant. Therefore, the
parallel pressure P~~ given by

a
»Q nr rzr, (2 6)

is a constant during a simulation, while the normal
pressure Pj, given by

(2.7)

III. A PREAMBLE TO THE
THREE-DIMENSIONAL SIMULATION:

FREEZING IN TWO DIMENSIONS

A perspective on two-dimensional melting and va-
porization of the Lennard-Jones system via comput-
er simulation has been recently reported, ' and we
will assume that the reader is familiar with its con-
tents. We feel that it is particularly important to
emphasize the unique advantages gained in perform-

fluctuates about is equilibrium mean value which is
governed by the physical system. In (2.6) and (2.7),
Q is the partition function. The familiar spreading
pressure P is simply

(2.8)

For the simulations in this study the parallel pres-
sure and spreading pressure are almost identical be-
cause under the simulation conditions the normal
pressure is very small. In the simulations the paral-
lel pressure is also calculated from the virial expres-
sion in order to verify its equality with the specified
P~~ used in Eq. (2.5). Typical total simulation times
are 30000 to 40000 time steps, or 1500—2000 psec
for xenon.
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ing constant-pressure computer experiments when
addressing the issue of the character of the phase
transition. Two-phase coexistence associated with
the existence of a first-order phase transition may
occur when the mean density of the system is con-
strained to be constant and may lead an investigator
to conclude that the average properties of the total
system suggest a peculiar phase of matter. This sit-
uation cannot occur in a constant-pressure experi-
ment since two-phase coexistence is not thermo-
dynamically allowed. Another advantage is that the
discontinuities in density and enthalpy for a first-
order transition are directly observed in the experi-
ment. These points are discussed and demonstrated
in great detail in Ref. 12. There are some new as-
pects of our two-dimensional simulations that have
not been previously published and which we feel are
relevant to this present study.

A. Long relaxation times
in the phase-transition regions

Very recently, Novaco and Shea' have questioned
the usefulness of doing computer-simulation experi-
ments to determine the nature of the two-
dimensional melting transition. They conclude that,
for a system of atoms interacting through an r
repulsive interaction and near the phase transition,
the system's behavior is characterized by both in-
creasing relaxation times and increasing "thermo-
dynamic" fluctuations, no true metastable states are
observed, and this "critical slowing down" behavior
supports the view that the transition is continuous.
(The quotes are ours. ) In their text, they castigate
the computer-simulation practitioner for using some
"rule of thumb" or qualitative criterion for ascer-
taining the existence of equilibrium for a particular
experiment. (The quotes are theirs. ) Well, while we

Two- Dimensional System

kT/e = 0.7

0

0.85—
O

2.0 2.5 3.0
Pressure, P g2/e

FIG. 3. Equilibrium density vs pressure for a series of
constant-pressure simulations of a strictly two-
dimensional system. The temperature is T =0.7.

felt confident that our many stringent tests for
equilibrium were sufficient, we definitely felt obli-
gated to apply the Novaco-Shea analysis to our ex-
periments on the Lennard-Jones system. Their
analysis consisted of evaluating an autocorrelation
function for certain block-averaged thermodynamic
variables, e.g., in their constant-energy, constant-
density simulations, the autocorrelation function is
evaluated for a set of block-averaged temperatures
T(i), and is given by the relation

(( .
) ( )) )

(T(i+n)T(n)) —(T(n))
(T(n)T(n) ) —(T(n))

(3.1)

where ( ) refers to the average over n. Novaco and
Shea find that, in the phase-transition region, the
temperature autocorrelation function has a very long
relaxation time.

We have applied the Novaco-Shea analysis to
constant-temperature, constant-pressure melting
simulations of a two-dimensional Lennard- Jones
system, the choice of temperatures and pressures be-
ing dictated by our eventual interest in comparing
these results with our experiments of xenon on gra-
phite (to be discussed in a later section of this pa-
per). We studied various pressures along the iso-
therm T =FcT/a=0. 7. In Fig. 3 the equilibrim
density p'=per is presented for a Lennard-Jones
system of 576 atoms as a function of pressure
P =Per le and for the temperature of 0.7. We note
that, for increasing pressures, the equilibrium liquid
density increases smoothly up to a pressure of 2.6, at
which point the liquid freezes into a solid after
13000 time steps with a dramatic increase in equili-
brium density. Further increase of pressure results
in a smooth increase of equilibrium solid density.
By sequentially decreasing the pressure and equili-
brating the solid, the system passes through P*=2.6
and remains a solid with smoothly decreasing densi-
ty down to a pressure of 2.4. At P'=2.3, the solid
melts after 8000 time steps with a sharp decrease in
density. This establishes hysteresis when passing
back through the apparent freezing pressure.

