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Reentrant melting in solid films with quenched random impurities
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Crystalline fi1ms with a quenched distribution of impurities are studied. These materials
are stable only over a finite band of temperatures. At sufficiently low temperatures,
thermally excited dislocation pairs are broken apart by the random impurity potential. The
hexatic phase which results can persist down to T=O. For large impurity concentrations,
the solid phase is destroyed entirely. These conclusions are consistent with recent studies of
vibrating binary ball-bearing arrays, and could be tested experimentally in a variety of other
systems with quenched disorder.

I. INTRODUCTION

In contrast to extensive theoretical investigations
of quenched randomness in spin systems, ' relatively
little is known about disorder in crystalline solids.
Many theoretical investigations of random magnets
are an offshoot of the renormalization-group ap-
proach to critical phenomena in pure systems. Re-
cently, similar methods have led to analytical
theories of melting in two-dimensional solids
based on a dislocation model proposed by Kosterlitz
and Thouless. It is interesting to extend these in-
vestigations to account for disorder in thin crystal-
line films.

In this paper we discuss solid films with quenched
impurities. This kind of disorder is illustrated in
Fig. 1, which shows an isolated large atom imbed-
ded in a crystalline matrix composed of smaller par-
ticles. Such impurities are a source of local dilations
and compressions of the crystalline lattice. Al-
though the defect is free to participate in long-
wavelength phonon excitations, its average position
within the surrounding solid matrix is fixed in the
sense that it cannot exchange places with a neigh-
boring host atom. This sort of quenching requires
small impurity diffusion constants which are readily
obtainable at low temperatures. %e shall assume
that dislocations in the film are in thermodynamic
equilibrium. At low temperatures this condition re-
quires equilibration times such that dislocations are
able to diffuse by gliding across the entire crystal-
line solid.

Our results are conveniently presented within the
framework of continuum elastic theory. The fluc-
tuating phonon displacement field u(r) interacting
with quenched impurity fluctuations is described by
the free energy (see Sec. II)

F= —, f d r(2put~1+A, ukk 2tv5c—ukk),

where u,j(r ) is the symmetrized strain tensor

u(~(r)= , [t);uj—(r)+Bjut(r)], (1.2)

FIG. 1. Disorder introduced into a crystalline matrix
by an impurity. Large shaded atom causes a local dilation
of the lattice. Square lattice is shown for simplicity, al-
though we shall be primarily interested in impurities im-
bedded in triangular solids.

and 5c (r ) is a fluctuation in the local concentration
of impurities. The function 5c(r) can also contain
contributions from frozen-in vacancies and intersti-
tials associated with the host lattice. The quantities

p and A, are the usual isotropic elastic constants
characterizing a triangular solid and m parametrizes
the coupling between the local elastic dilation
V u =ukk and the quenched-in volume fluctuations
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due to the impurities. An estimate of w is given in
Sec. II. We shall assume that a given configuration
5c(r) occurs with probability

9'[5c(r))ccexp — J d r[5c(r)]
20'

(1.3)

Small deviations from Gaussian distribution (1.3)
turn out to be unimportant at long wavelengths. As
usual in problems with quenched disorder, we as-
sume that it is the free energy rather than the parti-
tion function which should be averaged over this
probability distribution.

Important effects due to impurity quenching fol-
low from the harmonic free energy (1.1), even in the
absence of thermally activated defects like disloca-
tions: Translational order in a solid is conveniently
measured via a translational order parameter,

&i 6 u(r) (1.4}

(1.5a)

where 6 is a reciprocal-lattice vector. It is well
known that conventional long-range translational or-
der is impossible in two-dimensional (2D) solids at
finite temperatures in the sense that correlations of
P o (r ) decay algebraically to zero. 's In the Presence
of quenched impurities, this decay takes the form
(see Appendix A)"

where

kg T(3p+A, )
~G 4np(2p+A ) , 4m(2p+A, )&

+

(1.5b)

The angle brackets in Eq. (1.5a) indicate a conven-—F/k~ T
tional thermal average weighted by e with a
fixed distribution of impurities. The square brackets
and subscript H mean a subsequent average over
the defect probability distribution (1.3). Because the
defects are quenched there is a contribution to the
algebraic decay embodied in Eqs. (1.5} even at
T =0.' Extending this calculation to d dimensions,
one finds that d =2 is a kind of lower critical di-
mension where arbitrarily small concentrations of
quenched impurities first destroy long-range transla-
tional order in classical crystalline solids at T =0.
The parameter 0 can be viewed as a frozen-in "tem-
perature" characterizing the quenched defect distri-
bution.

