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Zero-field NMR study on a spin-glass: Iron-doped 2H —niobium diselenide
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We describe a zero-field NMR study attempting to resolve the controversy between

phase-transition theories and nonequilibrium glasslike theories of the spin-glass transition.

The spin dynamics of Fe spins in 2H-NbSe2Fe„ is probed through its influence on the nu-

clear quadrupole resonance (NQR) of 'Nb nuclei. The spin-echo method is used. We mea-

sure intensity times temperature, T&I (spin-lattice relaxation parameter), and T2 (spin-spin

relaxation time) as a function of temperature. Our data reveal dramatic differences between

non-spin-glass samples (x =0, 0.25, 1, and 5 at. %) and spin-glass samples (x =8, 10, and 12

at. %}. Defining the spin-glass transition temperature Tg by the cusp of the susceptibility-

versus-temperature curve, we find well-defined minima at T=T~ in intensity times tem-

perature, T&p and T2 as a function of temperature. Deduction of a correlation time of Fe
spins from Tip and T2 is complicated by the intensity changes which imply that one ob-

serves different groups of nuclei at different temperatures. We propose a two-correlation-

time model, which utilizes the anisotropy of the exchange interaction, to overcome this dif-

ficulty. All of our NQR results aud the model calculation of the correlation times of Fe
spins are best described by the phase-transition picture of spin-glasses.

I. INTRODUCTION

Spin-glasses have, in recent years, aroused great
interest among both theorists and experimentalists.
Experimentally, one observes the occurrence of a
sharp cusp in the curve of magnetic susceptibility
versus temperature at the "spin-glass transition tem-
perature" Tg.

' In contrast with the antiferromag-
netic transition, only a broad maximum of the mag-
netic specific heat C~(T) is found at some tempera-
ture above Tg.

Currently there are two opposite theoretical
viewpoints attempting to explain this magnetic tran-
sition. The main controversy is centered on how a
spin-glass state is achieved. The first viewpoint is
the phase-transition theory proposed by Edwards
and Anderson (EA theory) in 1975. In this theory,
there is a genuine phase transition at Tg—a sharp
change from one thermoequilibrium state (paramag-
netic state) to another (spin-glass state). A new kind
of order parameter

q= lim i,'S;(t)S;(0))

is introduced to calculate the thermodynamic quan-
tities, where the angular brackets mean a spatial
average and the overbar a thermal average. The
second variety are the nonequilibrium theories, an
early version of which is the so-called "cluster
model" proposed by Tholence and Tournier (TT
model) in 1974. Such theories view the spin-glass

state as a nonthermoequilibrium state and the spin-
glass transition as a kinetic process much in the
same way as supercooling a liquid state into a glassy
state.

The most natural way to resolve this controversy
seems to be the study of the dynamics of magnetic
spins. The key physical quantity concerned here is
the relaxation rate 1/r of the spin-autocorrelation
function. The phase-transition theory predicts a
critical slowing down of 1/v at Tg similar to that
found in magnetically ordered materials. Several
theoretical calculations have been made, but they
give different forms and exponents for 1/r(T). On
the other hand, v is expected to increase indefinitely
with decreasing temperature in the nonequilibrium
models.

NMR techniques have been used to study the spin
dynamics of spin-glasses. The interpretation of the
dynamics of magnetic spins is accomplished
through their influence on the host nuclear reso-
nance. In 1977, Levitt and Walstedt found a T2
minimum of the Cu resonance around Tg in 1 at. %
CuMn. At the same time, MacLaughlin and Alloul
observed an intensity minimum of the Cu resonance
around Tg in 0.6 and 1 at. % CuMn. Similar results
were obtained in the study of the Al resonance in
amorphous manganese aluminosilicates. Recently,
zero-field host NMR signals have been observed'
below Tg in CuMn and COGa. " These results show
clearly the appearance of a frozen spin configuration
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in the spin-glass state.
The interpretation of host NMR results is compli-

cated by the application of an external magnetic
field which is needed in typical NMR experiments.
Evidences show that the correlation time might be
reduced by the magnetic field. ' ' A more impor-
tant fact is that the susceptibility cusp which is the
essential feature of spin-glasses is rounded by a fi-
nite magnetic field. ' Whatever the nature of the
spin-glass transition is, it is disturbed by the finite
magnetic field. To use NMR to get a clear picture
of the spin dynamics of spin-glasses, one must per-
form the NMR experiments in a zero field.