In Fig. 4(a) the "block-averaged density" of the
system, averaged over each 100 time steps, as a
function of time, is presented for P =2.6, which is
the point shown in Fig. 3 where the liquid freezes
into a solid. We note the beginning of the crystalli-
zation process after 10000 time steps and its com-
pletion after 14000 time steps. In Fig. 4(b) the
Novaco-Shea autocorrelation function of the density
is presented for both the metastable liquid branch
and stable solid branch. Certainly, we are in the
phase-transition region, as considered by Novaco and
Shea, but, in sharp contrast to their findings, we do
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not observe a long relaxation time or an increase in
"thermodynami. c" fluctuations, we observe a true
metastable state, we see no evidence for a process of
"critical slowing down, " and we see a first-order
phase transition. In Figs. S and 6 we present the
time-dependent blocked-averaged density and its
respective autocorrelation function for a solid at
P' =2.5 (quenched from P' =2.6) and for a liquid at
P'=2.5 (quenched from P'=2.4), these two states
being bounded by the freezing transition at P' =2.6
and the melting transition at P =2.3 in Fig. 3. For
these single-phase states in the phase-transition re-
gion (we emphasize the modifier "single-phase"), we
do not see any evidence for a long relaxation-time

phenomenon. In Fig. 7 we demonstrate how one
might be misled by believing that one can observe a
very slow relaxation process simply by doing a
constant-density simulation in the two-phase region
of solid and liquid. In this figure we show a trajec-
tory analysis of the atomic motions from a
constant-energy molecular dynamics simulation of a
576-atom Lennard-Jones system at a fixed density of
0.84 and mean temperature of 0.7, this being direct-
ly in the coexistence region. ' We observe solid-
liquid coexistence. Similar to the Novaco-Shea
analysis, the block-averaged temperature and its au-
tocorrelation function are presented as a function of
time, and we observe what an experimentalist may

Two-Dimensional System, Ptrz/e=2. 6, kT/e=0. 7
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FIG. 4. (a) Trajectory pictures for a two-dimensional system at P~ =2.6 which was initialized from a liquid at P*=2.5.
The numbers indicate the number of time steps. The blocked-averaged density (averaged over 100 time steps) vs time is
also shown. (b) The density autocorrelation function as function of time; the left figure is obtained for the time steps
1—12000, where the system is in a metastable liquid state, and the right figure is obtained for the time steps
14000—31000, where the system is in the equilibrium solid state [see (a)].
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Two-Dimensional System, Po2/e =2.5, kT/e =0.7
(prepared from Pg /e=2. 4)
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FIG. 5. Trajectory picture, block-averaged density vs time and density autocorrelation function for a two-dimensional
liquid at P~ =2.5, F"=0.7, which was initialized from a liquid at P~ =2.4.

be tempted to interpret as a "nonequilibrium,
single-phase phenomenon with a very long relaxa-
tion time, " if this experimentalist believed that he
was measuring a property associated with a single
phase. In actual fact, what we are measuring is the
fiuctuation in time of the ratio of solid to liquid in
our simulated system, the fluctuations correlating
well with the relative areas of liquid and solid as
determined from the time-dependent trajectory pic-
tures.