Just as in pure systems it is important to allow for
thermally activated dislocations characterized by a
nonvanishing contour integral of the displacement
field

The quantity b is a dimensionless Burgers vector,
and ao is the lattice constant of the solid in the pres-
ence of impurities. In addition to the usual logarith-
mic interaction between dislocations, we must ac-
count for interactions between dislocations and im-
purities. It is straightforward ' to show that the
energy associated with a dislocation with Burgers
vector b and position r, and an impurity at the ori-
gin is (see Sec. II)

p~~o z (bXr)
m.(2p+ A, ) p2

(1.7)
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FIG. 2. Dislocation pair interacting in a medium of
quenched random impurities of various sizes (dark
atoms). Atoms associated with the surrounding crystal-
line matrix are not shown.

FIG. 3. Solid, liquid, and hexatic phases as a function
of temperature and the degree of disorder 0. Translation-
al correlation length diverges along the paths marked by
arrows.
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ux( ~+~~)~o
=8m .

(2p&+A,~ )ka T (1.9b)

where z is a unit vector perpendicular to the plane of
the film. In pure systems melting is triggered by an
unbinding of logarithmically bound dislocation
pairs. As illustrated in Fig. 2, we must now under-
stand how the quenched random strains generated
by the impurities affect the polarizability of disloca-
tion dipoles.

Our conclusion for this simple model of interact-
ing dislocations and impurities are sketched in Fig.
3. As discussed in Sec. II the randomness parameter
0 is an increasing function of impurity concentra-
tion. For sufficiently small cr there is the usual
dislocation-mediated continuous melting transition
at a temperature T~+(u). As pointed out in Refs. 4
and 5, this transition cannot be into an isotropic
liquid, but must instead lead to a "hexatic" phase
with residual sixfold-bond orientational order. A
second transition T;(0 ) is necessary to destroy orien-
tational order and complete the melting process. In
contrast to defect-free solids, we also find a reen-
trant dislocation unbinding transition at a lower
temperature T~ (0). Even though the quenched im-
purity array is unable to respond to strains induced
by dislocation pairs, impurities do make it easier for
thermally excited dislocations to separate. At low
temperatures we find that dislocation pairs are
ripped apart by a quenched random impurity poten-
tial which is a superposition of terms like Eq. (1.7}.
At intermediate temperatures (and small 0} there
are enough thermal-dislocation pairs to screen out
this potential.

It is only over this intermediate temperature range
that the behavior indicated in Eq. (1.5) is qualita-
tively correct. Outside this range, we expect that
translational order decays exponentially. At impuri-
ty concentrations such that

0 & cr, =@0/64m.Q0,

where Q0 is the change in area associated with a sin-
gle impurity, the solid phase is destroyed entirely.
In pure systems (or solids with annealed impurities),
there is a combination of renormalized elastic con-
stants which approaches a universal value at T~, '

V~(V ~+~~)&o
lim =4mr-r~ (2Pa+A, x)k&T

(for pure systems) . (1.9a)

This universality is destroyed in the presence of
quenched random impurities; the limit becomes cr

dependent. Just below the point marked by a dot on
the melting curve in Fig. 3 we find that

As one approaches the solid phase on the paths indi-
cated by arrows in Fig. 3 the translational correla-
tion length diverges exponentially,

gz -exp(const/~ T T~—~" ') . (1.10)

The exponent 7 is 0. dependent, and decreases to
zero as 0 approaches 0, from below.

In the simple model of impurity disorder con-
sidered here the hexatic fluid surrounding the bubble
of solid phase in Fig. 3 appears to persist down to
T=0. The phase below T~(o} need not be an
equilibrium hexatic in real materials, however. As
the translational correlation length begins to drop
just below the lower melting temperature the impur-
ities may become sufficiently mobile to allow for
new processes like phase separation. If, on the other
hand, the lower transition occurs sufficiently close
to zero temperature, impurity diffusion times will
remain large and could eventually become even
larger than in the solid. Ultimately, it may become
impossible for dislocations to equilibrate as well; the
result mould be a quenched hexatic "glass" with a
nonzero shear modulus on experimental time scales.
The crystal could, of course, become unstable at low
temperatures via some other mechanism like pro-
liferation of grain boundaries, possibly leading to an
isotropic liquid. ' lt cannot remain stable down to
T =0, however.

The results summarized in Fig. 3 are qualitatively
similar to those obtained recently by Rubinstein
et al. '5 for 2D XY magnets with random
Dzyaloshinskii-Moriya interactions. Here, random
contributions to the exchange coupling between sites
in an XY magnet dephase the spins in a way rem-
iniscent of the coupling w in Eq. (1.1). This paper
adapts the techniques developed in Ref. 15 to a
physically different but mathematically rather simi-
lar problem.

A number of recent investigations have focused
on the effect of random symmetry-breaking fields
on 2D XY magnetism. ' One motivation of these
studies was to eventually understand phase pinning
by impurities in solid films. It should be em-
phasized that the impurities considered here are dif-
ferent. Because our defects are allowed to move
with the solid matrix the underlying free energy
(1.1) is invariant under a uniform translation,

u(r)~u(r)+ u0 .

