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t 9Ag Knight-shift versus magnetic-susceptibility relationship in Pdi „Ag„
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The strong variation with temperature T and silver mole fraction x of the magnetic sus-
ceptibility P of the Pd& „Ag„alloy system is interpreted by means of a semiphenomenologi-
cal function PpdA~(T, x) deduced from spin-fluctuation-model and thermodynamic (especial-
ly entropic) considerations. The different contributions to PpdA~ are analyzed by relating
them to their counterparts in the ' Ag Knight-shift ~EpdA~ via the linear "0'KpdA& vs PpdA~
interrelation with both T and x (on the paramagnetic, Pd-rich side) and with x (on the
diamagnetic, Ag-rich side) as implicit parameters.

I. INTRODUCTION

In standard two- (d- and s-} band —model nota-
tion, the total paramagnetic susceptibility of pure
solid Pd (Ref. 1) can be formulated as

A; =B,"g't/L p,it, (4)

pz is Bohr's magneton and I. Avogadro's number
with the contributions to g being used in units of
susceptibility per mole. The relationship eK(T) vs

Xpd(T) with T as implicit parameter is linear and a
Jaccarino-plot analysis of Eqs. (1}—(3) shows that
both X~(T) and Kd(T) are dominating the orbital,

Xpe —Xg( T) +Xo|b+Xsig+ p Xs

There, Xd ( T) is the Stoner-enhanced strongly
temperature- (T-) dependent Pauli d-spin part asso-
ciated with the nearly filled narrow d band. X„b,

2
Xd;„and —,X, are the temperature-independent
paramagnetic d-band orbital, ion core diamagnetic,
and (Landau-corrected} Pauli s-spin contributions,
respectively. The total Knight shift of ' Pd in Pd
metal reads

PdK =Kd( T) +Ko,b+ Kdt, +K, ,

where Kd(T) is the (negative) d-band —induced core
polarization contact, E„b the d-band orbital, Ed;,
the differential ion core diamagnetic, and K, the s
band direct-contact contribution. In term-by-term
correspondence to Eq. (1) the shift K can be
rewritten as

K=AgXg(T)+A„bX„b+Aet, Xdt, +A,X, . (3)

The quantities A; (i =d,orb, dia, s} are appropriate
hyperfine coupling constants averaged over the Fer-
mi surface and related to the corresponding effective
hyperfine fields Bluff by

XpdAs(T x)=Xd(T x)+X b(x)+Xdi (x)

+ —,X,(x) . (5)

Alloying Pd with small amounts of Ag leads to a
reduction of the d-spin susceptibility maximums in
the low-temperature isopleths Xq ( T,x =const)
within 0 ~x &0.06. The isothermal bulk suscepti-
bility XpdAs (T =const') shows a rapid monotonous
decrease with increasing x on the Pd-rich side of
Pd& „Ag„. This strong variation with x predom-
inantly stems from the d-spin part Xd(T x) in Eq.
(5} and is caused by Pd d-band filling when magnet-
ic Pd is mixed with nonmagnetic Ag. In previous
papers ' our semiphenomenological ansatz for the
pure Pd metal case (1) has been extended to the alloy
case (5) by using thermodynamic (especially entro-
pic) arguments.

Owing to polarization of the common s band by
the nearly filled Pd d band, the Knight shift ~E of
the ' Ag nuclei in Pd-rich Pd& „Ag„alloys '

closely follows the strong variation of XpdAs upon

diamagnetic, and s-spin contributions which further-
more tend to cancel. Immediately above T=0 both
X~(T) and K~(T) vary as +T and reach a max-
imum at about 85 K.' Beyond its maximum Xd(T)
smoothly switches from Pauli-Stoner behavior via
Curie-Weiss behavior to asymptotic high-
temperature Curie behavior oc 1/T. This anomalous
temperature variation of X~(T} of Pd has been for-
mulated analytically by a semiphenomenological
function within 0& T & T (melting point) and in-
terpreted from the spin-fluctuation (SF) point of
view in two previous papers.

In the completely miscible substitutional alloy
system Pd~ „Ag„one observes a rapid decrease
with x (silver mole fraction) of the T-dependent
magnetic bulk susceptibility
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Pd d-band filling with increasing Ag content. As a
consequence, the Jaccarino plot sE(T,x) vs

XpaA, &(T,x) with T andlor x as implicit parameters
also turns out to be linear. Therefore, the ' Ag nu-
clei of nonmagnetic silver selectively probe the vari-
ation with T and x of the magnetic susceptibility of
the nearby Pd atoms in Pd-rich Pd& „Ag„.

