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Effect of S,-nonconserving interactions on local-mode dynamics in FeF2.Mn
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In Mn-doped FeF2 a localized excitation exists below, but close to, the magnon continu-

um. With the application of an external magnetic field along the anisotropy axis, both the
magnon band and the local mode undergo Zeeman splitting. When, with increasing field,
the upgoing local mode becomes degenerate with the downgoing band, it broadens because
of the opening of scattering channels into the continuum through S,-nonconserving terms in

the Hamiltonian (dipolar and orthorhombic anisotropy interactions). The contribution of
each of these interactions to the local-mode linewidth is calculated, using standard Green-
function techniques. Although comparison with the single available experimental point in-

dicates that much of the linewidth arises from magnon-phonon decay, the signature of the
field dependence of the contribution calculated here makes separate identification readily

possible, once field-dependent experiments have been made.

I. INTRODUCTION

The usefulness of substitutional impurities, with
excitations spatially localized because they lie out-
side of the continuous energy bands of the host, as
local probes in solids, has long been recognized. ' A
particularly interesting case is the impure antifer-
romagnet with a localized magnon excitation below,
but close to, the magnon continuum (such as
Mn:FeFq, studied in Ref. 2 or Mn:CoFq, which is
discussed in Ref. 3), where the dynamics are particu-
larly sensitive to an applied magnetic field. The na-
ture of the elementary excitation spectrum, as a
function of magnetic field strength along the princi-
pal anisotropy axis, is illustrated in Fig. 1 for
Mn:FeF2, where the host band in zero field extends
from 1.58 to 2.35 THz and the local mode is at
1.507 THz. In this two sublattice uniaxial antifer-
romagnet, both the local mode and the host-magnon
continuum split under the application of the field,
depending on whether the spin-flip excitation lies
primarily on the sublattice with spins parallel to, or
the one with spins antiparallel to, the field direction.
For either local or band modes, we will refer to the
branch with energies increasing with the field as
"upgoing" and with energies decreasing with the
field as "downgoing. "

Because of the proximity of the local mode to the
band edge, this excitation is relatively extended spa-
tially, involving substantial participation of the Fe
neighbors to a Mn spin, so the magnetic field depen-
dence of the local-mode energy is intermediate be-
tween those of Fe and Mn. Although this depen-
dence need not be linear in the field, it is found to be
so (both experimentally and theoretically) to a good

approximation, with an effective g factor of approx-
imately 2.05, less than the value g=2.22 for the Fe
spins, so the downgoing local mode approaches the
downgoing band edge (they cross near Ho-250
kOe). Thus, the spatial extent of the local mode,
and therefore the overlap of such modes centered on
different impurities and the resulting impurity band-
width, increase with the applied field. The impact
on the local-mode magnetic resonance linewidth
with increasing field has been explored in Ref. 4.
Here, we will be concerned with the dynamics of the
upgoing local mode, as it enters and passes through
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FIG. 1. Predicted positions of the host band edges (H)
and the impurity local modes (l) in FeF&.Mn, from a
linear fit to the data, indicated by horizontal bars. The
branches of concern here (upgoing local mode and down-

going host band) are shown by the solid lines.
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the downgoing continuum with increasing applied
field; a brief discussion of this was presented ear-
lier. Were there complete rotational symmetry
about the z axis (the direction of the applied field, as
well as the principal anisotropy axis), so that total S,
was conserved, then the degenerate local and contin-
uum modes would be orthogonal by symmetry, and
they would not mix. However, both the dipolar and
orthorhombic anisotropy interactions, although rela-
tively small, break this symmetry, and decay into
the continuum becomes a source of linewidth for the
local mode. Here we present a calculation of this ef-
fect. We will find that, although perhaps as much
as 80% of the linewidth arises from other sources
(probably dominantly from spin-lattice effects), the
remaining linewidth contribution from the sources
calculated here exhibit significant field (or frequen-
cy) dependence and should easily be separately iden-
tifiable in the experimental results, once these be-
come available as a function of field.

