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Evolution of superfluid turbulence in thermal counterflow
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Using two complementary techniques, we have for the first time determined the full evo-

lution of superfluid turbulence in a single circular tube. Our analysis shows that the evolu-

tion of the turbulence from laminar flow through the two turbulent states T I and T II is in-

dependent of the tube size and is probably a generic feature of the circular geometry. This
important result finally allows a reliable comparison to be made of data from wide and nar-

row tube experiments. The parameters of states T I and T II are found to be well defined by
these experiments, and comparison to the theory of Schwarz suggests that the fully

developed state T II is reasonably homogeneous. The transition from laminar flow to state
T I is consistent with previous results showing a critical density of quantized vortex lines in
the turbulence. Our analysis suggests that this concept may be extended to the transition
from T I to T II. Associated with this second transition is an intrinsic relaxation time that
appears to diverge at the critical velocity.

INTRODUCTION

A major obstruction to the systematic understand--

ing of superfluid turbulence in thermal counterflow
has been the inability to make a reliable comparison
of results obtained from wide and narrow flow
tubes. Because of their size, narrow-tube experi-
ments are generally limited to measurements of the
temperature, pressure, or chemical potential differ-
ence along the tube. Circular tubes with diameters d
of the order of 10 cm exhibit a progression of two
different turbulent states T I and T II, in addition to
a laminar nonturbulent state at low flow velocities.
While the transition from laminar flow to T I and
the transition from T I to T II is clearly evident in
these tubes, the temperature differences become too
large for meaningful measurements to be made of
state T II. On the contrary, the temperature differ-
ence in wide tubes only becomes appreciable at high
velocities and the single turbulent state determined
in a variety of different measurements is generally
assumed to be T II. However, since the full laminar
T I—T II structure has not been observed in wide
tubes and the fully developed state T II has not been
measured in narrow tubes, this assumption has not
been clearly established. This situation is particular-
ly unfortunate since the wide-tube experiments often
involve far more detailed probes of the turbulence
than can be employed in narrow tubes. In this paper
we provide exp':rimental data from a single tube
which bridge the gap between previous wide- and
narrow-tube results. Using two complementary ex-

perimental techniques we are able for the first time
to define the laminar state, state T I, and the full
development of state T II in a single flow tube. The
results justify the assumption that state T II should
be observed in wide tubes, and provide important
new information about the nature of states T I and
T II and the T I—T II transition.

A typical thermal counterflow apparatus consists
of a cell connected by the flow tube to a temperature
regulated Heu bath as can be seen in Fig. 1. Heat
supplied to the cell at a constant rate Q produces a
steady counterflow of the normal and superfluid
components of the He D at an average relative velo-
city

V =Q/Ap, ST,
where A is the flow tube area, p, is the superfluid
density, T is the ambient temperature, and S is the
entropy density. A second heater can be used to
generate an additional oscillatory heat flux (ampli-
tude 5Q, frequency co) producing an oscillatory
counterflow which is just longitudinal second sound.
The geometry of the apparatus is that of a
Helmholtz resonator, ' such that the second sound
will have a maximum amplitude at a frequency near
coo where

coo ——uzi/Ul .

Here u2 is the speed of second sound, U is the cell
volume, and l is the length of the flow tube. At suf-
ficiently low steady velocity V no turbulence is
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several experiments, a is the quantum of circula-
tion, and p„p„, and p are the superfluid, normal-
fluid, and total-fiuid density, respectively. The ex-
cess dissipation provided by F,„can be observed as a
temperature difference in excess of that given by Eq.
(2) and related to F,„as

b, T'=lFS„/p, S .

Similarly, F,„can be observed as a broadening of the
second-sound Helmholtz resonance.

Measurements of AT' in narrow tubes ' have
revealed that superfluid turbulence evolves through
three stages as Vis increased. For Vless than a crit-
ical value V, ~ only viscous dissipation is observed
and Lo ——0. This laminar flow can persist metast-
ably for V& V, &, but the stable steady state of the
system here is the superfluid turbulent state T I. In
this state the line density is given by

Lp (T I)=y&( T) V —1.48a]/d (6)

Mutual Inductance Coils

~Vacuum Can

FIG. 1. Schematic diagram of the basic apparatus
showing the flow tube connecting the cell to the helium
bath, the two heaters, the bolometer and associated mag-
net, and the SQUID.