Disorder like that considered in Ref. 16, however,
breaks translational invariance, and would be ob-
tained by "gluing" the impurities to the substrate.
Analogous disorder would occur in physiadsorbed
monolayers on a glassy substrate. This random bro-
ken translational symmetry is rather like the sym-
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metry disruption in an XF magnet with a random
magnetic field. Long-range order is destroyed below
four dimensions in such systems. '

It may be possible to find a number of experimen-
tal thin-film systems which satisfy the assumptions
of this paper. The experimental time scale t,„pmust
be such that

2 2
g « exp « 0/Dimp ~ (1.12)

(Glide diffusion eventually becomes more difficult
when the temperature drops below its Debye value. }
Impurity diffusion in solids is usually mediated by
vacancy motion; the corresponding diffusion con-
stant is roughly

(1.14)

where Do is a 2D liquid diffusion constant
(D0-10 cm /sec), and e; p is an impurity activa-
tion energy. Since e; p is typically several times the
melting temperature T, D; p is usually of order
10 ' cm /sec even at T~. ' Because of the Ar-
rhenius temperature dependence in Eq. (1.14), im-

purity diffusion constants such that

Dimp & 10 (1.15}

in units of cm /sec, are readily obtainable at low
temperatures (D;~p-10 ' cm /sec means that the
impurity diffuses —10 A in 15 min). Because
D; p «Ds, it appears possible to satisfy the inequal-
ities (1.12) at low temperature and impose simul-

taneously the important requirement that L g&a0.
Systems which could be doped to produce the

kind of disorder studied here include lipid mono-
layers on water' and polystyrene spheres at a
water-air interface. Electrons on the surface of
helium ' could also be studied, but the incompressi-
bility of the electron lattice complicates the applica-
tion of the theory. Another possible experimental
system is incommensurate rare-gas monolayers phy-
siadsorbed on a periodic substrate like graphite.
Although an additional orientational elastic constant
is required to describe these materials, we still ex-
pect reentrant melting at low temperatures provided
the solid remains incommensurate. Strongly chem-
isorbed impurities on the same substrate would
create random fields like those studied in Ref. 16,
while physiadsorbed defects would lead to the kind

where L is a characteristic crystallite size, Dg is the
diffusion constant for dislocation glide, and D; p is
the impurity diffusion constant. In a classical solid

Ds is of order coauL where co0 is a characteristic
zone-boundary phonon frequency; this diffusion
constant is typically, in units of cm /sec,

(1.13)

II. THE MODEL

A. Haanonic theory

In the presence of a frozen array of defects the
continuum elastic free energy of a crystalline solid
may be written

W= —, J d r(2pu;~+Aukk) Jd r rr'~ pu,j,—
(2.1)

where o',J p(r) is the stress due to the impurities.
Assuming for simplicity that an isolated impurity
acts like a localized region of expansion or compres-
sion in an otherwise rigid matrix, we find a contri-
bution to cr',J P( r ) of the form'

(2.2)(p, +Z)nay, ,5(r r, ), —

where r; is the impurity position and 00 is the
change in crystal area due to the defect. The quanti-

ty Q0, of course, can be of either sign. Adding up
the stresses associated with a concentration

of disorder studied here. Of course, physiadsorbed
impurities could also drive transitions into corn-
mensurate phases which become more prevalent at
low temperatures. One must also insure that impur-
ities cannot diffuse rapidly via evaporation into and
condensation from a coexisting bulk vapor phase.

A recent investigation of translational and orien-
tational order in randomly packed ball-bearing ar-
rays' supports the theoretical conclusions reached
here. When a dilute concentration of large ball bear-
ings imbedded in an otherwise uniform array is sub-
jected to mechanical vibrations, a macroscopic ana-
log of the equilibrium hexatic phase can appear. '

Dislocations become trapped on a finite subset of
the large-sphere inhomogeneities. The resulting
structure is just what we would expect in the low-
temperature hexatic region of Fig. 3. Of course,
mechanical vibrations are only a crude approxima-
tion to the fluctuations present in thermal equilibri-
um and experiments on lipids, polystyrene spheres,
and rare-gas atoms would be highly desirable. De-
pending on the ratio of sphere sizes some of the
ball-bearing arrays in Ref. 12 were disrupted by a
network of grain boundaries, suggesting another way
in which solids can accommodate impurity disorder.

