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Symmetry change in continuous phase transitions in two-dimensional systems
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A complete listing is given of all two-dimensional lower-symmetry space groups which
can arise by continuous phase transition from a parent two-dimensional space group, by
breaking both rotational and translational symmetries. The group-theoretical subduction
criteria are used in conjunction with a "zellengleich-klassengleich" method for listing sub-

group chains. Order parameters which are considered belong to a single irreducible repre-
sentation. For all cases direct group-theory results are in agreement with those obtained by
minimization of a Landau free-energy polynomial, at considerable saving in effort. This
listing extends the previous work of Ipatova et al. [Surf. Sci. 110, 543 (1981)],who only
considered translational breaking. An experiment on phase transitions on the W(100] sur-

face agrees with our results.

I. INTRODUCTION

There recently has been increasing theoretical and
experimental attention given to phase transitions in
two-dimensional systems. On the theoretical side,
some reasons for this include the important effect of
fiuctuations and the possibility of investigating ex-
actly solvable quantum-mechanical and field-
theoretical two-dimensional models. Experimental-
ly, two-dimensional systems are important owing to
studies of the structure of overlayers, adatom or ad-
molecule arrays, surface reconstruction, and reac-
tions on surfaces. An extensive review was recently
given by Barber' which contains many citations to
both experimental and theoretical work. Rottman
has give'n a complete listing of all universality
classes of transitions in two dimensions by
enumerating for each of the 17 two-dimensional
(plane) crystallographic space groups "Lifshitz-
active physically irreducible representations" and
the associated Landau-Ginzburg-Wilson (LGW)
Hamiltonians. This has extended previous work and
provided a basis for study of critical behavior in
such systems by renormalization-scaling methods.

One aspect of phase transitions in two-

dimensional systems which has received compara-
tively little attention concerns the symmetry change
from an initial two-dimensional space group to a fi-
nal two-dimensional space group. The present paper
is concerned with such symmetry change.

II. LANDAU THEORY
AND SUBDUCTION METHOD

The specific question to be studied in this paper is
the following: Given a system with a symmetry
group Go, to which subgroups G, G', . . . , of Go is a
continuous transition permitted using the Landau
theory' Here all groups GO, G, G', . . . , are among
the seventeen two-dimensional space groups.

Classical Landau theory gives a procedure for de-
ciding the answers to this quest&on. As reviewed by
Lyubarskii and by one of us, Landau's theory of
symmetry breaking entails these steps: (1) Deter-
mine the "active" irreducible representations DG, of
Go,' (2) construct the DGJ, -invariant Landau free en-

ergy 4( I CJ
J ), where I

CJ
I are a set of order param-

eters which can be taken as bases of DGJ, , (3) extrem-

ize 4( I Cja I ) by finding the set of solutions I C~a I of
the equations (B@lBCJti)

~ ici ——0, where P= 1, . . . , lj
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DJ
0

D
D

D

Condition

Both Landau and Lifshitz active
Not Landau active, but Lifshitz active
Landau active, but not Lifshitz active

Neither Landau active nor Lifshitz active

TABLE I. Notation for the irreducible representations

D$ of parent group Go. This notation applies for Tables

II—XVII.
«k = I(0,—) j

p(1X2)
DJ

0
A

B

p211

1

0

@211

1

0

p21 1

1

0

TABLE II. Allowed irreducible representations and al-

lowed subgroups of the two-dimensional space group No.
2: p211. Gk ——2(Cq).

*k= I( —,0) j «k={(—,—)j
p(2X'1) c(2X2)

and 1&
——~(Dgj, ~; (4) determine which sets I C~~ j will

minimize 4; (5} construct the density function for
the system, p(r}=p()(r)+5p(r), where p()(r) is in-
variant under all symmetry elements go in 60, and

and

(Dgj, &6)~Dg+ (p times)

(Dgj, tG') BDg+, (q times),
l.J

5p(r)= g CJ fj(r},

f (r) are basis functions of r, which transform as
BG=', and the C used in this expression are

members of the minimizing set IC~~j. The new

symmetry group 6 of the system is defined as the
maximal set of symmetry elements g, which is a sub-
set of 60, such that g 5P(r }=5)()(r ). In order to im-
plement this program, it is necessary to expand 4 in
a series of homogeneous Dgj -invariant polynomials

0
in the set IC j, and to carry out the minimization.
The Landau procedure is a roundabout method of
determining symmetry change.