F,„=Bp,p„a VL p l3p, (4)

where B is a dimensionless coefficient related to the
vortex line-excitation scattering and measured in

present and the only dissipation is provided by the
viscosity of the normal fluid. This dissipation gives
a simple constant thermal resistance R between the
cell and bath, and a temperature difference

b, T =RQ=[128gl/md T(pS) ]Q, (3)

where g is the viscosity of the normal fluid. The
viscous dissipation also affects a second-sound sig-
nal giving a constant width to the resonance curve.

At sufficiently large steady velocity V superfluid
turbulence will be present in the flow tube. This
turbulence was originally characterized by Vinen as
a random distribution of quantized vortex lines hav-

ing steady-state density Lo. Schwarz has recently
shown that a homogeneous turbulent state can be
deduced from simple dynamical rules, and has deter-
mined Lo in numerical simulations. The scattering
of the normal-fluid excitations from the vortex lines

gives rise to an excess dissipation known as mutual
friction. The mutual friction force density F,„ is re-
lated to the line density Lo by

L p (T II)~yq(T) V —1.48a2/d, (8)

where the coefficient yq(T) is roughly twice y~(T).
The purpose of the present experiments was to

determine whether the features of superfluid tur-
bulence observed in these narrow tubes persist in
tubes an order of magnitude larger. No single ex-
perimental technique can span the range of low-level
dissipation presented by this situation. In a tube of
10 ' cm diameter, for example, the temperature
difference would vary from about 10 K in lami-
nar flow to about 10 K in the fully developed T II
superfluid turbulent state. Instead we have em-

ployed two techniques. To determine the laminar
and superfluid turbulent state T I we have measured
the attenuation of second-sound Helmholtz oscilla-
tions. Above V, q these oscillations become over-
damped, and we have used a measurement of the
dynamic thermal resistance to determine state T II.

where y~(T) is a function of temperature, and a, is a
dimensionless quanity of order unity. At the critical
velocity V, ~ the dimensionless number Lo d is
found to be nearly 2.5, inde'pendent of temperature
and tube size. ' Above a second critical velocity
V, 2, where L p d is approximately 10, the superfluid
turbulence makes the transition to state T II. Just
above V, 2 the vortex-line density appears to develop
a component in addition to T I [Eq. (6)] such that'

L 1/2 L 1/2
(T I) +gL 1/2

where ELp varies as [(V/V, 2) —1]. For V rather
larger than V, z the state T II appears to become ful-
ly developed in the sense that the vortex-line density
seems to approach an asymptotic form similar to
that for state T I,



2790 K. P. MARTIN AND J.T. TOUGH 27

5.5

5.0—

E

CL

4.0—

3.5
1.575 1.625

T(K)
l.65 1.675

FIG. 2. Calibration curve for the bolometer at 1.6 K.
Solid line corresponds to ( 1 /Rb )(dRI, /dT) =6.9 K

APPARATUS

The apparatus is shown schematically in Fig. 1.
The fiow tube was glass with an inside diameter of
(I+0.01)X 10 ' cm and a length of 10 cm. In the
worst case the normal-fiuid laminar entrance length
was only a few diameters. ' The cell was machined
from cast epoxy' and contained two heaters, a su-

perconducting bolometer and an associated magnet,
and had a free volume of 5.03 cm . The supercon-
ducting leads for the magnet, secondary inductance
coil (L2), and heaters all passed out of the vacuum
can through an epoxy seal, and the leads for the
bolometer and primary inductance coil (Li) were
passed through a support tube to a room-
temperature seal.

The bolometer was a superconducting thin film
made from 95-at. Wo Sn and 5-at. %%uo Inalloy' 7eva-
porated onto a glass substrate. A film of this alloy
at zero magnetic field has a sharp resistive transition
at about 3.5 K. At finite fields the transition is
broadened and shifted to lower temperature. For
the three temperatures studied in this experiment
(1.5, 1.6, and 1.7 K) a field of about 600 6 was suf-
ficient to put the center of the transition at the
desired temperature. Figure 2 shows the bolometer
calibration curve at 1.6 K, with the straight line cor-
responding to (1/Rb)(dRb/dT)=6. 9 K '. The
thermal response time of the bolometer was less
than 1 ms.

The magnetic field used to shift the transition of
the bolometer was produced by a superconducting
persistent-current solenoid. The solenoid was
wound of 1980 turns of NbTi wire on a tubular
epoxy former, and the bolometer was secured in the
center of the bore. A persistent-current mode could
be established with a thermal switch in the He bath.

The bolometer was coupled to the superconduct-
ing quantum-interference device (SQUID) (Ref. 18)
pickup coil (L, ) by two inductance loops (Li and
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FIG. 3. Schematic diagram of the experimental config-
uration used in the second-sound —attenuation measure-
ments.