In Sec. II we develop a model of solids with
quenched impurities and introduce dislocations ex-
plicitly. The polarizability of dislocations in a
quenched random potential is discussed in Sec. III.
In Sec. IV we derive and discuss renormalization-
group recursion relations. Disruption of translation-
al order by harmonic phonons and quenched impuri-
ties is discussed in an Appendix.
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c(r):—+5(r —r;) (2.3)
kB T(3@+)i)

of impurities at positions r;, we find that W may be
written

~=-,' f d'r(2pu, ', +au,', )

—(iu+ A, )Qo f d r c ( r )ukk (r ) . (2 4)

At sufficiently long wavelengths we should be
able to replace c(r) by a smooth function of r and
ignore the discreteness implied by (2.3). It is con-
venient to measure this smoothed defo:t concentra-
tion from its value averaged over the area of the
crystal, and define

4n (2@+A, )

o (p+ A, }'Qz
+

2@+A,
(2.10)

gp(@+A, } Qo
kgT&

(3@+A, )(2@+A, )
(2.11)

One might expect quenched impurity fluctuations to
become important at temperatures such that the
second term in Eq. (2.10) becomes comparable to the
first, i.e., when

5c(r) -=c(r)—co,
where

(2.5a)

B. Dislocation free energy
co=[c(r)]~ . (2.5b)

When we use (2.5a) to eliminate c(r) from Eq. (2.4),
the term proportional to co acts like a uniform hy-
drostatic pressure. This pressure term can be elim-
inated by dilating the underlying crystalline lattice,

u(r)~u(r)+coQer . (2.6)

Suppressing a constant contribution we find that

W=-,' f d'r(2pu, ,'+au„',.).
—(@+A,)QO f d r5cukk, (2.7)

which has the form (1.1) quoted in the Introduction
with

At low temperatures we expect that the statistical
mechanics associated with the free energy (1.1) will
be dominated by extremal configurations of strains
u,j satisfying

8;[2puz(r)+A5, jukk(r) ur5,J—5c(r)] =0 .

(2.12)

In the absence of dislocations it is easy to check that
the strains associated with a fixed configuration of
impurity fluctuations are

u;'j(r)= 8;BJ.f d r'5c(r')G(r —r'),
2p+I,

w =(@+A,)QO . (2.8)

As mentioned in the Introduction we shall assume
that impurity fluctuations 5c(r) are described by a
quenched Gaussian probability distribution. Since
the maximum fluctuation (5c),„should be of order
5c in a region of a defect-free lattice, we expect that
the variance o entering Eq. (1.3) is of order

where G(r) is a Green's function satisfying

V G(r)=5(r) .

For large r, we have

G(r) = 1n(rla),

(2.13)

(2.14)

(2.15)

10'
2 Cp (2.9)

for small impurity concentrations. Inserting expres-
sion (2.8) for ic into the exponent (1.5b) governing
the algebraic decay of order-parameter correlations,
we find that

where a is of order a lattice constant. Dislocations
can be included in the usual way, ' ' ' by requiring
that Eq. (2.12) hold almost everywhere, except at a
set of dislocation position {rJ [ where Eq. (1.6) holds
with Burgers vectors {b ~J. The total contribution
to the extremal strain is

uj(r)= 8;BJ f d r'5c(r')G(r r')—
2p+ A,

I

+
2 ~ ekejid, di — V d r'aob (r ')G (r r'), —+ ) V 2 2

2@+A, 2 iu+A,
(2.16)
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V G (r)= —e „8„5(r).

For large r, we have

(2.17)

where e,J. is the antisymmetric 2 X2 matrix,
e„~=—er„=l, and G~(r) is a Green's function
satisfying

The quantity P n is the usual dislocation free ener-

gy containing a phenomenological core energy E,
and an important dimensionless coupling

E= 4aop(p+A, )
(2.23b)

—1
G (r)= s „r„in(rla).

4 mnn (2.18)
The term M;„,comes entirely from the second part
of Eq. (1.1) and may be written

b(r) = g b 15(r —rj } .
J

(2.19)

At this point, we decompose u,j ( r ) into u,j( r ) and
a smooth deviation P,J ——8;iI)J+Bzg; from this ex-
tremal complexion

uj(r)=uij(r)+Pij(r) . (2.20)

After some tedious but straightforward manipula-
tions the free energy (1.1) becomes

The continuum vector dislocation "charge" density
b(r } entering Eq. (2.16) is related to the dimension-
less Burgers vectors b J characterizing a discrete set
of point dislocations via

f d r +5c(r)
17 2@+A

X
z [b J&&(r —r )]

r —r.
(2.24)

gb 1=0 (2.25)

in agreement with the impurity-dislocation interac-
tion energy quoted in the Introduction. We have
suppressed an unimportant contribution to W of or-
der [5c(r)] (this term drops out of quenched aver-
ages), and require that

~ =~0+~D+~ Int ~ (2.21)

where

go= —, f d r(2pg, &+A,Pkk 2ic5cgkk)—, (2.22)

and
r

~D E ~ —+ ~

b ' b J 1n(r,z /a)
kg T Sm, ~.

