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Dislocation melting in n-paraffin homologs
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A formula for the melting temperature of n-paraffin homologs as a function of polymer
chain length is derived in a simple model of dislocation catastrophe. The salient features of
the melting curve can be understood as a consequence of the gradual transition with increas-

ing chain length from a melting process dominated by dislocations which bridge the paraf-
fin chain lamellae, to one in which nonbridging loops play the principal role.

Low-temperature paraffin crystallizes in a stacked
layer structure. Each lamella of thickness —100 A
is composed of extended linear chains of CH2 units,
having methane terminal groups, that are oriented
perpendicular to the lamellar planes in an
orthorhombic array. The carbon atoms of a single
chain are arranged in a low-angle planar zigzag
structure, the zigzag planes of neighboring chains
being orthogonal. ' Near the melting point of many
paraffin systems the zigzag planes become randomly
oriented, perpendicular to the plane of the lamella,
and the chains order hexagonally. In Fig. 1(a) a
single chain of carbon atoms is shown in the planar
zigzag structure. The hydrogen atoms of the CH2
unit are not shown for simplicity. In Fig. 1(b) the
top view of a lamella is shown near and below the
melting point. The chain ends are indicated
schematically as circles, ordered hexagonally,
whereas the arrows give the orientation of the zigzag
planes, and are disordered. The detailed structure of
the crystalline defects in this "rotator phase" which
is a precursor to melting has been discussed in detail
elsewhere. In the present paper the zigzag structure
of the polymers will be ignored and they will be
represented simply as flexible rods without internal
structure.

The solid curve in Fig. 2 shows the observed
dependence of the melting temperature T~ on the
number M of CH2 units in a polymer chain. The
curve shown is for homologs with an odd number of
units. The melting curve for even homologs has the
same general features with a different initial slope.
Since the chains are presumably extended, ' M will
be proportional to the lamellar thickness.

A reasonable fit to T~(M) has been obtained for
44(M (100with the formula:

T)fc (1)

where T' =419.6 K and a and b are, respectively,
the end-group heat and entropy of melting. Outside
this range of M, the calculated value is much too
high for long chains, and much too small for short
chains. In fact Eq. (1) fails badly at small M where
T~(M) is observed to decrease rapidly. A logarith-
mic correction to Eq. (1) has been proposed which
accounts for the loss of order between weakly cou-
pled terminal groups of polymers in neighboring
lamellae during the melting process. However, this
correction also fails to describe the melting curve for
smaller values of M.

At low temperatures the polymers within a lamel-
la may be thought of as a stack of rigid rods. Thus
the only allowed structural defects are straight
edge —type dislocations which bridge the lamella,
and the melting transition is exactly analogous to
the smectic-B to smectic-A transition in liquid crys-
tals. There, the hexagonal order in a platelet of rods
disappears during the transition, but the layered
structure persists into the high-temperature phase.
Such a system was treated theoretically by Huber-
man et al. , using a two-dimensional model in
which the density of point dislocations increases ca-
tastrophically at T .

For temperatures above 200 K the thermal activa-
tion of polymer kinks becomes possible through ro-
tational conformations of the gauche type. Thus
one expects the stiff polymer description to break
down when chains become long enough to produce
kink defects before melting takes place. From Fig. 2
this occurs when M & 10. Even for the longest chain
systems, polymer conformations with more than one
kink are highly improbable. ' In spite of this, local
aggregates of polymer jogs should be generated rath-
er easily, due to the strong steric constraint imposed
on next neighbors in the close-packed structure.
Such jog aggregates may be viewed as lateral screw-
type dislocation segments. '" These can connect
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FIG. 2. Melting curve of odd paraffin homologs as a
function of lamellar thickness. The solid line is drawn
through the experimental points. The dashed curves are
predictions of the dislocation catastrophe model.
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FIG. 1. (a) Single-chain polymer of paraffin, composed
of CH2 units. The carbon atoms form a planar zigzag
structure (plane of the figure). The hydrogen atoms are
not shown. (b) Top view of a paraffin lamella near the

melting point. The chain ends are indicated schematically

by circles which are hexagonally ordered. The chain axes
are perpendicular to the figure plane, and the arrows (ran-

domly ordered) give the orientation of the respective zig-
zag planes.

with edge-type segments that run parallel to the
chain axis, to form square loops. A loop which
makes contact with both lamellar surfaces forms
what I term a "bridging loop" whereas an "open

loop" begins and ends on the same surface. Exam-
ples of bridging and open loops are given in Fig. 3.

In Ref. 3 a melting theory of paraffin is presented
which assumes that only relatively straight bridging
loops are responsible for melting. In this paper it is
suggested that laterally spread bridging loops as well
as nonbridging loops may become increasingly im-
portant in the longer chain systems. In fact, it will
be shown within a simple theory of dislocation
screening that the gross features of the melting
curve can be understood as a transition from bridg-
ing to nonbriding loop dominated melting statistics.