L2) wound of superconducting wire and surrounded

by a lead shield. The values of Li and L2 were
chosen to maximize the signal coupled into the
SQUID. The leads of L2 were shielded by a super-
conducting tube. An rf shunt placed across L& (a
3.5-mm piece of Manganin wire with a resistance of
0.12 0) reduced the rf noise coupled into the
SQUID (3-dB rolloff at 20 kHz). The effective mu-
tual inductance M,ff between L~ and L, was mea-
sured' to be 0.62 pH.

The bolometer was the single detector used in
both the second-sound and thermal-resistance mea-
surements. It was biased by a constant voltage Vb of
about 150 mV from a specially constructed'
temperature-stabilized dc voltage supply of low-
noise ( & 1 pV), long-term stability ( & 10 pV/h), and
low-output impedance Ro. The output voltage of
the SQUID detector system dV resulting from a
change in cell temperature dT was then

(20 mV) I'i dRs

$0
' Ri dT (9)

where p is the flux quantum (2 && 10 ' Wb/m ) and
R is the total resistance in the circuit composed of
Ro, Rs and the lead resistance RL . With the use of
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the measured circuit parameters, a temperature
change dT of 1 pK gives an output voltage of about
2.5 mV.

RESULTS

To determine the laminar and low —line-density
state T I the attenuation of second-sound Helmholtz
oscillations was measured as a function of the dc
heat current Q or the constant relative velocity V
[Eq. (1)]. The experimental configuration is shown
in Fig. 3. A sinusoidal heat current of 30-pW am-
plitude and frequency co/2 was generated by the ac
heater, and the temperature oscillations at frequency
co in the cell 6T (co) were detected by the
bolometer-SQUID system. The maximum ampli-
tude of these oscillations was about 1.5 pK. The
SQUID output was detected by a lock-in amplifier,
and the in-phase, out-of-phase, and vector sum were
digitized and stored by the MINC computer at a
rate of four samples per second. Up to 100 samples
were required to determine the second-sound ampli-
tude b, T(co), and this was repeated at various fre-
quencies between 1 and 10 Hz. Sample-resonance
curves obtained at 1.7 K are shown in Fig. 4. These
results show that the second-sound attenuation
remains constant as V is increased until the super-
fiuid turbulent state T I appears above about 1

cm/s. For velocities greater than about 2 cm/s the
damping is too large for this technique to be useful,

With the use of the standard two-fluid hydro-
dynamic equations including the mutual friction
force (see Appendix) it follows that the second-
sound amplitude b,T(co) is given by

QQ (Qf Q3)Q2+i (Q3Q~/co coQ2)—
b, T(co)=

C 0+a) 0
(10)

temperature and counterflow velocity V. This result
compares quite favorably with the value 3.87 Hz
calculated from Eq. (2) using measured values of the
cell and flow-tube dimensions. The solid lines in
Fig. 4 are drawn with the optimum values of the
vortex-line density L p and illustrate the excellent fit
to the data. The values of the line density deter-
mined from this procedure at 1.7 K are collected in
Fig. 5(c), where the dimensionless quantity L p d is
given as a function of the relative velocity V. Simi-
lar data obtained at 1.5 and 1.6 K are given in Figs.
5(a) and 5(b), respectively.

2

C3

0
cf
CDo

2
Cl

where EQ is the amplitude of the ac heat fiux, C is
the heat capacity of the helium in the cell, and

Q2i =~p —~'[1—(p, /p)(&/a)] (11)

Q3 co(p, /p)(5/a) ——ICL pB/3, —

Q3 —co [ 1 —(p, /p)(5/a)]

(12)

(13)
0

The normal-fluid viscosity ri enters these expres-
sions through the penetration length 5, where

5 =2'/cop„, (14)

and the vortex line density only appears in Qq. The
experimental data were fit to the magnitude of
ET(co) computed from Eq (10) using. cop and Lp as
parameters. The resonant frequency cop/2m was
found to be 3.76+0.02 Hz essentially independent of

V= I.8cm/s

0 2 4 6 8 IO

Frequency (Hz j

FIG. 4. Example second-sound Helmholtz resonance
curves at 1.7 K, and at the velocities indicated. Solid lines
are best fits of Eq. (10) to the data using the vortex-line
density as a parameter.
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FIG. 6. Schematic diagram of the experimental config-
uration used in the heat-pulse measurements.

p J J
0 0.5 I.O I.5

V {crn/sj
2.0 2.5 It follows that if the heat current is increased by 5Q

then hT will increase by
FIG. S. Vortex-line density, shown as the dimension-

less number Lo 'd, as a function of the velocity V at 1.S,
1.6, and 1.7 K. Solid lines are best fits of Eq. (6) to the
data. Parameters y~(T) and a& are given in Table I.