In this paper, the variation (5) with T and x of
Xp~s will be reanalyzed in the light of the linear

gEC vs XpgA& relationship; In Sec. II our semi-
phenomenological susceptibility concept ' ' will be
justified by theoretical considerations. In Sec. III
the conclusions about the change in electronic struc-
ture upon alloying Pd with Ag drawn from this con-
cept will be supported and complemented by means
of the interrelation between sE (selective) and Xpp~s
(global).
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II. MAGNETIC SUSCEPTIBILITY g(T,x )

OF Pdi „Ag„

Adding Ag to Pd rapidly deenhances the total
magnetic susceptibility (5) of Pdi „Ag„. This
behavior has been analyzed in Refs. 6 and 7 as fol-
lows:

(a) For x&0.06 the steep monotonous descent
with x of the dominant Pauli-Stoner d-spin suscepti-
bility isotherms Xq (T=const, x) goes with a mono-
tonous decrease in their spread (T dependence).
The isotherms X~(x) intersect at x=xp=0. 55,
where they reach their lowest T-independent value
of Xz(T,x =xp) =0.

(b) The paramagnetic d-band orbital part X„b of
Eq. (5) weakly increases with x and then falls off to
zero at x =x ~ =0.64, where the Pd d band is filled.

(c) The ion core diamagnetic part Xs;, weakly in-
creases (becomes less negative) with x due to Pd d-
band filling up to x =x~ =0.64 and then remains in-
dependent of x up to x = 1 (pure silver}.

(d) The small paramagnetic Pauli s-spin part X,
in (5} appears to be constant for x &x*=0.64 (see

I

FIG. 1. Pd) „Ag„within 0&x & 1. (i) Experimental
molar magnetic susceptibility g(x) (left-handed scale).
Data at 20 K due to Hoare et al. (Ref. 4) (open circles)
with g(x =0.4) being interpolated and due to Abart et al.
(Ref. 7) (open squares); data at 298 K due to Brill and
Voitlander (Ref. 9) (closed circles). (ii) Experimental
' Ag Knight-shift E(x) (right-hand scale). Data at 4 K
due to Narath (Ref. 8) (open circles) and data at 298 K
due to Brill and Voitlinder (Ref. 9) (closed circles).

Refs. 6 and 7 and below) and then weakly increases
with x due to common s-band filling up to x =1
(pure silver).

(e) Both Xa;, and X, further show a very weak
linear variation with T which can be neglected
against the variations (a)—(d) in first approximation.
This T dependence is due to a change in the thermal
volume expansion with increasing x in Ag-rich
Pd, „Ag„.

A superposition of the two-band —model contribu-
tions (a)—(d) mentioned above leads to the total alloy
susceptibility

Xp~s(T,x ) =X/(T, x )e(x —xp)+ [X„b(x)+X/;,(x)+ —,X,]e(x—x*)+[X/, + —,X,(x)]e(x' —x ) (6)

within 0&x & 1. e(x —y) is a step function which
equals unity (zero) for x smaller (greater} than y.

By virtue of Xz;, (negative) the bulk susceptibility
isotherms XpsAs(x} cl'oss the x axis at x 0.5. Im-
mediately below the x axis they intersect at
x =xp ——0.55. Beyond xp their spread (or variation
with T) remains negligibly weak and they bend off
to form a shallow minimum Xp~g at x =x*=0.64.
The pure silver susceptibility at x = 1 is only slightly

I

less negative than XPgz (cf. Fig. 1).
In the following, starting from the pure Pd case

(x =0) we will discuss in detail the unusually steep
descent with increasing x of the dominant d-spin
susceptibility contribution Xq(T,x) on the Pd-rich
side of Pd~ „Ag„. In particular, further theoretical
arguments will be given to justify our semi-
phenomenological ansatz for X~(T,x ).
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A. d-spin susceptibility of pure Pd (x =0) and (15)

The internal magnetic energy of a model system
of N local atomic Pd d-spin moments p in a config-
uration with N/2+m spins up and N/2 m—spins
down (N even, m integer} in a constant magnetic
field B is given by

U,g(m)= 2m@—B .