II. CALCULATIONS

Since the experimental quantity of interest here is
the magnetic resonance linewidth of the local mode,
we should calculate the response of the system to a
spatially uniform field at the relevant frequency. In
fact, as long as we require only the linewidth and
not the intensity and detailed shape of the resonance
line, it will be adequate (and simpler in this system
without translational symmetry) to calculate the lo-
cal susceptibility of the impurity itself. For this
purpose we will make use of standard Green-
function techniques. We will first calculate the
propagators for the pure crystal, including the ef-
fects of the rotational symmetry-breaking terms, a
calculation in which the wave vector is a good quan-
tum number. A single impurity will be introduced;
if the corresponding perturbation is sufficiently lo-
calized, then the dynamical equations couple only a
few Green functions in a lattice-site representation,
with propagation expressed in terms of the solutions
to the pure-crystal problem.

The Hamiltonian of the pure rutile-structure crys-
tal is conveniently written as

H =He +Hz+Hgg +Hog+H (2.1)

referring, respectively, to Heisenberg exchange, Zee-
man, uniaxial anisotropy, orthorhombic anisotropy,
and dipolar interaction terms. With the magnetic
field applied along the direction defining uniaxial
anisotropy (the "z axis"), the first three terms retain
rotational symmetry about the z axis and therefore
commute with the total z component of spin

H, +Hg+H„, =QJJS; SJ yHp+Si'—
(2.2)

where S is the Fe + spin magnitude. The dominant
exchange interaction J,J is between spins at next-
nearest-neighbor sites i and j. Although there exist
weaker exchange couplings between nearest and
third neighbors, we will incorporate all such effmts
into a single next-nearest-neighbor exchange con-
stant J, which simplifies the algebraic manipulations
without altering any of the essential physics (note, in
particular, that all Heisenberg exchange terms com-
mute with total S,).

The magnetocrystalline anisotropy arises from the
electrostatic fields of the ions surrounding a Fe +

site. The dominant uniaxial term is associated with
the tetragonal distortion of the cell from cubic sym-
metry. But there is, in addition, a small orthorhom-
bic anisotropy in the x-y plane which can be
represented as

(2.3)

For simplicity, we consider temperatures far
below the antiferromagnetic ordering temperature
T~ (as was, in fact, the case for the experiments
with which we will compare our results). If no
temperature-dependent renormalization effects then
are involved, we can avoid the complications of the
spin commutation relations in the dynamical equa-
tion by making use of the boson representation of
the Holstein-Primakoff transformation:

S,J ——+2SJ 1—
1/2

QJ QJ

2S aj ——(S,J )

' 1/2
bI bI

Sbt =+2Sibi 1— =(Sb7 )

(2.5)

where the boson annihilation operators a and b refer
to up and down sublattices, respectively, and j,l la-
bel the sites.

We define the usual zero-temperature retarded
Green function G" (r) for two Heisenberg operators

where g; equals + 1 for i on the up sublattice and
—1 for i on the down sublattice, because the I'
cage is rotated by m./2 about the z axis in going from
a magnetic site on one sublattice to one on the other.
Thus, there is local, but not global, orthorhombic
anisotropy. Although this term is small, it breaks
the uniaxial rotational symmetry and can therefore
play an essential role in properties relying on this
broken symmetry —in particular, the local-mode
linewidth considered here. The same remark holds
for the magnetic dipole-dipole interaction,

Hd —,A'y g [S;.——Sq —3(S;.r,j)(SJ.r,j )] r;

(2.4)
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A(t) and 8(t):

(2.6)

where e(t) is the unit step function and the single
angular brackets denote the ground-state expectation
value. In the familiar case of a two sublattice anti-
ferromagnet with a Hamiltonian which conserves
total S„ the equation of motion of 6, with 3 a
spin operator (e.g., SI ), introduces only other opera-
tors producing the same net spin deviation (S for
other sites I). In a translationally invariant system,
where wave vector is a good quantum number, the
equations of motion then mix only two Green func-
tions G~(q, t) one for each sublattice. But when S,
is no longer conserved, four such functions are
dynamically coupled. Then for any pair of sites m
and I it is convenient to define the four Green func-
tions

c06 ~((c0)=5 I5 p+M r(c0)G„"p(~~), (2.8)

where repeated indices are to be summed. As al-
ways, translational symmetry block diagonalizes
these matrices, with each block labeled by a wave
vector q:

G ~(q, co)—:QG ~~
~t~ ~(co)e

where 0,=a, (b, ) if site s is on the up (down) sublat-
tice (so it always flips a spin up, increasing S, by
one unit), and )=+1 is defined so that the equal
time commutator of the operators in 6 is + 1 or
zero: g=+ 1 if it is followed by a destruction
operator (a or b) and g= —1 if followed by a
creation operator (at or bt). Then, if we introduce
the 2X2 matrix 6 f(t) of Green functions for each
pair of sites rn and I, with aP taking the values +
and —,the frequency Fourier transform of these
matrix Green functions obeys equations of motion