In order to predict symmetry change directly, the
subduction criteria, chain subduction criteria, and
chain subduction with multiplicity were introduced.
These selection rules are necessary criteria for the
"active" irreducible representation DG to partici-

0

pate in the specified transition from 6() to a sub-

group. The order parameters are bases of Dgj .
0

Thus if a downward-pointing arrow (t} means "sub-
duces" (restricts) and 6() D G 06' is a three-chain of
maximal subgroups, and if

then for p &0, 60~6 is permitted. For q=p,
60~6 is permitted, but 60—+6' does not occur.
For q gp, 60—+6 is permitted, and 60—+6' may
occur (possibly as a "multicritical" transition}.
Since subduction is a necessary criterion, it cannot
determine which of the permitted G, 6', . . . , will

occur, i.e., give a minimum free energy. However,

any subgroup which fails to satisfy the subduction

criteria is eliminated.
We have used these direct group-theoretical cri-

teria, or selection rules, to determine all allowed

group-subgroup transitions in two dimensions. The
subduction selection rules in no way utilize the prop-
erty that B~ is "active" but could be applied to any

representation of 6(). However, since we choose to
work in the general Landau framework, we should
first select the active, physically irreducible repre-
sentations. An immediate problem needs to be con-
fronted, since the "canonical" procedure requires

that both Landau and Lifshitz criteria be satisfied.
A "Landau-active" representation Dgj satisfies the

0

stability condition

(Dg )(3)QDg+,

TABLE III. Allowed irreducible representations and allowed subgroups of the two-

dimensional space group No. 3: p lm 1. G „=m (C,).

D6

g II

«k= I(2,0) j
p(2X1)

p lm 1

1

0

p lm 1

1

0

«7k= [(0,-) j

p(1X2)

p lg 1

0
1

*k= j(—,—) j
c(2X2)

elm 1



27 SYMMETRY CHANGE IN CONTINUOUS PHASE TRANSITIONS. . . 2857

TABLE IV. Allowed irreducible representations and
allowed subgroups of the two-dimensional space group
No. 4: plgl. G„=m (C,).

TABLE V. Allowed irreducible representations and al-
lowed subgroups of the two-dimensional space group No.
5: elm l. G& ——m (C,).

«k={(2,0)I
gpJ

0

A'
A"

p(2X1) «k={(—,—)}2'2
D$

A'

A
II

p lm 1

c(2X2)
p lg 1

0
1

where DG+, as before, is the trivial representation of
0

Go, and the subscript (3) means the symmetrized
cube. A Lifshitz-active representation satisfies the
homogeneity condition

(DG, )(,)y DGO,

where DG is the vector representation of Go, and
0

the subscript [2] means the antisymmetrized square.
Both of these rules for deciding "activity" seem to

be accepted in three dimensions. But for two-
dimensiona1 systems microscopic models have been
developed (e.g., three- and four-state Potts model)
for which the order parameter violates the Landau
condition and yet the transition is continuous. ' A
body of opinion thus holds that the Landau condi-
tion should be dropped for all two-dimensional sys-
tems. However, the original Landau argument
based on stability at the transition seems to have a
validity independent of the dimension. We prefer

TABLE VI. Allowed irreducible representations and allowed subgroups of the two-
dimensional space group No. 6: p 2mm. G „=2mm (C2„).

~1K =(0,0)
DG'

0 p lm 1 p 1 lm p 211

A2

Bi
B2

«k = {(—,0) }
DJ

0 p 2mm p 2mg

p(2X 1)

p lm 1 p 1 1m p 1 lg p 211

A)
A2

Bi
B2

l&]
0
1

0

0
0
1

0

1

0

[&]
[&l

0
0

«k={(0,—)}
DJ

0

Ai
A2

B)
B2

p 2mm p lm 1

0

0

p(1X2)
p 1 lm

{&l
0
0
1

p lg 1 p 211

1

0
0

«k={(2,—,)}
DJ

0
c2mm

c(2X2)
c lm 1 c 1 lm p 211

A)
A2

B)
B2

1

0
0
0

l&]
0
1

0

[&]
0
0
1

[&1

1

0
0
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TABLE VII. Allowed irreducible representations and allowed subgroups of the two-

dimensional space group No. 7: p2mg. G „=2mm (C2„). Tables (e) and (f) are character

tables for irreducible ray representations for the indicated wave vectors,

(a) ~k =(0,0)
DgJ p 11g p lm1 p 211

A2

Bi
B2

(b) «k=[(0,—))
~J

0

Ai
A2

B&

B2

p 2gg p 11g

p(1X2)
p 1g 1

0
l&l

0
1

p lm 1 p211

1

l&)