(1J.r;J)(b J r,j)
2

EJ

(2.23a}

Z[5 (~)] T I D int B

IbJI
(2.26)

where Tr' means a sum over dislocation configura-
tions satisfying (2.25). The macroscopic free energy
is obtained by averaging lnZ over the distribution
(1.3).

to insure that the total free energy is finite. The
contribution P o to the total free energy decouples
from the dislocation part and allows us to recover
results like Eq. (1.5) in the absence of dislocations.
The remaining terms in Eq. (2.20} lead to a partition
sum associated with a fixed configuration of impuri-
ties, namely

III. SCREENING

A. Dielectric function

In Sec. II it was shown that solids with quenched random impurities may be understood in terms of a set of
logarithmically interacting dislocations subject to a quenched random potential. The relevant free energy is

kz T kz T kz T 8n, +J. r;J

+ f d r +5c(r) (3.1)
4ir ao

~

r —r
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—7 p,'"'(r)=9'(Jbj'"'(r),

where 9';~ is the transverse projection operator

BI' '9j
JJ lJ p2

(3.2)

(3.3)

where we have used the expression (2.8) for w. As in
most charged systems, screening (and, in particular,
the "insulator-to-metal" transition from bound to
unbound dislocation pairs) is conveniently described
in terms of a dielectric function. ' We imagine
that the system is perturbed by a small external
charge density b '"'(r ) and define an associate exter-
nal potential P '"'( r ) by the relation

It can be shown in a straightforward manner that
the resulting change in free energy is given by

~G

E—J d r P '"'(r)'b(r), (3.4)
AT k~T

where b(r } is the dislocation charge density defined
by Eq. (2.19). Although there is also a contribution
from the interaction of the external charges with the
quenched impurities, this drops out of the dielectric
function considered below.

By expanding in the weak external potential

P '"'(r), it is easy to show that the induced disloca-
tion charge in thermal equilibrium is

&b;(r) &
= &b;(r) &o

—E I d2r'pj"'(r ')[&b;(r)bj(r ') &o
—&b;(r) &o&bj(r ) &o] (3.5)

where & &o means a thermal average with

P '"'(r) —=0. Because of statistical homogeneity and
the charge neutrality constraint, we expect that
&b(r) &o vanishes when averaged over the quenched
randomness. Screening is included in a renormal-
ized potential P(r) which is due to both b'"'(r) and

&b( )&,

—V P;(r)=H; [b'"'(r)+&b, (r)&] . (3.6)

In terms of Fourier-transformed potentials P '"'( q)
and P(q), the dielectric matrix e,j (q) is defined,

upon averaging over the randomness, by the relation

]( ) 1
K

5
'KqJ

fJ

x[&5b (q)5b ( —q)& ] (3.11}

Physically, e '(q) describes how the potential be-
tween two dislocations is screened due to the
remaining dislocations in a medium of random im-
purities. In Sec. IV we show explicitly that an ex-
ponential, "Debye-Hiickel" screening of this poten-
tial occurs when the dislocations are unbound.

[0 (q)l~ —=~J '(q)NJ'"'(q) (3.7) B. Perturbation theory in the dislocation fugacity

Passing to a Fourier representation we readily find
by combining Eqs. (3.2) and (3.5)—(3.7) that

—)( ) 5
Vtlj E

5
KVk

2 2 ~ 2

&& [ &5bk( qIbJ( —q) &0]H

(3.8)

When dislocations are bound in pairs, we expect
that the potential between distant dislocations has
the same form as in Eq. (3.1) but with a renormal-
ized interaction strength Ez. The ratio of E~ to E
is determined by the dielectric function e '(q}, '

= lim e (q)
q~0

EC=1—lim 5"—
2q~0 q

where X[&5b (q)5b ( —q)&o]+ . (3.12)

5b;(q) =b;(q) —&b;(q) &o . (3.9)

Since PJ."'(q) and PJ(q) are purely transverse, we
can write

(3.10)

Upon taking the trace of both sides of Eq. (3.8), we
find finally that

It is instructive to evaluate this formula via pertur-
bation theory in the dislocation fugacity,

(3.13)

As we shall see, a convergent perturbation expansion
is only possible over an intermediate-temperature
range.

To evaluate Eq. (3.12), we write
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[(5b;(q)5bj( —q) )p] y

=[(b;(q)b, ( —q))o]
—[(b;(q))p]y[(bj( —q))p]e, (3.14)

and note that (b;(q))p and (bj.( —q))p are each of
order y . The only contribution at O(y ) to Eq.
(3.12) comes from the first term of (3.14). Expand-
ing the quantity

[(b;(q)bj( —q))p]~= fd re'q''

X [(b;( )b, (0) &o]

(3.15)

K& K——~my K ex~ [2Ip(K/8n) I—&(K/8n)]

X f drr ~ +O(y ) . (3.20)

When o =0 so that all randomness is suppressed,
one can show that Eq. (3.19) leads to the usual '

renormalization-group recursion relations in pure
systems. Analogous recursion relations for random
systems will be derived by a different method in Sec.
IV. It is clear already that the perturbation expan-
sion (3.19) is only sensible over a finite range of tem-
peratures given by

in q, and making use of charge neutrality and inver-
sion symmetry in r we find that

K=K cr(Q—pK/a) &16m . (3.21)

9's O'J' Ck9'I=1+%lim 5,J
—

2E g~p

X f d««k[(b;(r)b (J0))p]~ .