6+t (t) =(((0 (t),0t (0) )),
G~+~+(t)=((gO (t),Ot(0)) ),
G ( (t)=(((0 (t),Ot(0))),
6 t(t)=(($0 (t),Ot(0)) ),

(2.7)

(2.9)

where o,o' label the sublattices on which the sites m
and I are located. Then the solution of Eq. (2.8) is
reduced to inversion of a 4X4 matrix:

6„(q,co) G„~(q,c0)

6„(q,co) 6„(q,co)

co —v 8* (q)
—8 (q) co++v
—8„(q) A (q)

—8*(q)
—A (q) 8„(q)
co+ —v 8+(q)

(2.10)

—A(q) 8,'(q) —8+(q) c0 +v

where the asterisk indicates complex conjugation,
co+—=co+cop, with cop=—yKp the Zeeman frequency,
v=2S(D+ 8J), and

A(q)=2JS+exp(iq 6),
5

summed over the eight next-nearest-neighbor vectors
connecting exchange-coupled sites. More precisely,
v also contains small S,-conserving q-dependent
terms arising from dipole sums. At q=0 these
describe demagnetization effects; at all q the correc-
tions are small and we shall neglect them. The coef-
ficients B(q) arise from the S, nonconserving terms
in the Hamiltonian:

I

8~(q ) is defined by Eq. (2.12) but with the sum j(x)
now taken over all sites on the opposite sublattice
from the site 0. Of course, in the absence of these
coefficients 8 ( q ), the problem factors into the usual
2X2 matrix structure, where a Green function
6(q, co) is connected to a single other one, associat-
ed with the other sublattice.

The magnon energies are the poles of the Green
function, or zeros of the determinant h(q, co) of the
matrix whose inverse is the right-hand side of Eq.
(2.10). In the absence of the long-range dipolar in-
teractions this determinant takes the simple form

&(q,~)=[&+—v +A (q)][0 —v2+A (q)),
8+(q)=B,(q)+E, (2.11) (2.13)

j(g) P pj
(2.12)

with j(s) summed over all sites on the same sublat-
tices as the reference site, here labeled 0. Similarly,

where Q+=(co +E )'~ +coo. Clearly the zeros of
A(q, co) arising from these two factors form the up-
going and downgoing host bands. The dispersion re-
lation reduces to the form familiar for uniaxial anti-
ferromagnets if the orthorhombic anisotropy E is
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also set equal to zero. Although the fourth-order
secular equation does not readily factor into a simi-
lar intuitively obvious form in the presence of the
dipole interactions, the resultant band structure is,
of course, very similar both qualitatively and quanti-
tatively; the dipole interactions are relatively small.
The important alteration of the pure-system spin
dynamics by the symmetry-breaking terms is not in
the spectral range but rather in the introduction of
new nonvanishing correlation functions 6++(q, co)
and 6 (q, co), which imply spectral density for a
giuen direction of spin flip where it did not exist be-
fore, which will permit the decay of the local mode
of interest here, as anticipated.

We now introduce a single substitutional Mn im-

purity on the up sublattice, on a site henceforth la-
beled 0. This impurity has both a different spin
magnitude and different exchange couplings with its
neighbors than the host Fe spin which it replaces.
However, the net exchange mean field is not much
changed, and these Heisenberg interactions conserve
total S, in any case, so the effect of altered exchange
interactions is unimportant for our purposes. On
the other hand, inclusion of these terms as perturba-
tions, off-diagonal in a lattice-site representation,
would greatly increase the algebraic complexity of
the calculation, so we shall neglect them. The site-
diagonal perturbations of the impurity which we
mill keep include the much smaller uniaxial aniso-
tropy (D'&&D, where the prime denotes the value

l

associated with the Mn impurity), a different g value
(g'=2.00, g=2.22), and the near absence of an
orthorhombic anisotropy term for the orbital S-state
ion (E'=0). These perturbations then take the form

H = —P(Ho)a pap+, E(aoao+aoao) (2 14)

where P(Hp) includes the difference in both uniaxial
anisotropy and Zeeman energy terms. This term is
larger than the other (proportional to E) in Eq.
(2.14), and it primarily controls the energy of the lo-
cal mode; the parameters of P(Hp) are chosen to
reproduce the experimental local-mode energy:

P(Hp)/16JS=0. 38+2&&10 Ho(kOe) . (2.1S)

The dynamical equation for the Green functions of
the impure system Ã can now be written in the
lattice-site representation as

9';~(co)=G; ~(co}+6 r(co) Vr 9' ~(co), (2.16)

where again repeated indices imply summation. The
2&&2 perturbation matrix V has diagonal elements
+P(Ho) and off-diagonal elements +E, with ele-
ments of the matrix labeled only by the superscripts
(which take values + and —}, since it is localized
on the impurity site. Further, since we have indicat-
ed that we are only interested in the local function
Sop(co), we can immediately set i =j=0 in (2.16}to
obtain

PGOO —EGOO+ 1—PG(g+ iEGOO

1+PG00 —EG00+ EG(g —PG(g+
Gpp(co) . (2.17)

The singularities of Spp, in addition to a quasicon-
tinuum coinciding with that of Gpo, include isolated
poles at the zeros of the determinant of the 2X2
matrix in Eq. (2.17), the local-mode frequencies. We
recall that G++ and 6 vanish with E, so
neglecting terms of order E we find the local-mode
frequency co~ is given by the condition

liP(Hp)Gpp (cot)=0. (2.18)

(The other factor in the secular determinant,
1 PG +, does no—t vanish for positive co.) It is
clear from Eqs. (2.17) and (2.18) that near co =cot the

J

I

Green function takes the form

(2.19}

where C, X, and I are approximately independent of
frequency co, and X and I vanish with the S,-
nonconserving interactions. That is, the response of
the impurity spin itself near the local-mode frequen-
cy is approximately Lorentzian in shape, with a
small frequency shift X from co=coI and a half-
width I, given approximately by

I'= Gpo (co)
dN

Im G(g +
(E~/P)Gp+p Gpp+ yPGc++)+Goo ~(E/P)(6 op

—6(++)+ )

1 —PGOO+
(2.20)

where the right-hand side is evaluated at co=coI. Corrections to I are of higher order in the dipolar and
oithorhombic anisotropy coupling constants V~ and E.

For explicit evaluation of I' we require the local pure-crystal Green functions, the spatial Fourier transforms
of the solution (2.10),
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Goo~(co) =—g C,~(q, co)lh(q, co),
q

where 5( q, co} is the determinant of the matrix whose inverse is the right-hand side of Eq. (2.10), and

C~+, (q,~)= —C;,+(q, —~)

(2.21)

=(co +v)[co+ —v +A (q)]+ i 8+ i
(co++v) —i8 i (co+—v) —A(q)(8„8++8„'8+), (2.22)

C«(q, co)= —C,+,+(q, co)

=8 [co —(v —coo) + ~8+ ~ ]—A (q)8++2A (q)8„(v—coo) —8„8+ .

It is clear from these explicit expressions that the
leading terms in C«and C,&+ are constants plus
corrections of order Vq and E, while in C,+, + and
C, , they of order V~ and E. Although Vd is only
a few percent of E, the dipolar interaction is long
ranged, while the orthorhombic anisotropy is local,
so their effects can be comparable, and we retain
both. In fact, to second order their effects are sim-

ply additive and we can examine them separately:
The terms in Eq. (2.23) which are linear in 8~ and
8„[see the definitions (2.11}and (2.12}] involve di-
polar sums of the form

oj 3 0J ~ [a +bA (q)] i q r~
o

5
roi q Q( q, co)

which vanishes by symmetry (since the sum over q
itself retains the full lattice symmetry as a function
of re�). Therefore, terms linear in Vq in Goo vanish,
as do terms of order EVd, for the same reason.
Thus to second order we can evaluate the
orthorhombic and dipolar contributions separately.

We first consider the orthorhombic contribution.
The Green function takes the form

Goo~(co) = g C„~(q,co)~o& z 0 —v +A (q) 0+—v +A (q)
(2.2S)

where Q=(co +E )'~ and, as before, 0+ ——0+coo.
In the absence of dipolar interactions the q depen-
dence of C(q, co) is contained in terms proportional
either to a constant or to a simple phase factor, so
the q sums are all of the form

UJ(e}=—g exp(iq roi)
(2.26)

which has been tabulated for small
~

r,j ~

(all that is
needed here), since it is just what is required for the
Green function when E=O. We note that the ima-
ginary part of the retarded function is to be inter-
preted as the limit of the vanishing positive ima-
ginary part of co at the cut along the real axis expli-
citly exhibited in Eqs. (2.2S) and (2.26).