Although these results will be discussed in detail
below, it should be noted here that the laminar
(Lp ——0) state and the superfluid turbulent state T I
are clearly defined in these data. Indeed at 1.7 K
there is evidence of the metastable laminar state
above 1 cm/s. At the largest velocities I.p has in-
creased to the point that the second sound is severely
damped and it is no longer a useful probe of the su-
perAuid turbulence.

In order to determine the vortex-line density in
state T II at higher velocities we have employed a
heat-pulse technique' to measure the dynamic
thermal resistance of the turbulent counterflow. A
steady heat current Q produces a steady temperature
difference hT, and the dynamic thermal resistance
is defined as

(Q )
dkT
d

5Tp R(Q)5Q . ——
In laminar counterflow the thermal resistance is
constant [Eq. (3)] and is determined by the normal-
fluid viscosity. In turbulent counterflow the mutual
friction force increases the thermal resistance and
produces a nonlinear dependence of R on the heat
current Q.

The experimental configuration used to measure
the thermal resistance is shown in Fig. 6. A con-
stant temperature difference b, T was established
with the dc heater. Square voltage pulses applied to
the ac heater generated heat pulses of amplitude 5Q
between SO and 100 pW. Following the application
of a pulse, the cell temperature increased with time
reaching a steady value AT+5TO. The width and
spacing of the 5Q pulses were long enough so that
the temperature of the cell reached steady values on
both the rise and fall. The temperature of the cell
was detected by the bolometer-SQUID system dis-
cussed above. The SQUID output signal was ampli-
fied and filtered (dc to 15 Hz) before going to a digi-
tal signal averager. A trigger from the pulser pre-
ceded each pulse and started the averager on a signal
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FIG. 7. Example of second-sound ringing response to a
heat pulse when the turbulence was in state T I. Vertical
scale is proportional to the temperature difference and
horizontal scale is proportional to the time. Steady tem-
perature difference 5Tp of 4.6 pK is shown.

sweep. The sweep time was set so that a complete
temperature rise and fall and an adequate baseline
could be recorded in one sweep. At the largest heat
currents, when 5Tp was as large as 0.1 mK, as few
as 75 sweeps were adequate to resolve the tempera-
ture signal. At the other extreme, several hundred
sweeps were required. Since the signal averager
could only digitize positive voltages within a (0—1)
window, a voltage offset B was subtracted from the
preamplifier output A so the signal arriving at the
averager was within this window. Bath drift and
bolometer-voltage drift caused the signal to shift so
the compensating voltage was reset before each
sweep. The amount of offset 8 sent into the filter
was determined by averaging the output of the
preamplifier during one sweep with the computer
which then calculated the offset needed to keep the
signal in the (0—I)-V window. This voltage was
then supplied during the next sweep.

The temperature signals produced by the heat
pulses and recorded on the signal averager took two
different forms. When the steady heat current Q
was small, in the region of the second-sound at-
tenuation data, the signal appeared like the example
in Fig. 7. A second-sound "ringing" appeared at the
start and finish of the heat pulse. The frequency
was equal to cop [Eq. (2)] within the considerable er-
ror, and the attenuation was due to the normal-fluid
viscosity and the mutual friction just as for the
driven oscillations.

Although these data with the second-sound ring-
ing do indicate a steady-state temperature difference
5Tp, tile data are really at the limit of resolution for
this heat-pulse technique. The signal shown in Fig.
7, for example, required 698 sweeps to barely resolve
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FIG. 8. Example of exponential response to a heat
pulse when the turbulence was in state T II. Vertical scale
is proportional to temperature and horizontal scale is pro-
portional to time. Steady temperature difference of 39
pK is shown.

the temperature difference of 4.6 pK. Not surpris-
ingly, the values of the thermal resistance obtained
from such data showed considerable scatter. The re-
sults were not inconsistent with the vortex-line den-
sity obtained from the second-sound —resonance
measurements, however. The second-
sound —resonance technique is clearly superior in
this low —heat-current, low —vortex-line-density re-
gion of the turbulence.