0
0

(c) «k=j(—,0)I
DJ

0

p(2X1)
p lm 1 p211

(d) «k=[(—,—)I272
DJ

0

&(2X2)

p 211

(e) *k=(—,0)2' lo„(—,,0) J [oy( —,,0) ]

(f) «k=( —,—)
1 1

2'2 l o* I
(-, 0) l toy I

( —, 0))

not to take a position on this question since we can
apply the group-theoretical selection rules to any
given representations. Hence we shall indicate those
results which pertain to each particular representa-
tion and also give their respective activity. In the
tables which follow, we denote representations
which satisfy both the Landau and Lifshitz criteria
by DG ,'those satisfying the Landau, but not the

0 A '

Lifshitz, criterion are denoted Do, those satisfying
0

the Lifshitz, but not the Landau, criterion are denot-
ed by DG . Rottman listed LGW Hamiltonians

(universality classes) for Lifshitz-active representa-

tions only. The first step in our work was to classify
representations of each of the 17 planar space
groups in this way.

We next require a complete listing of all sub-

groups for each of these 17 two-dimensional space
groups. Such listings exist but not in the most use-
ful form. We restructured the existing listings by
taking advantage of a theorem of Hermann. This
theorem states that an arbitrary subgroup of a space
group is a class-equivalent (same factor group) sub-

group of a cell-equivalent (same translation group)

subgroup of the original space group. The theorem
permits us to prepare a "zellengleich-klassengleich"
(Z-K) tree for each space group: The apex of the
tree being the parent two-dimensional group and
branches being various subgroups. The Z-K tree
systematizes the work of subduction and chain sub-
duction. Elsewhere we discussed construction and
use of the Z-K tree, and Hermann's theorem in the
implementation of the subduction rules. Since it
would detract from the continuity of this presenta-
tion to give details of the Z-K method, we refer the
reader to that paper for details. '

III. RESULTS: ALLOWED TRANSITIONS
IN TWO DIMENSIONS

For each nontrivial two-dimensional (2D) space
group we shall list the subgroups allowed via
second-order phase transitions. In Tables II—XVII
irreducible representations (irreps) are labeled with
respect to activity as follows (see Table I): Djo D, ——

0
both Landau and Lifshitz active; Doj D, not Lan-—
dau active, but Lifshitz active; DG ——D, Landau ac-

0
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TABLE VIII. Allowed irreducible representations and allowed subgroups of the two-
dimensional space group No. 8: p 2gg. 6 „=2mm (C2„). Tables (c), (f), and (g) are character
tables for irreducible ray representations for the indicated wave vectors.

(a) ~k=(0,0)

p 1g1 p 11g p 211
(b) 'k=I( —„—,))

~J
0

c(2X2)
p 211

B)
B2

Si
S2

1 1
(c) *k=(—,-)2&2

Si
S2

2
—2

t~. I
( —, —,)1

(d) «k = I( z,0)]
DJ

p(2X1)
p 1g1 p211

{e) *k=I(0,2)j
~J

0

p(1X2)
p 11g p211

(f) «k=( —,0)

X

[~. I
( —, —,) I

(g) ~k=(0, —)

tive, but not Lifshitz active; DJG, D, neither Lan--—
dau active nor Lifshitz active.

The point group of the k vector G z, the active

star of k («k ), and superlattices p (m X n),
p(V m && v m )Re, etc., are given in the first row of
each table. In those cases for which characters of
elements in Gk cannot be obtained from the ordi-
nary point-group tables, we give the explicit charac-
ter in a small table appended and we follow the no-
tation of Cracknell. Integer entries in the column
below each subgroup of Go are the subduction fre-
quencies calculated by the group-theoretical meth-
ods given in the text and in Refs. 6 and 7. The nota-

tion used is as follows: n =1,2, . . . , indicates an
allowed subgroup; n =[1]or [2] indicates that a par-
ticular subgroup is eliminated via the chain criteria.