The number of states with d spin excess 2m is

g (N, m ) =N!/[ (N /2 ) +m ]![(N /2 ) —m ]! ~ (8)

Expanding the factorials, one obtains for
~

m
~
(N

the Gaussian distribution '

Xd(T) = ~ +mag( eq)

BB

=Np f(T)/kz T

=(C/T)[1 —(1+S/Tp)

F,g (m, q ) cc N—p~f ( T}B2/2ks T,
and hence the isothermal magnetic d-spin suscepti-
bility

g(N, m) a: exp( 2m —/N),

and hence the generalized magnetic entropy

S,g(m)=kzlng(N, m ) &x: 2ksm /—N

= —Nks (2m p )'/2Mp (10)

Xexp( 2ST/T—p)] . (16)

Xd (0)=CS /Tp (17)

By virtue of f( T)/T=S/Tp at T=O, the suscepti-
bility (16) at T=0 is enhanced by S,

(ks is Boltzmann's constant). There, the square of
the fluctuating total paramagnetic Pd d-spin mo-
ment 2mp is scaled to the square of the maximum
total moment Mo ——Np.

In our discussion of the anomalous temperature
dependence of the enhanced paramagnetic Pd d-spin
susceptibility Xd ( T}, we have considered
temperature-induced d-spin moment fluctuations
(SF}of the Moriya type":

M (T)=M„f(T),

f(T)= 1 —(1+S/Tp)exp( 2ST/Tp) . —

and remains finite in accordance with the third law.
Ansatz (16) interpolates between the low-
temperature Pauli-Stoner paramagnon behavior

Xd =Xd(0)[l —
3 (ST/Tp) + ' ' ' ] (18)

of itinerant d electrons and asymptotic high-T Curie
behavior

Xd =C/T

of localized d spins in pure Pd. In the expression
for the Curie constant,

These SF increase linearly with T as

M (T)=M (S/Tp)T+ . (12)

C=NIJ, /ks ——M „/Nks

= (M „)/ks . (20)

S,g(m) ~ —Nks(2m@) l2M„f( T) . (13)

From the generalized magnetic Helmholtz free ener-

F,g(m) =U,g(m) —TS,g(m) (14)

and the eq~~lb™(eq) condition (BE/Bm )r,N, s ——0,
one deduces

and above the characteristic SF temperature
TsF Tp/S they rea——ch the saturation value of M „
in the asymptotic high-temperature Curie limit of
T~ ao. S- 10 is the Stoner enhancement factor
and To-2900 K the unrenormalized degeneracy
temperature of the Pd d holes. Inserting Eq. (11)
into the generalized magnetic entropy function (10)
one has

(M„) is the mean-square deviation from the fluc-
tuating paramagnetic Pd d-spin net moment

(M„)=0 in the saturation limit T~ oo. From Eq.
(16}one recovers the classical dissipation fluctuation
theorem '

Np~f ( T}= (Mg( T) ) =ks TXg( T) (2 1)

with the averaged T-dependent fluctuation ampli-
tude (M (T) ) vanishing at T=0 for Fermi-liquid
behavior and approaching k&C= (M ) for local
saturation moment behavior at high T.

As has been shown in Ref. 3, the well-known
maximum of the low-temperature susceptibility of
pure Pd (which is still a matter of debate) can be in-

corporated separately by adding a phenomenological
term 5Kd(T) to the right-hand side (rhs) of Eq. (16)
to give

meq =NIJ'f ( T)B/2ks T Xpd(T)=Xd(T)+5Xd(T) . (22)
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5Xe( T) makes the total d-spin susceptibility Xpz( T)
rise as +T immediately above T=O and converge
to Xd(T) after passing through a maximum at -85
K.

In Pdi „Ag„small amounts (x &0.06) of silver
rapidly suppress 6Xd(T). Therefore, our discussion
of the decrease of Xpg(T) with x in Pd, „Ag, will
be confined to that of the term Xe(T) in Eq. (22).

B. d-spin susceptibility of Pd~ „Ag„

and at magnetic equilibrium

m~ N=pf(T)r(x)B!2k&T,

F,g(m, „)~ Np—, f(T)r(x)Bz/2k&T .
(29)

Hence, the isothermal magnetic-alloy d-spin suscep-
tibility is

Xd(T,x) =Np f(T)r(x)/ke T

=Xe(T)[1+xlnx+(1 —x)ln(1 —x)
The canonical ensemble partition function for

PdAg
+x inc] (30)

Q=g(N, NA, )(fA, ) "(fpd) (23)

describes the N~g silver atoms as a lattice gas' for
which the Npd ——N —NA~ palladium atoms provide
the sites. The configurational degeneracy factor

g(N, N~g ) =N!/N~g!(N —N~g )! (24)

+Nkvd T (26)

with x =NAg /N the silver mole fraction and
c=fpelf~g the ratio of the intrinsic particle parti-
tion function of palladium to that of silver in the al-
loy. The excess term x inc in Eq. (26) describes the
deviation from ideal (purely random) mixing (c = 1).
The nonideality parameter c&1 can be associated
with the change in electronic structure upon alloying
Pd with Ag (Refs. 6 and 7) (see below). The ratio

r (x) =6/Nke T

denotes the number of ways one can pick up
paramagnetic Pd atoms from the crystal containing
a total of N atoms (labeled sites) and replace them

by NA~ nonmagnetic Ag atoms. The corresponding
Gibbs free energy is given by

6= keTlng+—NkeT .