How can one perform a zero-field NMR experi-
ment to study the spin dynamics of spin glasses?
Our approach is to seek a spin-glass system with an
observable nuclear quadrupole resonance (NQR), so
that no magnetic field is needed to produce a reso-
nance.

Very recently, Coleman and his co-workers found
that the iron-doped transition-metal dichalcogenide
layer compounds such as 2H-NbSe2, 2H-TaSe2, and
4Hb- TaSz possess spin-glass-like properties. '

Antoniou' developed a model based on the onset of
spin-density waves at Ts, instead of a frozen spin
configuration, to qualitatively explain these proper-
ties. Questions may arise as to whether or not these
metallic compounds are "real" spin-glasses like
CuMn and AuFe. The essential feature of spin-
glasses is generally believed to be the existence of a
competition between ferromagnetic and antifer-
romagnetic exchange interactions. These iron-doped
metallic compounds possess this feature and also
have a sharp susceptibility cusp. They are anisotro-
pic systems and are sometimes viewed as quasi-two-
dimensional systems, while CuMn and AuFe are iso-
tropic systems. However, we believe they are spin-
glasses.

These compounds all have a huge electric field
gradient. The Nb NMR signal in 2H-NbSe2 has
been observed with very good sensitivity. ' ' The
quadrupole coupling coefficient for Nb in 2H-NbSe2
is found to be e qg/h=60 MHz at room tempera-
ture, which makes the largest NQR resonant fre-

9
quency of Nb (I= —,) about 10 MHz. For the iron-

doped 2H-NbSeq, the Ts varies from 4 to 45 K when
the atomic concentration of iron changes from 8 to
18 at. %.

Stimulated by the work of Hillenius and Cole-
man, ' we have studied both the non-spin-glass sam-
ples (x =0, 0.25, 1, and 5 at. %) and the spin-glass
samples (8, 10, and 12 at. %). They very kindly sup-
plied us with the samples on which all of our work
was performed. Hillenius and Coleman have report-
ed that Ts =4, 7.6, and 12 K for the 8, 10, and 12
at. % samples, respectively. %e are not the first

group to attempt this kind of NQR study. In 1972,
MacLaughlin and Daugherty observed Al NQR in
(La,Gd)A12. The intensity and T& were found to
decrease with decreasing temperature. Although
this is completely different from the results of
high-field NMR in the same materials, ' no anoma-
ly was found around T~.

II. INTERACTIONS

In pulsed NMR, the spin echo can only be detect-
ed at a finite time rd after the rf pulse. Obviously,
zd must be longer than ~„ the recovery time of the
spectrometer. Then one measures only M(2'), the
magnetization at time 2', instead of M(0). If some
nuclei have a T2 shorter than ~, such that
M(2'�)/M(0) is much less than 1 for M(2'�) to be
measured even after extensive signal averaging, they
escape the observation. The NMR signal is also
limited by AH, the linewidth of the resonance line,
in which the inhomogeneous part is usually larger
than the homogeneous part. In solids, ~ is fre-
quently also larger than H~ (rf field). Then only
about H ~/ddt of the whole line can be seen. In 2H-
NbSe2Fe„, there exist several kinds of interactions
which a Nb nuclear spin would experience. %'e
shall concentrate only on those interactions which
dominate the effects on T&, T2, and bH.

A. Other Nb nuclei

A Nb nuclear spin can interact with other Nb nu-
clear spins through the dipolar, pseudodipolar, or
pseudoexchange interactions. The spin-echo decay
caused by these interactions will be described as
M(t)/M(0)=G(t)NbNb, which can be a Gaussian,
an exponential, or others. The corresponding root
second moment ((bco ))', which is independent of
temperature, is estimated to be 6X10 rad/sec in
2H-NbSe2 single crystal.