(3.16)

Remembering that K~1/T, we see that this in-

equality is violated at both high and low tempera-
tures. For impurity concentrations such that

0002
(3.22)

To leading order in y the thermal and random
averages in Eq. (3.16} commute and we can simply
integrate out the impurity fluctuations in Eq. (3.1}
as if they were annealed. The effective free energy
which results is just the nonrandom dislocation free
energy (2.23) with the replacement

K~K =K —0QpK2/ap . (3.17)

f d rrkr~[(b;(r)bj(0))p]@

= [~ (&g,&fi+5a&jk )+&~iy4i]

f~drr
a a

(3.18)

where

A =,~y e ' I, (K/8m),

The angular part of the integral in Eq. (3.16} can
now be evaluated following the methods of Refs. 5

and 6. The result is

it is impossible to satisfy the inequality at any tem-
perature.

IV. RENORMALIZATION GROUP

A. Recursion relations from replicas

Renormalization-group recursion relations for
solids with quenched random impurities are con-
veniently constructed via the replica trick. The
method we use is adapted from work by Cardy and
Ostlund on random spin systems. ' Although this
approach involves an unjustified and problematic
limiting procedure, it was shown for a similar prob-
lem in Ref. 15 that identical results can be obtained
(somewhat more laboriously) without recourse to re-
plicas.

We start with an expression for the average of the
logarithm of Eq. (2.22) over the randomness

(3.19)

8 = —, nyzexrs [2Ip(K/8—n ) I~(K/8m)], — [lnZ]y = lim
Z"—1

n —+0 7g
(4.1)

and Ip(x) and I&(x) are Bessel functions. The
remaining integral in Eq. (3.18) has been cut off by
the dislocation core diameter. Combining Eqs.
(3.18) and (3.16), we find that

Assuming that we can interchange the random aver-
age and the limit n~O, we first integrate out the
quenched impurity fluctuations. The "replicated"
dislocation free energy F, which results is
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p
AT ,„XX

, XX
ij a+P

b~ b J~ln(r, j/a)—

b bpln(r, j/a)—

(b r;J)(b r;J)
2

rg~

( b ' r,j )( b J)i r;1 )

2
Tgj a

(4.2)

where K was defined in Eq. (3.17),

K= crQ+—/ao, (4.3)

scale-dependent effective couplings which result

from increasing the effective dislocation core diame-

ter

and a is a replica index running from 1 to n

Recursion relations for a rather general vector
Coulomb gas have been obtained by Young. Ap-
plying his method to the free energy (4.2},we find

dl
[K +—(n —1)K ]y2f (K), (4.4a)

dl
=—[2KK+(n —2)E ]y f(K), (4.4b)

a~ac'. (4.6)

—Ii[(K crK )—/8m] Jy

Upon taking the limit n~0 in Eq. (4.4}, we can
extract the following three basic recursion relations:

—1
(E —oK )/sm'I 2I [(K E2)/8 —

]4

where

(4.4c)

dy (l) K 2EI
dl 8'2 — y+2iry e /' "Io(K/16m), .

dl
=[2—(E —crK2)/8m. ]y

+2ire' e ' ' Io[(K oK )/167—r]y

(4.7a)

f(K)= e [2Io(E/8n. )—Ii(K/8m)] .
4

(4.5)
&f0

dl

(4.7b)

(4.7c)

The configurations of dislocations which lead to the
renormalizations of K and K indicated in Eqs. (4.4a)
and (4.4b) are shown in Fig 4. Th.e 0(y ) renormal-
ization of y occurs because two dislocations within
the same replica can combine to form a third.
The couplings E, E, and y entering Eq. (4.4) are

(b)

where

a=«o/ao .2 2 (4.8)

Note that the randomness parameter cr is unrenor-
malized. A recursion relation identical to Eq. (4.7a}
can be obtained from the perturbation expansion
(3.20) for Ks, providing a useful check on the repli-
ca method used here. In the limit cr—+0 we recover
the renormalization equations appropriate for pure
systems. '

8. Hamiltonian flows

(c)
Qa, P

The Hamiltonian fiows generated by Eqs. (4.7) are
very similar to those found in Ref. 15, and are indi-
cated schematically in Fig. 5. The two special
points along the fixed line y =0 where the flows are
locally elliptical (K ') and hyperbolic (K+' ) are

K+' —— [1+(1—64mcr)'/ ] .
3277

(4.9)

FIG. 4. Renorrnalization of the interaction between

distant dislocation pairs by another more tightly bound

dipole. (a) and (b) lead to renormalizations of Z, while (c)
and (d) renormalize K.