In Stirling's approximation one has

6=NkeT[x lnx+(1 —x)ln(1 —x)+x lnc]

1+xplnxp+( 1 —xp)ln( 1 —xp ) +xplnc =0

(31)

which gives c=0.567. From Eqs. (29) and (30) one
also deduces that magnetochemical equilibrium

r

~Fmag (m eq )
=ln[cx /(1 —x )]=0 (32)

X Tg

is reached at x=x~=(1+c) '=0.64. There, the
bulk susceptibility (6) of Pd| „Ag„ is observed to
attain its lowest value ' (cf. Fig. 1).

At detailed equilibrium in Pdi „Ag„ the charge
N~gze of NAg silver atoms (with effective valence z)
minus the hole charge Npdnge of—Npd palladium
atoms (with an effective atomic hole number ng)
equals the charge (Np g +Npd)n, e added to the com-
mon s band (with an average number n, per atom of
conduction s electrons), i.e.

zx+(1—x)ng =n,

with Xd(T) given by Eq. (16). According to Eq.
(30), the T and x-de-pendent magnetic d-spin sus-
ceptibility Xd(T,x) decreases monotonously with x
due to randomizing the magnetic Pd d-spin mo-
ments by mixing of Pd with nonmagnetic Ag. '

In Ref. 7 experimental evidence has been given for
the susceptibility isotherms Xd ( T=const, x ) of
Pd, „Ag„ to intersect at x =xp ——0.55 (cf. Fig. 1),
i.e., with Eq. (30) one has

=1+x lnx+(1 —x)ln(1 —x)+x inc (27) or (33)

gives a measure of the fractional decrease with x in
Gibbs free energy per atom in the alloy. The ratio
r (x) can be expected to change effectively the degree
of randomness in orientation and magnitude of the
paramagnetic Pd d-spin moments in PdAg. There-
fore, incorporating r(x) into the generalized mag-
netic entropy (13) and into Eqs. (14) and (15), one
has

x(z n, )+(1 —x}(n„n—, )=0—
with x the mole fraction of Ag. The lever-rule-like
charge neutrality condition (33) reflects the
coherent-potential approximation (CPA) of overall
zero scattering. ' Assuming that the valence zo ——1

of pure Ag will be altered in PdAg by the intrinsic
stability ratio c=fpd lfAg (see above) to give the ef-
fective valence z =czp, one has with Eq. (33)

S, (mg, , T)x~ Nke(2mp) /2M„f—(T)r(x) ng(x)ln, =1—cx/(1 x) =n(x;—c) . (34)

(28) Function (34) describes the decrease of the effec-
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tive number ns(x) of Pd d-band holes per Pd atom
scaled to the effective number

C. Orbital, core diamagnetic, and s-spin
susceptibility contributions

In pure Pd (x =0}the susceptibility contributions

X„b,X~„and —,X, nearly cancel. Their weak varia-

tions with x, which are dominated by the rapid de-
crease with x of Xq on the Pd-rich side of
Pdi „Ag„become vital for x & 0.5.

(a) In default of more precise knowledge about the
x-dependent paramagnetic d-band orbital part
X„b(x), we have proposed in Ref. 6 the phenomeno-
logical ansatz

X„b(x)=X„b(0}[(1—x }n(x;c)

+(Z/2)x(1 —x )n(x;c)]

X8(x—x ) (36)

with X„b(0)=+20X10 cm /mole as parameter
and n(x;c) given by Eq. (34). The first term on the
rhs of Eq. (36} is due to the above-mentioned Pd d-

band filling and the second term due to the corre-
sponding change in the effective interaction between
Pd atoms and nearest-neighbor Ag atoms (Z=12
for fcc PdAg). According to Eq. (36), X„b(x) weak-

ly increases with x above X„b(0) and then drops to
its lowest value zero at x =x~=0.64.