We conclude that equilibration of a single-phase
state, whether stable or metastable, occurs very rap-
idly in the phase-transition region, contrary to the
conclusion of Novaco and Shea. We mention that
questions of convergence and accuracy of the Monte
Carlo technique may be understood in terms of the

dynamics of the appropriate stochastic model, as
discussed by Muller-Krumbhaar and Binder. '

B. Size effects in the simulation:
Do they mislead us?

First, there is the famous Peierls-Landau theoreti-
cal demonstration that the atomic equilbrium posi-
tions in a two-dimensional crystal become uncorre-
lated at large separations. The quantitative measure
for the loss of long-range crystalline order is the
difference between the average separation between
two atoms and the distance corresponding to the
proper number of lattice spacings. It is found that
this difference diverges very slowly with the separa-
tion distance of the crystalline atoms, the depen-
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Two-Dimensional System, Prj /a=2. 5, kT/e=0. 7
(prepared from Po' /a=2. 6)
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FIG. 6. Same as in Fig. 5, but for a two-dimensiona1 solid at P*=2.5, T =0.7, which was initialized from a solid at
P*=2.6.

0 =constlnN, (3.2)

where

Ne'= —g[r(i) —(r(i))]') b.
N,

(3.3)

dence being only logarithmic. This breakdown of
this two-particle correlation also manifests itself in
another property; the root-mean-squared displace-
ment 8 of a vibrating atom with respect to its mean
position diverges logarithmically with crystal size N,
as first demonstrated by Hoover' and more recently
found by Toxvaerd, ' i.e., letting "b" denote the lat-
tice constant

Based on soft-disk simulations, Toxvaerd' has re-
cently coupled this feature with the Lindemann sta-
bility criterion for the solid state' and concludes
that there exists a strong number dependence of the
location of melting on crystal size; the solid melts if
8 is greater than 0.18 of the lattice constant. Fur-
thermore, a questionable interpretation of the simu-
lation results on atomic diffusion leads Toxvaerd to
believe that the soft-disk system obeys this new
Lindemanns stability criterion and that the first-
order nature of two-dimensional melting observed in
computer experiments is "wiped out already for sys-
tems of 10 —10 particles. " However, there is no
sound basis for these conclusions, and, in particular,
Toxvaerd's application of Eq. (3.2) to Lindemann's
criterion is not valid. Lindemann's criterion relates
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Two-Dimensional System, ptr =0.84, kTle=0.7
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FIG. 7. Trajectory picture, block-averaged temperature vs time and temperature autocorrelation function for a two-
dimensional system in a constant "total-energy" simulation at mean temperature T*=0.7 and a density p~=0. 84. The
system shows solid-liquid equilibrium coexistence.

to the mean separation between nearest neighbors,
which is obtained from the two-particle correlation
function, and not to the mean displacement of an in-
dividual particle with respect to its mean position.
For two dimensions, this mean nearest-neighbor
separation a, defined in Eq. (3.4), is a constant:

a= J drr g(r) f drrg(r) (3.4)

i.e., it does not diverge logarithmically with crystal
size. Both of these features are demonstrated in Fig.
8. Hence, there is no size-dependent melting cri-
terion arising from the application of the Lin-
demann recipe to a two-dimensional crystal.

We consider a second conclusion arrived at by
Toxvaerd: "A system of 8100 particles exhibits

melting properties at a point, which should be a
stable solid according to previous calculations for a
smaller system. " This is based on a questionable in-

terpretation of the simulation results on atomic dif-
fusion in the soft-disk solid, and we demonstrate
this by simulating the stability of the solid state as a
function of system size at the freezing transition of
T*=0.7 and I"=2.6 for the Lennard-Jones system.
Again, this can only be unambiguous for a
constant-pressure experiment where two-phase coex-
istence cannot occur. In Fig. 9 we note solid-state
stability for a system of 2304 atoms and for a time
of 40000 time steps, where d/a g0. 18 and, hence
solid-state instability should occur using Toxvaerd s
criterion. Also, we note that local mobility fluctua-
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two-dimensional liquid where the structure of the
radial distribution function dies out long before the
dimension of the system is reached, there is no
system's size dependence for the peak width of the
structure factor.