Assuming that a dislocation catastrophe is re-
sponsible for paraffin melting " one expects that
T should depend in an essential way on the lamel-
lar thickness in short chain systems, since only rela-
tively straight bridging loops can form. On the oth-
er hand, for thicker lamellae, shorter nonbridging

FIG. 3. Examples of bridging and open dislocation
loops in a paraffin lamella. The upper and lower lamellar
surfaces are cross hatched, and the orientation of the edge
dislocation segments are indicated within the circles. The
horizontal segments are of the screw type, and are formed
through polymer kinking. For clarity the polymers are
not shown.
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W =Np'[nB'npl(Np nB np)'] (2)

Then within the independent-dislocation approxima-
tion the total partition function may be written as

loops become more favorable, both energetically and
entropically, so that T is expected to become in-
sensitive to the lamellar thickness.

To demonstrate this effect quantitatively I consid-
er only conservative defect motions, so that the
dislocation slip systems can be defined by a unit vec-
tor normal to the lamellar surface and any one of six
Burgers vectors within this surface, that are allowed
by the hexagonal symmetry. Since the dislocations
will be assumed independent, I look for the disloca-
tion catastrophe in a single slip system in which nD
loops are considered to be disposed upon a square
lattice. Since it will be presumed that closed loops
play only a minor role in the experimental range of
M, I take n~ ——n~+no, where n~ and no are, respec-
tively, the number of bridging and open loops in the
slip system under consideration.

The columns of the square lattice coincide with
the positions of Np polymers in the perfect crystal.
The rows are labeled by the integers I k = 1,. . . ,M I,
and the ith dislocation loop is represented as a ran-
dom walk of N; steps. Neglecting excluded volume
effects, the first steps may be chosen in W, ways:

Ph Pu 0 0 0

W(ps p. pd)—=

0 0 0

0 0 0010
Pd Ph Pu

0 Pd Ph

Pd

P(1)= 0

0
2

Ph+PdPu

(Sc}

P(2) =

PhPd+Pdph
2

Pd

0

0

(Sd)

(Sb)
with the convention P(0)—:(1,0, . . .,0). The quanti-
ties ps, p„, and pd are the probabilities for a single
horizontal, upward, and downward step, respective-
ly. For example, Eq. (Sa) yields

Ph

Z(M) = W, [zp(M)] '[zs(M)] (3)

where Iz;;i =O,BJ are the single loop par-tition func-
tions. Then the total free energy per polymer is
given by

F(M}= —(NpP) 'ln—Z(M)

=P (1—pp —ps)ln(1 —pp —ps)

P(3)=

3
Ph +PdPuPh +PhPdPu +PdPhPu
2 2 2

PdPh +PdPuPd +PhPd +PhPdPh +PdPu
2 2 2

PhPd +PdPh +PdPh
3

Pd

0

0

P(N) = WP(N —1)—= [W] P(0), (Sa)

where

+ g p;1n(p;/z;) (4)
i =0,8

where P=(ksT) ' and p; =n; INp. —
To calculate zp and zs I adapt the transfer-matrix

method' to the paraffin system. A probability vec-
tor P(N)—= [P(k,N);k =1,. . .,MI may be defined,
whose kth component represents the probability that
a walk, which begins in the first row, ends in the kth
row after N steps. The vectors P(N) and P(N —1)
are related by the transfer matrix 8'

etc. I choose
(Se)

(6a)

pg =p„=(2g) '—e (6b)

where g=—e +e "and (es e„) is the energy as-
sociated with the creation of one-step unit of (screw,
edge) dislocation. This choice ensures that
ph+p„+pd ——1, and reduces to the usual result'
when all paths are energetically equivalent.

Multiplying the first row of W by e ' and the last
Mrow by e Eq. (Sa) gives the probability of a bridge

after N + 1 steps as

m+1 %+1—(M —1)
P(M, N+1) = g g pk, I(M N+1)e

k=0 1=0
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where (k, l} is the number of times the random walk
has entered into the (upper, lower} lamellar surfaces,
and pk i is a sum of (N +1)-fold products of p„, pd,
and pa [see Eqs. (5c)—(5e)].

Since we are only interested in bridges which span
the lamella once, the required probability for such
bridges is

Pa(M N+1)=po i(M,N+I} .

Similarly the probability of an open loop after N + 1

step is

zo =e "sinh[(M —2}(to] t sinh[(M —1)(()o]I

(12a)

z~ ——e sinhPa [sinh[(M —1}ga]I
', (12b)

where P; is given through

cosh/; = —,e "(1—2e } .A'„—13&I, (12c)

For simplicity I approximate the dislocation step en-
ergies as':

N+1 N+1 —(M —1) (k81+l8M)P(l,N+1)= g g pk l(1,N+1)e
k =0 1=0

e,',a =e.—~a»(pa+po}

e„a——e, —koln(pa+po) .0

(13a)

(13b)

so that the probability of forming a simple open loop
(i.e., without bridging the lamella} is

Po(1 N+1)=pi o(1,N+1) .

In view of Eqs. (5) and (6) the single-loop parti-
tion functions may be written as

zo ——g (2g) + 'Po(1,N + 1),
%=1

(1 la)

za ——Q (2g) +'Pa(M, N+1),
N=1

(1 lb)

where M & 1 is assumed.