(b) The weak variation with x of the core diamag-
netic susceptibility X~;, in Pdi „Ag„has been for-
mulated in Ref. 7 as

Xs;,(x)= IX+,(0)n( cx)

+X@,(1)[1—n(x;c)] ]8(x—x~)

+Xs;,(1)8(x~ —x ) (37)

with n (x;c ) given by Eq. (34) and

Xz,(0)=—34X 10 cm /mole, Xq;,(1)= —27
&&10 cm /mole as parameters. ' The term in I [

n, =nl, (0)=czox~ =(1—x~)zp =0.36 .

of common s-band electrons per Pd atom' with in-

creasing Ag content x in the range 0gx &x*=0.64.
At x =x~ one has ni, (x~)=0 and the d-hole
paramagnetism vanishes. Therefore, via Eqs.
(33}—(35) the nonideality parameter c =0.567 in the
excess entropic term x inc of Eq. (30) is related to
charge rearrangement and change in electronic band
structure of Pdi „Ag„within 0&x &x~.

As will be shown in the following, the electronic
quantities n(x;c) and n, can further be used to
characterize the variation with x of the orbital, core
diamagnetic, and s-spin contributions to the alloy
susceptibility (6).

accounts for the change from X~;,(0) into Xs;,( I) due
to the fractional decrease n(x;c)=ni, (x)/n, —+0 of
the effective number of Pd d-band holes within
0&x &x"=0.64 (Pd-1 filling upon alloying with
Ag with the effective number n, of common s-band
electrons taken to be constant ' }.

(c) The weak variation with x of the s-spin sus-
ceptibility X, in Pdi „Ag„has been formulated in
Ref. 7 as

X,(x)=X,(0)8(x—x )

+ IX,(0)(zo/n, )(1—x )

+X,(1)[1—(zo/n, )(1—x )] I

X8(x~—x) (38)

III. IK(T,x ) vs Pp~~(T, x ) RELATIONSHIP

A. Pd-rich PdAg alloys

The anomalously strong variation with T and x of
the total magnetic susceptibility of Pd~ „Ag„on the
paramagnetic Pd-rich side has been discussed above
as being mainly due to randomizing of Pd d-spin
moments combined with Pd d-band filling. For
x &x*=0.64 the common s band is polarized mag-
netically by the nearly filled Pd d band. s'9 There-
fore, the ' Ag nuclei of nonmagnetic silver can
serve as a selective NMR probe of the neighboring
magnetic Pd atoms: The ' Ag Knight shift
sE(T,x ) can be expected to monitor the T- and x-

dependent Pd d-band susceptibility part as well as
the common s-band part. The core diamagnetic sus-

with n, given by Eq. (35) and X,(0}=8)&10
cm /mole, X,(1)=12&(10 cm /mole as parame-
ters. ' The term in I I describes the change from
X,(0) into X,(1) upon the fractional increase
1 (zo—/N&)(1 —x)~ 1 of the effective number of s
band electrons within x~&x(1 (common s-band
filling upon alloying with Ag after the Pd d band
has been filled ' }.

According to this analysis, in Pd~ „Ag„ the vari-
ation with x of all susceptibility contributions X~,
X«b, Xs;„and X, is influenced by changes in elec-
tronic structure. These are scaled to n„ the effective
number of common s-band electrons. The basic as-
sumption made about n, is its constancy (corre-
sponding to no s-band —d-band electron charge
transfer} upon Pd d-band filling for x &x~=0.64.

In the following, our semiphenomenological sus-
ceptibihty function Xp&As( T,x } shall further be
analyzed in conjunction with the ' Ag Knight
shifts'9 ~sE(T,x) in Pd& „Ag„because E probing
s-electron charge-transfer effects can serve as a test
for the above assumption.
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for infinite dilution of Ag in Pd. The latter value is
comparable with the corresponding values of —12.1

T and —13.9 T in AgPt (Ref. 20}and ferromagnetic
AgNi, ' respectively. With the net hyperfine cou-
pling constant A«, B„«/Lps ——of the ' Ag nuclei
being almost constant, the different extrapolated
values of sK,„~,(0,0) mainly stem from different
Pd, Pt, and Ni host susceptibilities X»(0,0).

The rhs of Eq. (39) is the sum of a negative
(T,x)-dependent and a positive constant term. The

-2.0 I
I

l AQKI kj

x= Q025

x =0.05 ) gp5

.
,
-0.3 +j

200 600

--
i d1-x A~x

400

——/[10 ~cm 3moie "j

FIG. 2. Pdq „Ag„within 0&x (0.55. Experimental
' Ag Knight shift E(T,x ) vs the total molar susceptibili-

ty g(T,x) with both T and x as implicit parameters.
Closed circles: EC(x) and g(x) data at 298 K due to Brill
and Voitlander (Ref. 9). Open circles: E(x) data at 4 K
due to Narath {Ref. 8) and g(x) data at 4 K interpolated
from the work of Hoare et al. (Ref. 4). Full line:
Theoretical E(T,x) vs a g~(T,x)+b plot (see text) with
the dominant d-spin contribution gq{T,x) to g{T,x)
given by Eq. (30).