IV. XENON ON GRAPHITE: A SERIES
OF MOLECULAR DYNAMICS EXPERIMENTS

RnN

FIG. 8. Lindemann's ratio 8 vs lnN, the logarithm of
the number N of atoms (left scale) for two-dimensional

solids at P*=2.6 and T*=0.7. Also plotted (right scale)
is the mean nearest-neighbor distance calculated from the

pair distribution function.

tions are prevalent in the equilibrium solid.
We have one last comment on the effects of a

system's size L on measured results. In Fig. 10 we
demonstrate the 1/L dependence of the structure
factor's first peak width on a system's size for a
two-dimensional crystal (e.g., see Ref. 19). For a

Motivated by the recent experimental study by
Heiney et al. we became interested in investigating
any influence of the third dimension offreedom on
the order of the freezing transition of a quasi-two01

dimensional liquid. In particular, Heiney et a/. in-

terpreted their results as indicating the transition to
be continuous with fluid correlation lengths exceed-
ing 100 atomic spacings for a coverage of 1.1 mono-
layers and for a reduced temperature of approxi-
mately 0.7. Of course, this is contrary to lower-

coverage laboratory experiments, as mentioned in
Ref. 20, and to the computer simulations. ' We
have made several simulations in the pressure-

Two-Dimensional System, Ptr2/e =2.6, kT/e =0.7
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FIG. 9. Time sequence of trajectory plots of a two-dimensional 2304-atom solid which has a 8=0.195. The numbers laos

beling the plots are the time steps after the initialization in a triangular lattice.
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FIG. 10. Halfwidth at half maximum of the first
Bragg peak of the atomic structure factor vs the system
size L (in units of 27.40.). The numbers labeling the dots
are the number of atoms in the respective two-
dimensional constant-pressure simulations at P*=3.0,
P"=0.7.

temperature regime where (l) the two-dimensional
Lennard-Jones phase diagram predicts a first-order
liquid-solid transition, while (2) the laboratory ex-
periment suggests that the high-density liquid
freezes in a continuous manner. This section de-
scribes the detailed findings of the computer experi-
ments. In the next section, we comment on the lab-
oratory experiments in relation to our simulation
findings.

A. Simulations along an isotherm
and an isobar

@~i
IX

3.8

0.0 1.0 2.0
z/o

FIG. 11. Number density vs z, the distance from the
graphite surface, for the quasi-two-dimensional system at
various pressures labeling the respective axes.

For the isotherm simulations the temperature is
fixed at &=0.7, and a series of constant-pressure
simulations are performed for pressures in the range
P~~=2.0—4.2, which bound the freezing transition
point for this high temperature. The experiments
were performed sequentially from the lowest to the
highest pressure. Both 576- and 5184-atom systems
are studied in order to check for any unusual size
dependence. For the 5184-atom system, pressures
P~~=2.0, 2.4, 2.5, and 4.2 are examined and, unless

50 i s I I t 1 I I I i l I I I i 1 I I I i l

Quasi -Two-Oimensional System,
~ 40 - kT/e = 0.7

o
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o
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Pressure Prig !e

FIG. 12. Percentage of atoms in the second layer vs
pressure for the quasi-two-dimensional constant-pressure
simulations at T*=0.7.

stated otherwise, the results agree with the smaller
system. The xenon monolayer is initialized as a
two-dimensional monolayer at the normal distance
z =0.90, corresponding to the minimum of the
xenon-graphite potential. After equilibrium,
20000—30000 time steps are performed typically to
obtain the equilibrium properties of the system, such
as the enthalpy, number density, atomic distribution
functions, and other pertinent quantities. Careful
attention is given to determine that the system is in
"local equilibrium" (stable or metastable) when tak-
ing the statistics for the quantities of interest, e.g.,
the distribution, running mean, and "autocorrela-
tion" relation of density, enthalpy, and virial pres-
sure are monitored, as well as particle distribution
functions and trajectory pictures of the temporal
evolution being scrutinized.