The second form of temperature signal produced
by the heat pulses occurred when the steady heat
current Q was greater than that needed to provide
critical damping of the second-sound resonance. A
typical signal shown in Fig. 8 has an exponential
rise of the temperature to 5Tp and an exponential
fall when the pulse is removed. The time constant r
of the exponential is of course just R(Q)C, where C
is the heat capacity of the helium in the cell. The
thermal resistance R(Q) can thus be obtained from
such a signal both from the time constant r and the
amplitude 5Tp. The system parameters are so ar-
ranged that the heat-pulse technique begins to gen-
erate these exponential signals just as the second-
sound —resonance technique is becoming ineffective.
In this sense the two techniques are overlapping and
complementary.

After correcting for small baseline slant due to
drift in the bath temperature or the bolometer volt-

age, the temperature signals were fit to a simple ex-
ponential rise and decay with amplitude 5TO and
time constant r. Calibration of the signal amplitude
in K was made possible by using the absolute value
of R(Q) obtained from the time constant r Figure.
9 shows the thermal resistance as a function of the
steady heat current Q at 1.7 K. At low heat
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FIG. 9. Dynamic thermal resistance R(Q) at 1.7 K
determined from amplitude (5TO) and time-constant (v)
measurements as a function of the heat current Q and

velocity V. Systematic difference at low velocity is sug-

gestive of an intrinsic relaxation time of the turbulence.

Solid line drawn through the amplitude data is used to
calculate b, T(Q ) using Eq. (17).

currents the ringing signal (Fig. 7) rather than the
exponential signal is observed. The results obtained
from both the amplitude 5T& and time constant v.

are distinguished in the figure and are seen to be in
excellent agreement at the larger heat currents.
Near the lowest heat current at which an exponen-

tial signal is observed, there is a systematic deviation
of the time-constant and amplitude data. We inter-

pret this as evidence for an intrinsic relaxation time
of the vortex-line distribution that is becoming very

large near the T I—T II transition. Such a relaxa-

tion time would be consistent with Vinen s waiting-

time measurements and could reveal an important
feature of the transition.

The vortex-line density Lo was extracted from the
dynamic thermal-resistance data by first fitting a
smooth function to the R(g) data obtained from
the signal amplitude 5To. The functional fit to the
1.7-K data is shown by the line in Fig. 9. A numeri-

cal integration of R(g) was then performed to
give AT(g),

&T(Q)=&T(go)+ J R(Q)dQ . (17)

The starting point for the integration Qo was in the
region of overlap with the second-sound data. The
constant of integration b T(go) was calculated from
the vortex-line density at Qo determined by
the second-sound technique. The vortex-line density

Lo could then be calculated from ET(g) using Eqs.

~ 60
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Tl e~
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0 I
2~~c2 3 4

V (cm/s)

100

80

60
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0 I C22
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FIG. 10. Vortex-line density, shown as the dimension-

less number Lo d, as a function of velocity V at 1.5, 1.6,
and 1.7 K. Open circles are determined from the heat-

pulse measurements and are representative of state T II.
Solid circles are taken from the second-sound measure-

ments of state T I shown in Fig. 5. Critical velocities V, ~

and V,2 are indicated. Solid line is a best fit of Eq. (18) to
the state T II data, with the parameters given in Table I.

(4) and (5) since the temperature difference from the
laminar flow [Eq. (3)] is entirely negligible here.

The results for the line density obtained from the

dynamic thermal-resistance measurements and

characteristic of state T II are shown as the dimen-

sionless number Lo d in Fig. 10. Reasonable varia-

tions of the curve fit to the R(Q) data or of the

choice of Qo in the integration had virtually no ef-

fect on the resulting line density. Also included in

Fig. 10 are the results for the line density in state
T I obtained from the second-sound measurements

(Fig. 5). The combined results give a very complete
picture of the evolution of superfluid turbulence in
this wide tube.
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ANALYSIS

The fundamental question addressed by these ex-
periments is clearly answered by the results shown
in Fig. 10. The basic evolution of superfluid tur-
bulence from the laminar (Lo ——0) state through
states T I and T II appears precisely as in circular
tubes an order of magnitude smaller. The analysis
of these states and of the critical velocities V, i and
V,2 gives no reason to suppose that a similar evolu-
tion does not proceed in tubes of any larger size.
Brewer and Edwards' have reported measurements
of the temperature difference in circular tubes of
three different sizes (0.005, 0.011, and 0.037 cm)
which are completely consistent with this con-
clusion. The present results are the first to show the
evolution of superfluid turbulence in a single tube
with an accurate definition of each state.