As an example of the application of the chain cri-
teria in eliminating certain subgroups we consider
Table XVII space group No. 17, p 6mm

[p(v 3&&v3)R30'] with *k=I(——,, —, ), ( —,, —,)j
and D&~ ——2 ~. This irreducible representation is not0
Landau active, but is Lifshitz active, and in three di-
mensions (3D), it would not be considered at all.

We have the following two chains of subgroups
and subduction frequencies (p, q, . . . ) from the
tables:



2860 S. DEONARINE AND JOSEPH L. BIRMAN 27

TABLE IX. Allowed irreducible representations and allowed subgroups of the two-

dimensional space group No. 9: c2mm.

*k=(0,0)
DJ

0

A2

G-„=2mm (C,„)

c lm1 c11m p211

G „=2(cg)
'k= [(—, O), (0,—,)I p(2X2)

DGJ c 2mm
0

p(2X1)
p 211

BI

B2

~k=I(—,—)j

D$

A2

B)
B2

p 2mm p 2mg

[1]
0
1

0

G„=2mm (C2„)

c(2X2)
p lm1,

p 2gg
p 1g 1

p 11m,

p 11g

0
0

l1)

p 211

ll]
[11
0
0

Go ——p 6mm,
. I

+p6mm X3 (1) g
p3m I X3 (1) p31m X3 (2)

~ p3 X3 (2) W

The threefold increase in cell area is indicated by
X3. The corresponding subduction frequencies are
enclosed in parentheses.

Applying the chain subduction criteria to the
three-chain on the left, we see that p 6mm ~p 3m 1

is not allowed. In the three-chain on the right,

p 6mm ~p 3 is not allowed. This leaves p 6mm
~p6mm)&3 and p6mm —+p31m )&3. Hence the

entries in Table XVIII are the following:
p3ml p3 p31m p6mm
[ll Pl 1

In brief, for a subgroup to be allowed, it must sur-
vive elimination in euery chain in which it occurs. If
it is eliminated in any chain, it is not allowed for the
second-order phase transitions. "

Recently, a listing of symmetry breaking by
second-order phase transitions in two dimensions
was given by Ipatova et a/. ' That work considered
only superlattice formation, i.e., breaking only the
translational symmetry. Our work extends and
completes their results to include all space-group to

TABLE X. Allowed irreducible representation and allowed subgroups of the two-
dimensional space group No. 10: p4.

p 211

G-„=4 (C4)
4k =(0,0)

DJ
0

G-„=2 (c,)
*k=I(, 0)(0 )l Z(2X1)

D$ p 211

G7 ——4 (C4)

~k=j( —,, z)I c(2X2)
D~~ p4 p 211

E

A A

B
E

[1l
1

0
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TABLE XI. Allowed irreducible representations and allowed subgroups of the two-dimensional space group No. 11:
p4mm.

~k =(0,0)
DJ

0

A2

Bi
B2
E

6„=4mm (C4„)
c 2mm c 1m 1

p 2mm c 11m

0
[1]

1

p 1m 1

p 11m

0
[1]
0
1

p 211

[1]
[1]

1

0

47k= I (—,0),(0,—) )

DJ
0 p 2mm p 2mg

6„=2mm (C2„)
p(2X1)

p11g p lm 1 p 11m p 211
p(2X2)

p 2gg

A)
A2

Bi
B2

1

0
0
0

0
[&]

1

0

[1]
0
0
0

0
0
1

[&]
0

6„=4mm (C4„)
c(2X2) or p(V 2XV 2)R45'

~k= I(—,—)I
DJ

0 p4mm p 4gm p4 c 2mm p 2mg p 2gg

p lm1

p 11m p 1g1

c lm 1,
c 11m,

p 11g p 211

A2

Bi
Bg
E

[1]
[&]
0
0
0

[1]
0
0
1

1

0
l1]

1

0
0

[&]
0
0
[1]
[1]

0
l1]
(1]
0

[&]

[&]
0
0
[1]
[1]

[&]

l)l
[&]

[1]
0

space-group transitions from one of the 17 plane
groups to another, allowing both rotational- and
translational-symmetry breaking.