In Eqs. (11) a factor (2) " was introduced, NI, be-

ing the number of horizontal steps taken on the
(N + 1)-step path, since the method of counting does
not distinguish between left and right steps. The
sums begin with X=1, since at least two steps are
necessary for an open loop and for bridges with
M&1.

The expressions which appear on the right-hand
side of Eq. (11) have been calculated'z and reduce to
the following expressions in the present model:

In writing Eqs. (13) it is assumed that the loga-
rithmic divergence of the average strain energy asso-
ciated with a unit length of dislocation is cut off by
the mean distance between dislocation lines, and
that the average energy may be different depending
upon whether the unit length of dislocation is parti-
cipating in a bridge or an open loop. Furthermore,
it should be stressed that although the system is as-
sumed to contain a low density of dislocations, these
are by no means isolated from one another so that a
high degree of loop interpenetration exists, thus jus-
tifying the logarithmic cutoffs in Eq. (13).

Finally I have associated a single-core energy e,
to horizontal and vertical steps. Although the phys-
ical mechanism is different for the two defect types,
the core energies are a result of nonlinear strains and
are not well known. At any rate the introduction of
different core energy parameters is not expected to
alter in any essential way the results presented in
this paper. (It will be seen that the melting tempera-
ture is independent of core energy in the present
model. )

Upon substitution of Eqs. (12) and (13) in Eq. (4),
and assuming that e'„ I, »ka T, the following expres-
sion for the free energy per polymer is obtained:

F= [(M —1)pa+2po]e —[(M —19apa+ popo]ln(pa+po}

+ka T(1—pa —po)ln(1 pa po}+ka T[—palnp—a+poinpo] (14)

with M &1.
In the solid state p~ &&1 and p0&&1, and, as was

discussed above, pa»po for small M, whereas

pa «po for large M. For simplicity I take:

I

bridging to operi-loop dominated melting statistics.
Substitution of Eqs. (15) into Eq. (14) yields

F=Ap+Bp lnp+ ka T(1—p)ln(1 —p), (16a)

pa:pe
e

—yM)

(15a)

(15b)

where

A(M, T)=[(M —3)e " +2]e,

where p « 1 is some average M-independent disloca-
tion density, and y characterizes the transition from

+kaT[(1—e ™)ln(1—e " )

—@Me-r~], (16b)
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B(M, T) =ktt T —
I [(M —1)As —

2A o]e r +2A o I,

[A(M, T)+B(M,T)]&k T (19)

for all T. Using Eqs. (16b) and (16c), one obtains

ktt T—:2Ao+ [(M —1)Aa —2Aole (20)

if the following subsidiary condition is met:

& [yMe ™—(1—e r~) ln(1 —e r )+ 1]
AT

X[(M—3) ' +2] '. (21)

For M«y ' and M&1 the linear stiff-polymer
behavior is obtained, T ~Asks '(M —1) with

e, &Az. For M »y ' the constant 3D behavior re-
sults are T =2Aokz ' with e, &Ao.

The upper dashed curve of Fig. 2 is calculated us-

with M &1.
Equation (16) can be considered to be the three-

dimensional (3D) generalization of the free energy,
used in Ref. 7 to describe the smectic-B to smectic-A
transition in an essentially 2D liquid-crystal platelet.
In fact Eqs. (16) reduce identically to the expression
given in Ref. 7 for the case M =2 «y

Minimizing Eq. (16a) with respect to p under the
condition that p « 1 one obtains

ks T —A (M, T) B(M, T—)

B(M, T)

Melting occurs at a temperature T at which the
condition p « 1 can no longer be met; that is, when

B(M, T&T )&0, B(M T&T~)&0,

and

ing Eq. (20) with Aoks ——194 K, Asks ——10 K,
and y=0.066, corresponding to Mo=y '=15; the
lower dashed curve is calculated with Aokz

' ——194
K, A~k&

' ——4 K, and y=0.080, corresponding to
M =13. The large difference between Az and Ao is
difficult to justify physically, and may be a result of
the simplifications introduced through Eqs. (15),
which allow only a single param. eter y. The weak
maximum appearing in the theoretical curves may
also be an artifact of this parametrization. It was
felt, however, that the descriptive level of this work
did not warrant the introduction of more parameters
in Eqs. (15) or a more accurate expression for the
dislocation line energy than Eqs. (13).

The results shown in Fig. 2 demonstrate that the
general features of the melting curve can be under-
stood as resulting from a transition from bridging to
nonbridging loop dominated melting statistics with
increasing lamellar thickness. The description
suffers, however, from the way in which dislocation
screening is handled in Eqs. (13). In fact the present
treatment, as well as that of Ref. 7, presumes a low
density of independent dislocation bridges rather
than closely bound pairs' " as being the defects of
the solid state for M «Mo. This together with the
crude treatment of screening leads to the prediction
of a first-order transition, without the distinguishing
feature of nonconservative dislocation motion which
is a necessary added input to the more elaborate
melting theories. ' '"
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