The vortex-line density in state T I as given by the
second-sound attenuation data is shown in Fig. 5.
The straight lines are fits of Eq. (6), and the values
of yi( T) and ai are given in Table I. The results for
yi(T) are in good agreement with the data of Child-
ers in tubes of sizes an order of magnitude smaller.
Other experiments which have observed this state
are less precise but are quite consistent with the
present data. The dimensionless quantity a& is ap-
proximately 5 in these wide-tube experiments. This
is consistent with the observation of Ladner ' that
ai is a weakly increasing function of tube diameter.
It is worth recalling at this point that in pure super-
flow, where the turbulence is apparently homogene-
ous, the quantity a is zero. ' It seems likely that
this quantity is related to an inhomogeneity in the
turbulence produced by the normal-fluid flow.

The transition from laminar (La =0) flow to state
T I is not determined with great precision in these
experiments, although this is by far the widest tube
in which the transition has ever been observed. The
smallest stable line density which could be observed
was fully consistent with the critical condition
Lo d =2.5 found in a variety of narrow-tube exper-
iments. ' If the turbulence in state T I were homo-
geneous, this critical condition would correspond to
an average vortex-line spacing of only d l2.5.

The vortex-line density in state T II shown in Fig.
10 does appear to reach an asymptotic limit as given
by Eq. (8), but only for V&2V, 2. We have found
that the line density is well described over a much
wider domain by the function

Lo d =[[yi(T)Vd] +C I'~ —1.48ai, (18)

I I I
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CU

E
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50—

I I I I I I I I I

I .I I.2 1.5 1.4 1.5 1.6 1.7 1.8 1.9
T (K)

which, of course, has the same asymptotic form as
Eq. (8). The solid lines in Fig. 10 are obtained from
Eq. (18) using the values for yi(T), ai, and C given
in Table I. The temperature-difference data of
Chase (0.08-cm tube) and Brewer and Edwards'
(0.037-cm tube) can also be very well described by
the line density given by Eq. (18). In Fig. 11 we
show the temperature dependence of the quantity
y2( T) determined from the present experiment.
Also shown is a collection of other data' ' from
circular tubes which is unquestionably representative
of asymptotic state T II. The overall agreement
must be considered rather good considering the
variety of experiments.

A significant and revealing feature of the data in
Fig. 11 is the agreement with the calculation of
Schwarz shown by the solid line. The Schwarz
theory describes homogeneous turbulence, observed
experimentally in pure superflow, ' and it is there-
fore somewhat surprising to find this agreement. Of
course the vortex-line density in superflow has a =0,
and so the agreement is not complete. There is a
clear implication, however, that fully developed su-
perfluid turbulence in state T II is reasonably homo-

T (K)
y~ (s/cm )

a~

y2 (s/cm )

C
a2

1.5
77

5.1

145
31
13

1.6
86
47

163
33
14

1.7
92

5.0
190
33
14

TABLE I. Experimental values of the parameters in

Eqs. {6)and {18).

FIG. 11. When state T II is fully developed, the
vortex-line density is given by the asymptotic form in Eq.
(8). Amplitude y2{T) is shown here as a function of tem-
perature determined from the present experiment {4) and
from the following previous experiments: , Dimotakis
and Broadwell (Ref. 25, d =0.318 cm); 0, Peshkov and
Tkachenko (Ref. 26, d =0.274 cm); 6, Brewer and Ed-
wards {Ref. 12, d =0.037 cm); and 8, Chase (Ref. 24,
d =0.08 cm). Solid line is the calculation of Schwarz
(Ref. 5) for homogeneous turbulence.
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geneous. Thermal counterflow in high —aspect-ratio
rectangular tubes ' (approximately a parallel-plate
geometry) exhibits only a single superfluid turbulent
state (T III) with a temperature coefficient y3(T)
quite comparable to yq( T). We have previously sug-
gested that the states T I and T III are equivalent
and that y3/y& D——/d, where D is the hydraulic di-
ameter [4X (area)/(perimeter)] of the tube. The
present results, when compared to pure superflow,
suggest the alternative possibility that T II and T III
may be equivalent, approximately homogeneous
states, and the low —line-density state T I is inhomo-
genous.

The functional form for the line density in state T
II given by Eq. (18) fails to describe the data in the
neighborhood of the transition to state T I at V, 2. A
line density of the form found in narrow tubes' and

given by Eq. (7) can be fit to the data, although a
somewhat weaker power law like [(V/V, 2) —1]
appears to give a better fit. The very rapid change
of Lo with V near V, 2 is of course the reason for the
thermal-resistance peak here (Fig. 9), as observed
earlier in narrow tubes. ' It is worth noting again
that the time-constant data suggest a characteristic
relaxation time for the line density that is divergent
near V, 2.