There is a special trajectory which leaves the fixed
line at Eo ' and enters again at E+', bounding a re-
gion of solid phase. At the two temperatures such
that the locus of initial conditions (3.13) crosses this
line, there are dislocation-unbinding transitions. In
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contrast to the result (1.9) for pure systems, we find
that

Pa Pa+~a a

T~r~ (2Pa+Aa)AT
(4.10)

as this line is approached from the solid phase.
Note that the limit is 0 dependent. For-

o )O', = I /64m. , (4.11)

the fixed line is always unstable and the solid phase
is destroyed entirely. As o approaches 1l64n from
below, Eq. (4.10}goes over to the result (1.9b} quot-
ed in the Introduction. In the solid phase the ex-
ponent rl o is given by Eq. (1:5b), evaluated with re-

normalized elastic constants. As the temperature is
lowered from the upper melting temperature, rl o ( T)
initially decreases, and then begins to increase at a
temperature of order E

Outside the region of stable solid we expect that
the translational correlation function Ã o( r) decays
exponentially,

y(l)=m+x(l) . (4.19)

Substituting this expression in Eqs. (4.15) we find
that the slopes m+ are

m~ = [B+(B +24AC)'i ] .
12@A

(4.20}

Since E+(o) approaches 32m as cr —+o, [see Eq.
(4.9)], c(a) vanishes at this point. It follows that
m tends to zero as o~V„while m+ remains fi-
nite. This analysis is easily extended to obtain the
exponent V(o). Taking over the discussion in Refs.
3 and 5, we find that

6nA(o .}m (o')
V(0) =

I + 6n. A ( )om (o'}
(4.21)

The exponent V(o) entering the correlation length

(4.13) decreases monotonically from its value for
04—6

The outgoing and incoming separatrices near
E+'(o } in Fig. 5 are given by solutions of the form

4' o(r)-e (4.12) v(0) =0.369 63. . . (4.22)

The translational correlational length gr diverges
exponentially as one approaches the solid phase,

to zero at V=0„
V(a, ) =0 . (4.23)

gz -exp(const/
~

T T~ ' '),— (4.13)

where the exponent v(o ) depends on the behavior of
the recursion relations near E+ (o ).

To determine V(0) we expand the recursion rela-
tions (4.7a} and (4.7b) about the point y =0,E+'(o ).
Upon expressing E '(l} in terms of a small devia-
tion x (l),

. Properties of the melted crystal

Outside the doinain of attraction of the fixed line

in Fig. 5, the Hamiltonian flows evidently lead to-

wards high temperatures and large dislocation fuga-

cities y. This instability presumably means that the

E '(l) =E+'(o )[1+x(l)],
we find that

dx(l) 2 z= 12m A (o )y

y(l) 2

l
=2C (0 )xy +2m.Boy

where

(4.14)

(4.15a)

(4.15b)

E~(o)
A(o')= [2e Io(2)—ezIi(2)]

16m

E+(o)
(21.937), (4.16) Ko K K K

and

Bo——e'Io(2) =6.1965,

EC~(0)C(o)=2-
16m

(4.17)

(4.18)

FIG. 5. Hamiltonian flows for solids with quenched
impurities for fixed cr (cr,. Locus of initial conditions is
shown as a dashed line. Upper and lower melting tem-

peratures are given by the intersection of this line with the

heavy trajectory leaving Ko' and terminating at K+'.
Shaded portion corresponds to a stable solid phase.
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crystal is melted by a proliferation of unbound dislo-
cations. Although perturbation theory in y breaks
down in this limit, we can resort instead to an ap-
proximate Debye-Huckel theory. The idea is that
free dislocations can be treated at long wavelengths
by integrating, rather than summing over the
Burgers vectors in Eq. (3.1).

We first evaluate the formula (3.11) for the wave-
vector-dependent dielectric constant «(q) in this lim-
it. The correlation function

[(5b;(q)5bJ( —q) &o]s =[(bi(q)bj( —q) &o]w

—[&b,(q) &(b, (-q) &.]

(4.24)

is conveniently evaluated by first rewriting the free
energy (3.1) in Fourier space,

~err i d q E qjqk

(2m) q q
&Jk-

2Eca
+ 5ik bj(q)bk( —q)

B

f — 5c(q)
ao (2~)'

X
@kb ( —q)( iqk)—

2

(4.25)

The Fourier transform b(q) is well behaved provid-
ed we can regard b(r ) as a continuous variable. The
charge-neutrality constraint (2.25) amounts only to a
restriction on b(q =0). With the use of Eq. (4.25) it
is easy to show via (4.24) that

[(5b;(q)5bj( —q) &o]y

the dislocation instability to produce a fluid with
residual bond-orientational order rather than an iso-
tropic liquid. To take over the analysis of Ref. 5, we
need to know the bond-orientation field

8*(r)= —,[B„uy*(r)—Byu„'(r)] (4.28)

associated with the extremal strain (2.16). It is
straightforward to check that the part of u ~ (r ) due
to random impurities does not contribute to (4.28),
so that