There seem to be few experimental determinations
of symmetry change and order of the phase transi-
tion for surfaces with which to compare our results.
The work of Felter, Barker, and Estrup, ' and of
Debe and King, ' which reports a second-order
phase transition on the WI 100I surface, agrees with
our predictions as given in Table XI for the two-
dimensional space group p4mm, with the star of k,

1 1~k = I( —,, —, )I. An allowed second-order transition
can occur to p(v 2X V2)R45', with the two-
dimensional space group p2mg, using the irreducible
representation DG, ——E.

In the Appendix we have investigated this transi-
tion using the standard Landau procedure by
minimizing a fourth-degree polynomial. It is easy
to verify that the subduction methods are more con-
venient and that they give the same information.

After our work was completed we became aware
of some interesting work on structural phase transi-
tions for the admolecular system of CH4 on (0001)
graphite by Marx and Wasserman. They developed
a Landau theory for the transition. Marx's predic-
tion by minimization of a Landau polynomial of a
lower-symmetry group c2mm for ~ k =

I ( —,,0),
1 1 1

(0, ——, ), ( ——,—, )I agrees with our direct group-
theory results, for Go ——p 6mm and for DGJ =A 2 (A 2

in Ref. 15). We find the subgroup c2mm allowed,
with subduction frequency n= 1 and a hexagonal
p(2X2) superlattice. The primitive vectors of a de-
formed hexagonal lattice (with a&120') define a
centered rectangular lattice. The space-group sym-
metry would be c 2mm as given in Marx's (Ref. 15)
Fig. 4 and the accompanying text.

In the final summary table (Table XVIII) we list
all the results of our work in a convenient form (see
the table of subgroups of plane groups in Coxeter
and Moser ). Row heading is the parent group Go,
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TABLE XII. Allowed irreducible representations and allowed subgroups of the two-
dimensional space group No. 12: p4gm. Tables (c) and (e) are character tables for irreducible

ray representations for the indicated wave vectors.

6„=4mm (C4„)

(a) *k =(0,0)
DJ

0

A2

B]
B2

p4 c 2mm p 2gg

c lm 1,
c 11m

0
[&]

1

p 1g1,
p 11g

0

0
1

p 211

[&1

{&]
1

0

(b) b k = I (-, ,0),(0,—,) )

DJ
0

6k ——2mm (C2„)

p 1g1
p(2X1)

p 211

(c) *k=(—',0)2»

(d) 'k={(—,, —,))
DJ

0

M'
M"

p4
p 2mm»

c 2mm p 2mg p 2gg

6„=4mm (C4„)
c(2X2) or p(&2XV 2)R45'

p 1g1,

p 11g
p 1m 1,

p 11m p 211

M'
M"

2 0 2
4 0 —4

with all allowed subgroups G listed horizontally. '

The caption to the table indicates the factor of in-
crease of cell area (e.g, &(2, etc.), and is a key to the
orientation of the subgroup vis-a-vis the parent.
Subgroup labels G are the column headings. In or-
der to determine the active order parameter in each
case, one should go back to the detailed Tables
II—XVII for the two-dimensional space groups Nos.
2—17 given earlier.

~k={(——,, —))
DJ

0

p ( V 3 XV 3 )R 30'

p3

TABLE XIII. Allowed irreducible representations and
allowed subgroups of the two-dimensional space group
No. 13: p3. 6& ——3 (C3).
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TABLE XIV. Allowed irreducible representations and allowed subgroups of the two-dimensional space group No. 14:
p3m 1.

G-„=3m (C,„)
414 =(0,0)

DJG
0

Ap

p3 c 1m 1

c(2X2)
p lm1 p 1g1

Gk ——m (C, )

'k = {(—,,0),(0,——, ), ( ——,, —,) l

DJG
0

p(2X2)
p3m1

G „=3 (C3)
*k={(——,', —),( —,', —,

'
)l p(V 3XV 3)R30'

D$ p 31m p3 c lm 1

All

1

0
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In this appendix we analyze the transition
p4mm~p2mg [p(v 2Xv 2)R45'] using conven-
tional Landau theory. Since 60 ——p 4mm is a
symmorphic space group, the representation of the

1 1

little group of the k vector (Gk ) at K=(&,—,) is

the same as that of the point group of the k vector
Gk =4mmm (C4„). We have the following matrices
(Bradley and Cracknell' ) for the two-dimensional

1 1

representation at k=( —,, —,). The group elements

are denoted by g, the matrices by D (g):

TABLE XV. Allowed irreducible representations and allowed subgroups of the two-dimensional space group No. 15:
p 31m.