B. Conduction electrons

The conduction band is a hybridization of d
with d„y and d~yy wave functions. The Nb nuclei
are then coupled with the conduction electrons
mainly through the core polarization and the spin-
orbit interaction' which produce a fluctuating local
field. The hyperfine field originates mainly from
the core polarization and the spin-orbit interaction. '

This fluctuating local field contributes to both Tj
and T2. The T& process is characterized by the
Korringa relation: T~ T=const.

C. Fe spins

Doping Fe atoms into 2H-NbSe2 inhomogeneous-
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ii (t),p =yA;k pp p(t)kp' ~

kp'
(2)

In this equation, the subscript p is used to denote
coordinate components x, y, and z. Thus, p(t)kp

ly broadens the resonance lines both magnetically
and electrically. The latter is due to a distribution
of electric field gradients (EFG). The more Fe
atoms are added, the broader the lines. Magnetical-
ly, the Nb nuclear spins interact indirectly with Fe
spins via the conduction electrons which are scat-
tered off Fe spins by the d-d exchange interaction.
This mechanism provides a motional narrowing ef-
fect on the spin-lattice relaxation and the spin-spin
relaxation, and is expected to have the opposite tem-
perature behavior to the Korringa process.

Traditionally, this exchange interaction is roughly
approximated by the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction. For the three-
dimensional (3D) case:

Ao= (aJpp/2rtN )cos(2kpR +P )/R ',
where Ao is the hyperfine coupling constant between
Nb nuclear spins and Fe spins. This expression is
valid only at large R, the distance between Nb spins
and Fe spins. In the 2D case which is said to be the
limiting case for the layer compounds, Ao contains
sin(2kpR+P)/R instead. In Eq. (1), a =yfiHht is
the hyperfine coupling constant between nuclear
spins and the conduction electrons, J is the strength
of the d dexchan-ge interaction, pF is the electron
single spin density of states at the Fermi level, N is
the density of the conduction electrons, and kz is
the wave vector at the Fermi level. These parame-
ters can be estimated from NMR, Hall coefficients,
specific heat, and superconductivity transition-
temperature measurements, and from the free-
electron model, respectively. So, the exchange field
produced by Fe spins at Nb spin sites can then be es-
timated.

Generally, the exchange field produced by Fe
spins at Nb nucleus i can be written in the following
general form:

means the p' component of the magnetic moment
from Fe spin k. It can be decomposed into a static
part (p(t)kp) and a dynamic part [p(t)kp —p(t)k~],
where the bar means, again, a time average. p(t)kp
can contribute to AH and is nonzero in an external
magnetic field. It is proportional to the magnetic
field with the spin susceptibility Xz as the propor-
tional coefficient. In this case, a static exchange
field h,& is produced at the Nb nucleus i. In spin-
glasses and in a zero field, both the EA phase-
transition theory and the nonequilibrium model
predict p(t)kp ——0 above T~ and p(t)kp&0 below Tz,
where a frozen spin configuration exists. We thus
expect no temperature dependence of AH from the
exchange interaction with Fe spins above Tg.

III. REDFIELD THEORY
OF RELAXATION TIMES

The concept of a nuclear spin temperature is not
usually valid in pure NQR because the unequally
spaced energy levels inhibit the mutual spin flips
necessary to establish a spin temperature. Then
one does not expect an exponential spin-lattice relax-
ation process. We must use the density matrix tech-
nique to calculate the equations of motion for both
the spin-lattice relaxation process and the spin-spin
relaxation process. Redfield theory provides a gen-
eral set of linear differential equations for the ele-
ments p~~ of the density matrix. This set of
equations is valid only when T& and T2 are much
longer than ~, the correlation time of perturbations.
This is exactly the condition of the validity of the
motional narrowing limit.