In Fig. 11 the number-density distribution normal
to the graphite substrate n(z) is presented for the
denoted pressures and shows two well-defined peaks
defining the first and second layers of adsorbed xe-
non centered at approximately z and 2z, respec-
tively, which are separated by a very pronounced
minimum region. This physical separation allows us
to unambiguously define the properties associated
with layers 1 and 2, and we take the normal distance
separating these two layers at z= 1.4'. %e also note
that, with increasing pressure, the peak height of the
second layer increases, which simply indicates an in-
creasing population of the second layer with pres-
sure. This is shown quantitatively in Fig. 12, where
the percentage of the total number of atoms in the
second layer is plotted as a function of pressure, this
percentage increasing monotonically from approxi-
mately 7% at P~~ =2.0 to 36% at P~~ =4.2. Further-
more, we note that the change in this distribution
function is smooth and suggests no means for deter-
mining a change of state for the adsorbed layer. %e
define the "effective" two-dimensional density for a
layer p*;, i = 1,2, as the total number of atoms in that
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FIG. 13. TrajectorY pictures of the equilibrium states in the first layer for the quasi-two-dimensional constant-pressure
simulations at T*=0.7.

layer divided by the mean cross-sectional area.
Trajectory pictures are a powerful means for

determining the states of matter, whether they be
solid or liquid, by displaying the temporal evolution
in space of the individual atoms during the simula-
tion process. The trajectory of a particular atom is
constructed by connecting its x-y positions for a
chosen number of time steps. In Figs. 13 and 14 we
show examples of trajectory pictures for the equili-
brium states of the first and second layers, respec-
tively, at selected pressures. In the first layer we
note a transition from the liquid state to the solid
~t~t~ by passing from Pll —2.4 to Pll —2.6. Thi»s
in contrast to the second layer where the fluid state
exists for all pressures because of the low second-

layer atomic densities. The temporal evolution of
the freezing transition at Pll

——2.6 is presented in
Fig. 15, as well as the density variation during freez-
ing. The numbers labeling each picture give the
number of time steps after going from an equilibri-
um liquid configuration for Pll

——2.5. We clearly see
the existence of the fluid until 6000 time steps
(pi ——0.85), the occurrence of the freezing transition
at 8000 time steps, and the completion of solidifica-
tion after 10000 time steps (p&

——0.88).
In Fig. 16 the effective two-dimensional density

p& is presented as a function of pressure for the first
layer. Starting at pressure P

l l

——2.0, the xenon layer
equilibrates to the liquid state with a mean density
of 0.805, evidence for a given state being liquid or



27 FREEZING TRANSITION OF XENON ON GRAPHITE: A. . .

Quasi-Two-Dimensional System, Second Layer

2975

Pllo /e = 2.0 Pllo /e = 2.6

Pllo /e = 2.4 Pllg /e = 3.0

FIG. 14. Trajectory pictures of the equilibrium states in the second layer for the quasi-two-dimensional constant-
pressure simulations at T*=0.7.

solid being already given from the trajectory pic-
tures. We observe a discontinuous jump in density
at P~~=2.6, associated with the first-order freezing
transition, and the subsequent solid density increase
with increasing pressure. Hysteresis is also demon-
strated by sequentially lowering the pressure from
an equilibrium solid-state phase, resulting in first-
order melting at P~~

——2.5 and in a discontinuity in
density.

A comparison with the strictly two-dimensional
simulations reveals the same qualitative features of
the liquid-solid transition for our simple atomic sys-
tem. However, the two-dimensional densities (Fig.
3) at a given pressure are slightly lower than the ef-
fective first-layer densities at the same pressure (Fig.
16), this being a consequence of the finite, though

small, width of the atomic distribution n(z) in the
first (Fig. 11). This additional "dimension of free-
dom" also accounts for the reduction of the hys-
teresis loop in the quasi-two-dimensional system,
i.e., it is easier for the adsorbed system to freeze and
solidify, in relation to its two-dimensional analog.

The experimental results are found to be quite size
independent, when comparing the 576-atom and
5184-atom simulations. However, like the two-
dimensional case, there is a pronounced size depen-
dence in the Fourier transform of the radial distri-
bution function (the structure factor) for the solid-
state phase (see the latter part of Sec. III B). This is
shown in Fig. 17, where the halfwidth at half max-
imum of the structure factor versus the wave-
number position of the maximum is plotted. We ob-
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FIG. 17. Halfwidth at half maximum of the first peak
of the atomic structure factor vs peak position for various
pressures indicated at the points. The dots are for a 576-
atom system and the squares for a 5184-atom system.
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serve a very broad peak for the liquid states and no
significant system-size dependence and, at freezing,
we note a discontinuity, the magnitude being direct-
ly related to the "1/1." dependence of the halfwidth
on the size I. of the solid system. The halfwidth and
peak position are entirely determined by the atoms
in the first layer. This is because the second-layer
atoms form a low-density fiuid with very little
structure in the radial distribution function.