We have somewhat arbitrarily defined the critical
velocity V, 2 marking the transition from state T I to
T II to correspond with the peak in the thermal-
resistance data. In fact, since the transition region is
quite narrow, there is little error introduced by this

0.3—

0. 1

1.2
I

1.4 1.6 1.8

FIG. 12. Second critical velocity at the transition be-
tween state T I and T II. Results are shown for two wide
tubes: 6, the present experiment (d =0.10 cm), and o,
Chase (Ref. 24, d =0.08 cm); and two tubes an order of
magnitude narrower: 4, Brewer and Edwards (Ref. 12,
d =0.011 cm), and 0, Ladner et al. (Ref. 10, d =0.013
cm). Size dependence is largely but not completely re-
moved by plotting V,2d. Solid lines are calculated from
Eq. (19) using a critical state T I line density L,'~ d =10,
and the values of a~ noted in the figure and appropriate to
the wide and narrow tubes.

choice. Comparison of the present V,2 data with re-
sults from narrow tubes indicates a roughly 1/d
dependence, and consequently we have plotted our
results in Fig. 12 as V, 2d. This procedure does not
eliminate all of the size dependence, however. The
present results compare quite well with those of
Chase obtained in a tube of nearly the same size
(0.08 cm) whereas the results from both Ladner
et al. ' and Brewer and Edwards' obtained from
comparable-size tubes an order of magnitude smaller
are systematically lower. We conclude that V, 2 is a
weak function of both temperature and tube size. It
is tempting to relate this weak size dependence to
that of a~, and this can easily be done by setting the
critical condition to be that the vortex-line density in
state T I reaches some constant value L, &

at the
transition. It then follows from Eq. (6) that

V, 2d =(L,( d +1.48at)/y~(T) . (19)

The lines in Fig. 12 are calculated from Eq. (19) us-
ing a& ——5 for the wide tubes and a& ——1 for the nar-
row ones and with L, ~ d =10. The agreement with
the data is somewhat encouraging, especially as the
magnitude of the size dependence is approximately
correct.

CONCLUSIONS

Using two complementary techniques we have
determined the evolution of superfluid turbulence in
thermal counterflow in a single wide circular tube
through the laminar (Lo ——0) state and the states T I
and T II. We have demonstrated that this evolution
is qualitatively the same as in tubes an order of mag-
nitude narrower and quite likely is a generic feature
of the circular geometry. The parameters of states
T I and T II are in excellent quantitative agreement
with previous data, and suggest that the fully
developed T II state is reasonably homogeneous.
Associated with the T I—T II transition is an intrin-
sic relaxation time for the vortex-line density that
appears to diverge at V, 2. The concept of a critical
line density which seems to be correct at V, ~ may
also be appropriate for V, 2. Further experiments
will be needed to clarify the nature of this transition,
and of the states T I and T II.

It has been recently recognized that superfluid
turbulence in thermal counterflow is strongly influ-
enced by tube geometry. Our present results show
that for the circular geometry tube size has no quali-
tative effect on the evolution of the turbulence, and
only a weak quantitative effect on state T I and on
the transition to T II at V, 2. Similar conclusions
can be drawn in the case of the parallel-plate
geometry. Here only the single state T III is ob-
served in both wide and narrow tubes, and the
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line-density coefficient y3(T) is independent of tube
size. The square geometry has also been studied in
both wide and narrow tubes, but in this case the
tube-size independence has not been established. In
narrow square tubes, Henberger and Tough found
an evolution of the turbulence quite similar to that
in the circular geometry. In state T I the parameters
y~(&) and a| are found to be in agreement with the
circular-tube results. The critical velocity V, 2 was
less reproducible and was somewhat lower than in
the circular tubes. Because of the large tempera-
ture difference the full development of state T II
could not be determined. In a wide square tube,
however, Barenghi et al. found only a single su-
perfluid turbulent state. The properties of this state
were in fair agreement with the results for state T I.
This is particularly surprising since the experiment
is limited to rather high velocities where Lo d & 25.
It may be appropriate here to note the original ex-
periments of Vinen ' which involved wide,
low —aspect-ratio rectangular tubes. Like the experi-
ments in small square tubes, Vinen's results also in-
dicated an evolution from a (poorly defined)
low —low-density state to a fully developed state
consistent with T II. Obviously the evolution of su-

perfluid turbulence is strongly geometry dependent,
but in the majority of experiments the qualitative
features are independent of the tube size.
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These two heat currents generate thermal counter-
flow through the tube. The axial (z) components of
the normal-fiuid and superfluid velocities in the tube
are written as

V„=V„o(r)+b, V„(r)e

V, = V,o(r)+XV, (r)e

(A2)

(A3)

where V„o(r) and V, o(r) are the time-independent
velocities for steady-state counterflow. The ac velo-

This work has been supported by National Science
Foundation —Low Temperature Physics Grant No.
DMR-79-25089.