Some simplification in the form of the
orthorhombic contribution I E to the halfwidth re-
sults because of the relation

Goo+ (co) =(E/2co)[G00 (co)+ Goo+ (co)] (2.27)

in the absence of dipolar contribution. To lowest
nonvanishing order in E we find

«~~)'[Goo+ (~i)]o dis= +
I

1 ~[GcN+(W)]oI'

(2.28)

I

where the subscript 0 on the brackets around the
Green functions indicates that they are to be
evaluated to zero order in the S,-nonconserving in-
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FIG. 2. Predicted linewidth of the upgoing local mode

as a function of its frequency. The solid line shows the
width due to orthorhombic anisotropy, the dotted line due
to dipolar interactions.
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teraction. The linewidth 2I E is plotted as a func-
tion of resonance frequency (effectively, as a func-
tion of applied magnetic field) in Fig. 2, with the
orthorhombic anisotropy strength taken as 8=2.68
cm '. This value of E was obtained from measure-
ments on the optical spectrum of Fe + in nonmag-
rietic ZnF2. Although E is very sensitive to the lat-
tice parameters, a crude calculation of the change in
the electric quadrupole field strengths using a point-
charge model with the known lattice parameters of
ZnF2 and FeF2 suggests an increase in E of order
10% or less.

We turn now to the dipole contribution, setting
E=O. Then, since the site-diagonal Green functions
Goo~ contain no term linear iri Vd, as discussed
above, to second order in Vo the expression (2.20)
for the linewidth takes the simple form

ReG00 (co=co()
CO

Ima(++) (co, ) .

(2.29)

In contrast to the contribution from orthorhombic
anisotropy considered above, the necessary Green
functions here are not immediately expressible in
terms of the same sums over wave vector q which
define the tabulated Green functions of the S,-
conserving Hamiltonian. Algebraically, the missing
simplification is the factorized structure (2.13) for

I

the orthorhombic contribution of the secular deter-
minant b,(q, co), which appears in the denominator
of the q sum defining Goo [see Eq. (2.21)]. However,
such a form is approximately correct:

6(q, co}=[co —v +A (q}]

co+ —v +A (q)

a V~2

co —v +A (q)
(2.30)

where we recall co+ ——co+coo and a is a constant of
order unity. At co=co)(HO) we find co is nearly
field independent [it would be exactly so if g' were
equal to g, so that co)(HO) was co)(0)+coo]. As al-
ways, v —A (q) is the square of the band-magnon
energy of wave vector q, in the absence of a field.
Therefore, the last term in the second set of large
parentheses of (2.30) represents a correction (effec-
tively a shift in the poles of the Green function) of
the order of the square of the ratio of the dipolar
coupling to the separation of the local mode from
the band at zero field. This can be neglected in all
cases considered here (note that the width I'd is al-

ready proportional to Vd from the numerator of
ImG00 },and we have approximately

+ — 2 + — 2 + — 2
(r0j(s)"Ok(s) } (rpj (x)"Ok(x) ) (rpj (s)"Ok(x) }

ImG~+ (co)=VdImg Ai » +Ai » U;k(co+}+A3 5 5 V,k(co+)
j,k, r ojr Ok roJrok roJrok

(2.31)

Vjk(~)= () QUj+s k(E), (2.32)

where the sum is over the eight nearest-neighbor
vectors 5 on the body-centered lattice. The func-
tions U R (co) have been tabulated only out to the lat-

tice point R=(2,2,2), and so the sums of Eq. (2.31)
are easily done numerically only when they have al-
ready converged by the time the lattice vectors reach
this size. This causes problems only for frequencies
co) near the lower band edge (of the downgoing con-
tinuum), so in Fig. 2 we have plotted the results for
Id only well away from this point. Of course,

where r +—=x+iy and-, as before, j(s) and j (x) imply
sums over the same y,nd opposite sublattices, respec-
tively, as the reference site 0. The coefficients Ai,
A 3 A 3 depend only on co, cop, and the parameters of
the S,-conserving Hamiltonian, and the lattice func-
tion Vjk(e) is related to Ujk(e), defined in Eq. (2.26),
by

I q
——0 exactly at that band minimum frequency and

it is clear by continuity that it remains small up to
the point where we can be confident of the numeri-
cal convergence of our sums.