ceptibility contribution can be omitted because the
Ag NMR is observed relative to AgNO3 as

diamagnetic standard.
On the paramagnetic side, a plot of the experi-

mental sK(T,x) data at 4 K (Ref. 8) and 298 K
(Ref. 9) versus the dominant d-spin part X»(T,x)
[see Eq. (30)], up to x =xp ——0.55 with both T and x
as implicit parameters gives the strongly linear rela-
tionship (cf. Fig. 2),

~sK,„~,(T,x)=aX»(T,x)+b (39)

with a= —2790 mole%/cm and b =+0.35%. By
extrapolating T—+ 0 and x~ 0, one has
X»(0,0)=717&&10 cm/mole [see Eq. (17) and
Ref. 3] and

sK,„p,(0,0)=—1.65%, (40)

as well as the net silver hyperfine field in units of
tesla (T),

B„„=sK,„pi(0,0)Lpg/100X»(0, 0)

=—12.9 I
A» ——a /100= K»(0,0)/100X»(0, 0)

=—27.9

in units of mole/cm (X» in units of cm /mole), one
deduces the corresponding effective d-spin hyperfine
field B",~r=A»Lps ———15.6 T and in the limit
T~0, x~0 the silver d shift sK»(0, 0)=—2%%uo.

The constant contribution of b =+0.35% to the
total ' Ag NMR shift (39) can readily be related to
the s shift, i.e.,

b = "'K,=&,X,(0)100=0.35% . (43)

With X,(0)=-8&&10 cm /mole (Ref. 19) one has
A, =438 mole/cm corresponding to 8',gf ——245 T on
the paramagnetic Pd-rich side of Pdi „Ag„.
Narath estimated sK, =0.34% for x —+0 via the
measured low-temperature ' Ag nuclear spin-lattice
s contact relaxation rate ( sTi, )

' and the Korrin-
ga relation. According to Eq. (39), b = sK, remains
constant with increasing silver mole fraction x.
This indicates that the effective number n, of com-
mon s-band electrons does not change upon the Pd
d-band filling up to x-x~=0.64. Therefore, our
bayic assumption n, =const within 0&x &x* in-
volved in the electronic function (34) is justified by
the ' Ag Knight-shift data which essentially rule
out s-band —d-band electron charge transfer in ac-
cordance with CPA calculations' on Pd~ „Ag„.

Our analysis (cf. Fig. 2) indicates that the change
in sign ( —to + ) of the experimental silver NMR
shift AsK,„~,(T) at x =0.36 (T~ 0) (Ref. 8) and at
x~0.3 (T=298 K) (Ref. 9) (cf. Fig. 1 ) is due to
the constant positive contribution E, =0.35%
only. The linear sK,„~, vs Xp»As relationshiP (39)
excludes the small weakly x-dependent d-band orbi-
tal susceptibility contribution; see Eq. (36). This is

former closely follows the strong monotonous varia-
tion with x of the Pd host d-spin susceptibility iso-
therms X» (T=const, x) and the decrease in their
spread (variation with T) up to their intersection at
x =xo ——0.55. %ithin experimental error the T
dependence of both magnetic d-spin susceptibility
and Ag Knight-shift in Pd~ „Ag„vanishes at
x =xp (cf. Fig. 1). Therefore, one may attribute
aX»(T,x) in Eq. (39) to the Pd d-band —induced
spin-polarization silver NMR shift sK»(T,x) ac-
cording to

aX»(T,x)="sK»(T,x)

="'K»(0,0)X»( T,x ) /X»(0, 0}

=A»X»(T, x )100(%) .

With the effective d-spin hyperfine coupling con-
stant
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in accordance with the previous partitioning of
~sK,„~„ into s- and d-spin contributions and neglect-
ing orbital and differential ion diamagnetic ef-
fects."

B. Ag-rich PdAg alloys

On the Ag-rich side of Pdi „Ag„beyond x
=xp ——0.55 the silver Knight-shift "sK,„p, shows no
T-dependence within experimental error. It only
increases weakly with x from x =x~ =0.64 up to the
pure silver value of sK,„~,(x =1)=+0.52% (cf.
Fig. 1). sK,„~,(x) can readily be identified with an
x-dependent s shift and related to the s-spin suscep-
tibility part X,(x}: On the Ag-rich side of
Pdi »Ag» the shift sK,„&,(x) monitors the weak
increase with x of X,(x) due to common s-band fil-
ling; see Eq. (38). The plot of sK,„„,(x) vs X,(x)

I

with x as implicit parameter is linear within
x~ &x & 1 (cf. Fig. 3):

"sK,„~,(x)= sK, (x)=aX, ( x)+b (%) .