APPENDIX

Helium Bath

&n =~no+~~r}

Flow Tube ~
g (radius a, area A)

dc Heater QQ

)
ac Heater

Sample Cell
Volume = V

FIG. 13. Schematic diagram of the cell and flow tube
used to calculate the frequency response of the second-
sound Helmholtz oscillations in the Appendix.

city fields are produced by b, g(t).
Entrance-length effects appear in a small fraction

of channel length and so will be neglected. The
wavelengths of second sound at these frequencies are
much larger than the dimensions of the cell and
flow tube. This allows any exp(ikz) dependence to
be eliminated from Eqs. (A2) and (A3). The tem-
perature oscillations may be assumed to be uniform
throughout the cell and equal to the spatial average
of the temperature across the cell end of the flow
tube.

In the spirit of the mutual-friction approxima-
tion we assume that the only velocity fields are axi-
al [Eqs. (A2) and (A3)] in which case the two-fluid
equations of motion can be written

pn BP ()T—p,S +F,n,
p Bz Bz

(A4)

p. aP ar
(A5)

Bt p Bz
'

Bz

where F,„ is the axial component of the mutual-
friction force. Substituting Eqs. (A2) and (A3) into
Eqs. (A5) and (A6), and keeping only terms linear in
AV„(r) and EV, (r), and averaging over the tube
cross section leads directly to

1 AP

p l pn l pn

(A6)
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~ g —iut 1 AP kT +sn
g (A7)

where AP and hT are the total pressure and tem-
perature difference along the tube and G is the aver-
age of the viscosity term,

pn

Subtracting Eqs. (A6) and (A7) gives

G = —cob, V„(1+i)5/a .

Combining this result with Eq. (A16) gives

p„l
&T(co)= [(ico+ y)(p/p, )

p,S

(A19)

first order in 5/a. A general solution for the oscilla-
tory viscous flow in a tube has been given by Uchi-
da. We have considered higher-order terms in the
solution, but the effect is negligible. With the use of
Eq. (A17), the straightforward evaluation of G gives

ico(b, V„——6V, )e '"'=G — + F,„.pS AT p
pn I pspn

(A9)
where

—co(1+i)5/a]b, V„, (A20)

V= Vo+AVe

b, T =ETQ+ ET(co)e

+,=~..o+~..e

where

(Alo)

(A 1 1)

(A12)

We now write the relative velocity V, the tempera-
ture difference hT, and the mutual friction force F,„
in terms of their dc values Vo Tp and F,„o as

y:icBLO/—3 . (A21)

(A22)

Finally it is necessary to consider the energy balance
of the system. Heat is supplied to the cell at a rate
b, Q, is conducted along the flow tube at a rate b Q„
and heats the cell at a rate b Q, . Thus

&&pspn
(A13)

3p

follows from Eq. (4). Combining Eqs. (A9)—(A12)
gives then

ico(b V„—b, V, —)=G — bT(co)+
p„l pnps

where

b,Q, =pST b V,A

hQ, =icoC ET(co) .

(A23)

(A24)

The use of the thermal counterflow condition,

(A14)
Combining Eqs. (A20)—(A24) leads eventually to
the desired result for the frequency dependence of
the temperature oscillation amplitude,

(A15)

and Eq. (A13) in Eq. (A14), then gives

p„lbT(co)= [(ico+BicLO/3)(p/p, )AV„+G] .
pS

(A16)

AT(co) = gQ [(IIi—II3)II2+i (&3IIi/co —coQ2)]

C 0+NO
(A25)

where

We compute the viscosity term 6 using a
boundary-layer form for b V„(r),

b, V„(r)=b, V„{1—exp[ —(1+i)(a —r)/5] I,
(A17)

Qi ——coo —co (1—e),2=2 2

02=COE —f ~

Q3 ——co (1—e),
e=(p, /p)(5/a) .

(A26)

(A27)

(A28)

(A29)

5 =2ri/cop„. (A18)

where the viscous penetration depth 5 is given by The resonant frequency is as given by Eq. (2),

coo——u z(A /ul), (A30)

This approximation is strictly valid for 5/a « 1. In
the worst case for the present experiment 5/a=0. 2
and our calculation can only be considered correct to

where the second-sound velocity is

u z ST(p, /p„)/(Clpu—)—. (A31)
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