—ao + b(r ') (r —r ')e*r=
2n

(4.29)

just as in pure systems. If bond-orientational order
persists we would expect a nonzero stiffness Kq
entering an effective free energy

z, =-,'sc„f d'r
~

ve~'. (4.30)

An analogy to pure systems, Ez is given by

=limq [( ~8 (q)
~

&]~
Eg q 0

(4.31)

a Oqsqj= lim [(b;(q)bj( —q) &]& . (4.32)
q —+0 q

The contribution of fluctuations in the smoothly
varying part of the phonon field to this quantity is
negligible at long wavelengths. Using the Debye-
Hiickel approximation discussed above, we find that

2' ' =~+2E,q/k, T
[&b(-)b( —-)&] =

kg T qsqj'+ 2Eqa q

+[&b (q)b ( —qI&]

E+2E,q a /AT

kg T
+ 2Eqa q

q;qj
2

(4.26)

(4.33)
Although the last term in Eq. (4.33) is nonzero, it is
straightforward to show that it vanishes when con-
tracted with q;qj/q in Eq. (4.32). Our Anal result
for Ez is the same as in pure systems, 5

The dielectric formula (3.11) becomes ICg-2E, a &0. (4.34)

2Eqq a /AT
e '(q) =

E+2E,q2a2/k~T
' (4.27)

By scaling out to temperatures such that Debye-
Hiickel theory is valid, one can show that Eq
diverges near the dislocation unbinding transition,

indicating that e(q) exhibits metallic behavior
(diverging like 1/q2) for small q. Equation (4.27)
means that the logarithmic interaction energy be-
tween dislocations in Eq. (3.1) is replaced by
screened exponential interaction at long wave-
lengths.

In analogy with pure systems one might expect

I:~ -O'T ~ (4.35)

A second, disclination-unbinding transition would
be necessary to produce an isotropic liquid. The ef-
fective interaction between disclinations associated
with (4.30) is logarithmic, rather than the r lnr in-
teraction expected in a crystalline solid. Since
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such a disclination-unbinding transition is driven by
entropic effects, we would not expect this instabili-

ty to occur as the temperature is decreased further
below T ((r). As discussed in the Introduction, the
hexatic phase shown in Fig. 3, can, in principle, per-
sist down to T=0. As discussed in Ref. 12, one
finds that orientational order decays algebraically
even at T =0, due to the presence of unbound dislo-
cations in the ground state.
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APPENDIX: DISRUPTION OF TRANSLATIONAL
ORDER BY HARMONIC PHONONS

AND QUENCHED IMPURITIES

We wish to evaluate the translational correlation
function

Co(r)=[(exp[iG [u(r) —u(0)]j]s, (Al)

where G is a reciprocal-lattice vector, u(r ) is a pho-
non displacement, and we exclude dislocations. Us-
ing the free energy (1.1), we rewrite the thermal part
of the average in Eq. (Al) as

exp)(G [u(r) —u(0)])exp — I der 5 (F)((er U)
l

~
~

~
~

kgT
(ei G.[ u( r )—u( 0 )])

exp — f d r5c(r)(V u)
B 0

(A2)

e e

where here ( )0 means an average with respect to the free energy (1.1) with u) =0. Since the averages in Eq.
(A2) are over a simple Gaussian probability, we readily find that

(exp[iG [u(r) —u(0)]J )=, ,
e (A3)

where ri'G '( T) is the exponent characterizing the algebraic decay of translational order in the absence of impuri-

ties, '

and

(, ) k, T iGi'(3p+X)
~(()(T)

4n)M (2p, + ))f, )
(A4)

I(r(, r2)= GJ f d r 5c(r)();[CJ(r(—r) —CJ(r2 —r)] .
B

The correlation matrix
C 1(r ) entering (AS) is the Fourier transform of

CJ(q)—= (u;(q)ui( —q)) =
2 5J — +

kg T qqj kg T qqj

pq q 2p+ k q

To obtain C o ( r ), we average Eq. (A3) over the Gaussian impurity distribution (1.3),

C (r)= „,exp[ —iI(r, O)]s.—— „,exp ——,[I (r,O)]s . (A7)

Since

[Sc(r)5c(r ')]s ——(r5(r —r '),
it follows using Eq. (A5) that

[I (r, O)]~—— oGkG( f d r'8,'[C&k(r —r ') —C()(r ')]Bi[Cd(r —r ') —CJI(r ')] .
B

(A8)

(A9)
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Passing to a Fourier representation and using (A6}, we readily find that

2 2 d' Qk@

(2@+A) (2m) q

from which it can easily be shown that

N 0[I (r,O)te =
~

6
~

ln(r/a)
2m(2p+A, )~

for large r. Our final result for the decay of translational correlations is

[~(&)(T)+~(2)(~))
6

where rim(T) is given by (A4), and

' '(T)= w tr
I
6

I

4m.(2ltt+ A, )

(A10}

(Al 1)

(A12)

(A13)
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