We have also performed a series of constant-
pressure simulations of xenon on graphite in which
the parallel pressure is held fixed at P~~

——2.5 and the
temperature is varied over the range of
T*=0.66—0.74. Some selected results are summa-
rized in Figs. 18 and 19. In the effective two-
dimensional density behavior as a function of tem-
perature, we note that the xenon undergoes freezing
at P"=0.69 and solidification at T*=0.70; hence
the features of a first-order transition are again mea-
sured. Also, the expected behavior of the structure
factor as a function of temperature is found.

B. Constant-area simulations

We have already remarked that, for a strictly
two-dimensional atomic system that has first-order
phase transitions, it is possible to simulate two-phase
coexistence if the density is held fixed and the sys-
tem is in the appropriate region of the phase dia-
gram. This has been confirmed for the two-
dimensional Lennard- Jones system. ' We now
demonstrate that, for sufficiently high temperatures
and pressures where second-layer population is like-

ly, two-phase coexistence is not possible since the
second layer acts as an atom reservoir for the first-
layer, high-density subsystem. In Fig. 20 the first-
and second-layer densities are presented. By equili-
brating the system at a temperature of 0.70 and an
area A*=A/cr =612.5, a fluid phase is established
in the first layer with a density of 0.827. The fluid
phase remains as the system's temperature is de-
creased with accompanying monotomically increas-
ing density until, at a temperature T*=0.66, the
first-layer atoms solidify and the density increases
discontinuously to 0.86. Of course, this is accom-
panied by a discontinuous decrease of the second-
layer density due to the conservation of the total
number of xenon atoms. This scenario is displayed
in Fig. 21 where trajectory pictures for the various
temperatures are shown. Thus contrary to a strictly
two-dimensional system, this two-layer system can-
not support two-phase coexistence. However, for
conditions where only the first layer is populated,
two-phase coexistence may occur; we have simulated
it but do not show it here.

V. SUMMARY AND RELATION
OF THE SIMULATION RESULTS

TO THE EXPERIMENT OF HEINEY et al.

First, we dealt with certain issues concerning the
legitimacy of using computer-simulation experi-
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FIG. 21. Trajectory pictures of the equilibrium state in the first layer for the quasi-two-dimensiona] constant-area simu-
lations at various temperatures. Note that there is no two-phase coexistence.

ments for studying phase transitions in two-
dimensional systems. We hope that our discussion
was convincing. Then, we presented a rather exten-
sive set of computer experiments on the thermo-
dynamics and structure of xenon adsorbed on gra-
phite. The portion of the phase diagram studied
was governed by our interest in comparing our find-
ings to the recent laboratory experiment of Heiney
et al., which is at odds with lower-coverage labora-
tory experiments and with the two-dimensional
computer simulations. In particular, Heiney et al.
interpreted their results as indicating the freezing
transition to be continuous with Auid correlation
lengths exceeding 100 atomic spacings for a cover-
age of 1.1 monolayers and for a reduced temperature
of approximatdy 0.7. We were particularly interest-
ed in investigating any influence of the third dimen
sion offreedom on the order of the freezing transi-
tion for a quasi-two-dimensional system at high cov-

erages and temperatures. We made several simula-
tions in this pressure-temperature regime in ques-
tion, knowing that the two-dimensional Lennsrd-
Jones phase diagram predicts a first-order liquid-
solid transition, yet anticipating possible new phys-
ics associated with second-layer promotion. While
we reported many interesting features resulting from
an intimate interaction between the first and second
adsorption layers, we found that the character of the
freezing transition did not change; the transition is
clearly first-order, and the phase diagram closely
corresponding to the phase diagram of a strictly
two-dimensional system. We conclude that, corn-
pared to an idealized two-dimensional system of
simple atoms, the third dimension associated with
xenon adsorbed on graphite changes the details of
the liquid-solid transition, but the main result, the
first-order nature of the phase transition, remains
valid.
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