There,

(44)

X,(x)= [X,(1)—X,(0)](zp/n )x+const (45)

and

'K, (x)= [ 'K, (1)/X, (1)]X,"'(x),
one finds with (44) in the dilute limit of x~ 1:

(46)

[see Eq. (38)], and a =28 X 10 mole %/cm,
b =0.19%. Following the treatment of Froide-
vaux, from

X,(x)=(1—x)X, +xX,"'

X, (x~ 1)= lim IX,(1)+[d sK( x) /dx][ X»(1) / sK, (1)]—[dX,(x)/dx]I
@~1

=X,(1)+(zp/n, )[X,(1)—X,(0)]I[aX,(1)/AsE, (1)]—1I . (47}

Equation (47) yields X, (x~ 1) =0.67X,(1)
-8X10 cm /mole which agrees with the value
of the s-spin susceptibility X,(0) of pure Pd. ' The
fact . that X, (x~ l)-X, (0) also confirms the
aforementioned no s-electron charge-transfer con-
cept.

In the limit x~ 1 of pure silver one further
deduces with "sK,„~,(1)=0.52% and X,(1)
=12X10 cm /mole (Ref. 19) the effective hyper-

I

fine field

B,rr = sK,„p,(1)l.ps /100X, (1)=242 (48)

C. Additional remarks

in units of tesla. This value is comparable with the
corresponding value of 245 T obtained above from
the coristant s-band Knight-shift contribution (43)
on the Pd-rich side of Pdi „Ag, .

+0.55

+0.5C

ii Ag y t o/, ~

F'd „„Ag„ x =09

I
x=1

Our result of unravelling the d- and s-spin contri-
butions to sK(T,x) and XpsAs(T, x) via linear K vs
X Jaccarino plot analysis qualitatively differs from a
previous study of Brill and Voitlander. They found
another linear relationship between

-04
x= 0.64

x =0.7
x = 0.8

and

sK,„p,(T,x} sK»(x)- st—(T,x)

X,'~s(T,x) -X„(T,x) .

(49)

Xel10 cm mole "}
I I

I I

10
+0.40-

12
8

FIG. 3. Pdl „Ag„within 0.64&x & 1. Experimental
' Ag Knight shift vs the s-spin contribution g, (x) to the
total molar magnetic susceptibility g(x) with x as implicit

parameter. Closed circles: K(x) data at 4 K due to
Narath (Ref. 8) with K(x =0.64) being interpolated.

X,(x) data from X,(x)=—[X(x)—Xq;,] with Xq;, ——const

= —27X10 cm'/mole (see text) and g(x) measured at
low temperatures by Abart et al. (Ref. 7). Full line:
Theoretical E(x) vs a g, (x)+b plot (see text) with g, (x)
given by Eq. (38).

There, the T-independent direct-s contact Knight-
shift

"sK,(x) = sK, (1)[n,(x)/n, (1)]' ' (50)

results from scaling the pure silver shift
~sK, (1)=0.52% with the average number n, (x) of
common parabolic s-band electrons. In Eq. (50) the
weak x dependence is taken to be linear, i.e.,

0.36+0.4x, 0&x &0.6"' ' —x, 0.6&x&1. (51)

Ansatz (51}simply accounts for the model of Dug-
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I'E, =const,

sKd(T, x ) = st(0, 0)Xg( T,x )/Xg(0, 0),
(52)

on the Pd-rich side [see Eqs. (42) and (43)]. Accord-
ing to Eq. (52) the d-electron polarization-induced
solute shift sK&(0,0)= —2% is simply scaled with
the alloy susceptibility d-spin part Xd(T,x) within
0&T&298 K for x &x*=0.64. On the Ag-rich
side we have

sK,„p,(x) ~X,(x)/X, (1) (53}

due to common s-band filling [see Eq. (44}]. Besides
Xd(T,x) and X,(x) discussed in Sec. II, no further
assumptions like (49)—(51) are needed.