*k=(0,0)
DJ

0 p3 c11m

G~ ——3m (C3„)

p(2X2) c(2X2)
p31m p11m p11g

Gk ——m (C, )

'k= {(—, 0),10,——,),

( ——,, —, )j
1 1

DG'
0

Gk ——3m (C3„)

'k={(——, , —,)l

0

p(V 3X V 3)R30'

p3m1 p3 c11m

A II
A1

A2
E

[11
0
1
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TABLE XVI. Allowed irreducible representations and allowed subgroups of the two-dimensional space-group No. 16:
p6.

G„=6 (C6) G„=2 (C2)
'k = I(—,,0),(0,——,),( ——,, —,) I

6„=3 (C3)
1 2 1 1'&= I(——,, —, ),( —,, —, )I

~k =(0,0)
DGJ p3 p211 DJ

0

p {2X2) e(2X2)
p6 p 211 DJ

0

p(V 3X~3)R30'
p3

8
E1
E

1 0
0 2
0 0

D(g)
1 0
0 1

0 —1

1 0
0 1

—1 0

—1 0
0 —1

—1 0
0 1

1 0
0 —1

0 —1

—1 0
0 1

1 0

1. Free energy

It is easy to construct the invariant Landau poly-
nomial for the free energy 4. Up to fourth degree,

@=A'(cf+c2)+8'& (c (+c2)

+Ezra (cz+ ' ' '

Letting c~ ——p cos8 and cz ——p sin8,

+'= —p + p + p cos48.
2 4 4

Extremizing gives 48=nn, n =0, 1.,2, . . . , and

+Bzcos48 & i +&z

Possible solutions for the order parameters are the
following:

TABLE XVII. Allowed irreducible representations and allowed subgroups of the two-
dimensional space group No. 17: p 6mm.

6„=6mm (C6„)
~

1& =(0,0)
~J

0 p6 p3m 1 p31m p3 c1m 1 c11m p211

81
$2

E

1

0

0
0

[&l

[&]

[&1

0

0
[&]

1

[&l

l&l

1

[&l

[&]
0
0
0
2

G-„=3m (C,„)

'k = [(——,, —,),( —,, —, ) J

1 2 1 1

~J
0

A1
Ag

p 6mm p3m1
p(V 3XV 3)R30'
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c&&0, cq ——0, for 8=0,
c&

——0, c2&0, for 8=m/2. ,

c~ ——+cq, for 8=m/4,

c~ ———c2, for 8=3m/4 .

To find the minima, we evaluate t) 4/38 and
8 4/Bp, and 4:

44B2p—cos48= —4(+B2)p
88

so that

B2&0 ci&0, c2 ——0 (8=0)

2@ c) ——0, c)~0 (H=n. /2)

88
&0 for '

Bp&0 c) ——c2 (H=m/4)

c, = —c2 (8=3m/4).

84 3A
2

=A — (B)+By)=—2A,
2p2 (B(+Bp)

so that

8 4/Bp &0 forA &0,
—A

4(B)+B2) '

so that 4 &0 for B»0 and B»
l
Bz

l

.

2. Lower-symmetry space group

Having established absolute minima for the above
roots, we now examine the density function
5p=c~g~+c2$2 For .c~ ——+c2, c~(P&+f2) trans-
forms under the elements ofp 4mm as

p 4mm

4+4 %+A —(12+fbi

C4z

—(p(+pg) —4+ gz 4 —02 —(6+A) 42+ 6

5p is invariant under the action of the elements
IC2 I

t I I~dul t I and I~dbl(oo)I
where i =1,2 ~t ~

——(1,0) and t 2
——(0,1). Shifting the

origin by to ——( —,,0) to agree with Bradley and
Cracknell, ' we finally obtain IEl(0,0)I, IC2, l(0,0) J,
I 0'dN

l

'r z /2 j, and I o db l

—r 2 /2 I, where the new lat-
tice translations are the following:

r~ ——( t &+ t2),

We identify the space group as p 2mg
[p(V2X~2)R45']. In a similar way c&+0, c2 ——0
leads to the transition p 4mm —+c 2mm with a
volume increase of a factor of 2. The other roots
c&

———cz and c~ ——0, c2&0 are related to the above
by symmetry and give the same transitions.
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