III. DISCUSSION, COMPARISON
WITH EXPERIMENT

The results of the above calculation, as summa-
rized in the graph of Fig. 2, reflect the linewidth of
the upgoing local mode in FeF2.Mn associated with
decay of that mode into the downgoing continuum.
This contribution vanishes, of course, when the local
mode lies outside the band: mI &1.54 THz or
co& ~ 1.93 THz (see Fig. 1). Because both destruction
of the upgoing local mode and creation of a down-

going band magnon correspond in lowest order to
increase of S, by one unit, axial-symmetry-breaking
terms of the form S;+Sj+ play an important role.
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The transition matrix elements are largest when i
and j are on opposite sublattices (since the local-
rnode wave-function amplitude is large on one sub-
lattice, and the band-mode amplitude on the other).
Thus for the dipolar interactions the intersublattice
terms [proportional to A2 in Eq. (2.31)] play a dom-
inant role. The linewidth contribution I ~ is of the
order of the square of the dipolar coupling constant
times the density of states for excitation by a single
spin flip in the direction of the field, at positive fre-
quencies. This density of states, which in the pure
axially symmetric system has a singularity at the
upper band edge, no longer is singular, though it
does have a large peak there, as indicated in the fig-
ure.

The orthorhombic coupling constant is intrinsi-
cally more than an order of magnitude larger than
the dipolar coupling constant, but its contribution to
local-mode broadening is reduced by two important
features. First it is site local, and S;+S;+ couples
strongly either only to the local magnon (if i is on
the up sublattice) or to the continuum (if i is on the
down sublattice). Second, the sign of E alternates
between the two sublattices; there is no global
orthorhombic anisotropy. If the impurity felt the
same anisotropy as did the atom which it replaced,
then this alternation of sign would lead to complete
cancellation of terms in the local-mode linewidth to
second order in E. Effectively, the relative ampli-
tude (to first order in E) for a spin flip in the
"wrong" sense (e.g., up on the up sublattice) in the
local mode, as perturbed by E, is equal and opposite
to the corresponding amplitude for a band mode at
that frequency; it is the sum of these amplitudes
times a factor representing the overlap between the
local and extended modes which determines the
local-mode decay amplitude to first order in E, and
this vanishes. Thus the lowest-order contribution to
the local-mode decay rate, or. linewidth, arises from
the contrast between the orthorhombic anisotropy
for the Mn impurity (approximately zero) and that
for the Fe atom which it has replaced in the lattice.
The effective density of the final states is associated
with Goo+ ——((So (t);So+(0))), rather than with
Goo ——((Soo(t);So (0)) ), which at the positive
frequencies of interest no longer exhibits a peak near
the band maximum [the peak is now found at nega-

tive frequencies, as Goo+ (co) =Goo ( —co)]. The
shape of the predicted local-mode linewidth as a
function of frequency closely mirrors the density of
states associated with Goo+ (t0).

To date, there is, to our knowledge, only a single
experimental measurement with which our theory
can be compared. Data taken at cot/2m =1.75 THz
and extrapolated to zero sample volume (to elim-
inate the radiation damping contribution to the
linewidth) and to vanishing impurity concentration
(to eliminate the effect of impurity-impurity interac-
tions) show a residual linewidth of about 3 kOe.
The above theory predicts a value which is only
about one-sixth of this value. Similarly, an earlier
calculation of the linewidth of the downgoing local
mode associated with impurity banding effects left
unexplained an observed concentration-independent
contribution of about 1 kOe. Calculations by
Rezende' and by Motokawa" suggest that in both
cases the difference between theory and experiment
can be eliminated by including spin-lattice relaxa-
tion decay of the local mode into a phonon. The
one-magnon —one-phonon term in the Hamiltonian,
associated with expansion of the magnetostriction to
lowest (first) order in the strain, ' involves a cou-
pling constant proportional to (fiq /2M'&)„)

'i
ceto i (from the expansion of the strain in boson
operations), so the local mode to phonon decay tran-
sition rate is predicted to be proportional to coI.
Then if this mechanism is responsible for the 1-kOe
residual width of the downgoing mode at coI ——1.36
THz, we would expect a contribution of
(1.75/1.36) =2.1 kOe to the upgoing mode
linewidth, bringing that theory also into essential
agreement with experiment. Clearly at this stage it
would be very instructive to have experimental mea-
surements of the local-mode linewidth as a function
of applied field (i.e., of local-mode frequency co1 ).
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