dale and Guenault. These authors assumed that
Pd acts on alloying like having 0.6 d holes due to a
linear rigid s-band shift downwards relative to a rig-
id d band in Pdi «Ag„so as to make n, (0)=0.36 d
holes for pure Pd (Ref. 16) and 0.6 d holes for
x =0.6, where the Pd d band is expected to be filled.
The sK, (x) analysis [(50 and (51)] of Brill and
Voitlander is in contradiction to no—charge-
transfer concepts for PdAg (Refs. 18 and 24) which
imply a constant number of s electrons at the Ag
sites and hence gE, =const on the Pd-rich side.
The K vs X study presented favors the no—charge-
transfer point of view and yields

tibility X~(T) [see Eq (.16)] is monitored by the neg-
ative d-spin —induced core polarization ' Pd Knight
shift Kq(T). Therefore, in Pdi „Ag„ the strong
variation with both T and x of the predominant
paramagnetic d-spin alloy susceptibility part
Xd(T,x) [see Eq. (30)] should also be tracked by the
'O5Pd NMR shift dKd(T, x ). In detail, one may as-
sume the dominant core polarization contribution

K~(0,0) to be scaled with X~(T,x) to give

"K,(T,x)="K,(0,0)X„(T,x)/X, (0,0) (54)

in analogy to Eq. (52}. Krieger and Voitlander
have calculated K~(0,0)= —3.88% employing the
moment perturbation treatment of Das et al. and
the Korringa-Kohn-Rostoker (KKR) method. In
the extrapolation limit T~ 0, x ~ 0, from Eq. (54)
one deduces

d Ed/dXd ——Kg (0,0)/Xg(0, 0)

=(B,rr/L ps ) 100

and hence the effective Pd d-spin hyperfine field

Bert =—30T consistent with the estimate from
Jaccarino-plot analysis on pure Pd with T as impli-
cit parameter. One may further assume that the

Pd nulcei in Pdi „Ag„will also undergo a d-
band orbital NMR shift

Ko,b(x) = K„b(0)XO,b(x) /X„b(0), (55)
D. Comments on the thus far unobserved

' Pd Knight-shift in Pd~ „Ag„

According to Eq. (39) in Pd, „Ag„ the variation
with x of the silver NMR shift sK(x) (selective
average) is proportional to that of the magnetic sus-
ceptibility Xp~s(x) which is an average over the
bulk. Therefore, XpdAs does not seem to exhibit ap-
preciable local variations, i.e., the selective (partial}
susceptibility averages (over Pd atoms and Ag
atoms, respectively) essentially do not differ in the
case of Pdi „Ag„. From similar arguments Froide-
vaux has inferred the absence of local susceptibili-
ty variations in the system Pt& „Au„. The ap-
parently homogeneous bulk susceptibility of
Pd~ „Ag„ further implies that the ' Ag NMR shift
and the still unobserved ' Pd NMR shift in
Pd~ „Ag„will show qualitatively the same varia-
tion with increasing x, i.e., a steep monotonous as-
cent leading from negative to positive values on the
Pd-rich side (cf. Fig. 1). The observation of NMR
on ' Pd [nuclear spin I= —,) in PdAg possibly is
rendered difficult by nuclear electrical quadrupole
moment effects Q(' Pd)=0. 8 barns ]. As already
mentioned (Sec. I), in pure Pd metal the strong vari-
ation with T of the positive enhanced d-spin suscep-

tracking the weakly x-dependent orbital susceptibili-
ty part X„b(x) given by Eq. (36) (cf. Sec. II). The
orbital shift K«b(0) of pure Pd has been estimat-
ed to be +0.36% corresponding to an effective or-
bital hyperfine field Ber'r =+ 100T with
X„b(0)=+20X 10 cm /mole.

Finally, applying the no s-electron charge-transfer
concept to the s-band part K, of the ' 'Pd NMR
shift, one has

dE, =const, (56)

i.e., upon Pd d-band filling (on the Pd-rich side) as
well as upon common s-band filling (on the Ag-rich
side) the direct s contact shift K, is expected to re-
tain its pure Pd value K, =0.18% (as calculated by
Krieger and Voitlander ).

Measurements of

K(Tx)= Kd(Tx)+ K„b(x)+ K,

on Pd& „Ag„being lacking, magnetic investigations
on the system Pt~ „Ag„with both nulcei ' Ag and

Pt (I= —, ) observable by NMR are useful for the
sake of comparison. The low-temperature inagnetic
bulk susceptibility Xp,Az(x) of metastable Pti „Ag„
alloys qualitatively shows the same variation with
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x as that of Pd& „Ag„and both experimental
NMR shifts sIC,„,(x) and 'K,„p,(x) aPPare~tly
track Xpt~s(x). These observations on PtAg may
confirm the assumptions (54)—(56) concerning the

Pd shift still to be observed in Pdi «Ag„.
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