In 2H-NbSe2, Nb nuclei have spin —,, there are
five energy levels with a twofold Kramers's degen-
eracy between I,=+m states. If we write
e qg/24A'=too ——2.5 MHZ and carry out the calcula-
tion for the off-diago»1 parts: p9/2 7/2 p7/2 $/2,
etc., we get T2 decay forms for these transitions.
The result is a single exponential. For the —,- —,

transition (resonant frequency =4' o),

1/T2 ——(y /4)I2k (0)+18[k (4too)~kpp(4coo)]+16[k (3coo)+kpp(3too)]),

where kz& is the p component of the real parts of the spectral densities of the Auctuating local fields. And

kpp(to)=her/(1+to r )

is obtained if a simple exponential autocorrelation function is assumed, where hz is the p component of the
square amplitude of the fluctuating local field. One important result is that T2 is "transition dependent. " The
higher transitions have larger T2 than the lower transitions.

kpp is actually the Fourier transform of the autocorrelation function of the fluctuating local fields, F(r )pp.
This autocorrelation function of Nb nucleus i is defined as

F(v )happ: k ( t )jp Il ( t +r )tp
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From Eq. (2), it can be easily shown that

«~pp = [I'«4»» ]i =g[Ai'k, ,» ]/[p(t)k»I (1+F4„p—(r)k, p(r+r)k ],
kp'

(4)

where the curly brackets mean an average over all
Nb nuclei. During the derivation of Eq. (4), we have
used the fact that the cross terms between different
Fe spins k are averaged to zero when an average
over all Nb nuclei i is done, i.e., IAg, »» Alk»» ]I;=0.
This is because the interaction from Fe spins is an
oscillatory function of distance between Fe spins
and Nb nuclear spins. One assumption has also
been made that the fluctuations of the three com-
ponents of magnetic moments are independent.
This makes cross terms like p(t)k» p(t +r)k»- equal
to zero.

From the definition of the EA order parameter q,
we see that the second term of Eq. (4) is closely re-

lated to q. But here, each spatial component is

weighted differently because of the possibility of the
directional dependence of [Al~kz» I;. However, we

expect the mean-square amplitude of the fluctuating
local fields to be temperature independent above Ts,
and to decrease approximately as (1—q) below Ts.

For the T~ process, we calculate the diagonal

parts: p9/2 9/2 p7/2 7/2 etc. We have a set of five

coupled linear differential equations, where the adja-
cent levels are coupled among one another. We get
the following form for the relaxation matrix A as
defined in Ref. 25, where a "master equation" ap-
proach is used to get the decay forms of the popula-
tion difference:

18a —16b 0 0
—9a 32b —21c 0

0 —16b 42c —24d

0 0 —21c 48d

where a =y [k~(4' p)+ k»»(4Plp)]/4. Similar ex-
pressions for b, c, and d are obtained by substituting
4Np wltll fl'eqllellcles 3N p 2cop, ol' cop.

If we assume cops «1, we have a =b =c =d and

1/T1p 2a =(y /2)(k~——+k»») . (Sa)

By further assuming the isotropy of the correlation
times (p„,p», and p, have the same correlation time
r), k»»(pl) becomes h»7., and

1/T(p y (h +h»)7. /2 (Sb)

This definition of T&z can be related to the spin-
lattice relaxation time, T&H, which would be ob-
tained in high-field NMR. For the case in which
there is a static magnetic field and no quadrupole
splittings, the spin-lattice relaxation has a single ex-

I/Tl ——y [h, +17(h„+h»)]r/2 . (6b)

Then assuming that the fluctuating local field is iso-
tropic (h„=h» =h, ), we have, for the —,- —, transition
only, T~p/Tl ——17.5. The measurement of this ratio
can provide a test of whether or not the isotropy of
the correlation times applies.

The observed T&I of Nb nuclei should be written
as

(1/T1~),b,
——( I /T1P)cE+ (1/T1P)F& (7)

where the subscript CE means the contribution from
'the conduction electrons. In the future treatment of
T~p data, the Fe spin's contribution can be pulled
out simply by subtracting (1/Tlp)cE as will be de-
duced from the pure sample, out of the observed T~p
rate.

For the T2 relaxation, besides the above two T&

mechanisms, there is the spin-spin interaction be-
tween Nb spins. This interaction is a slow process.
Redfield theory cannot be applied to it. One writes

M( t) /Mp ——exP[ —t /( Tz )CE]

&«xp[ —1/(T2)Fe]G(r)Nb-Nb
(8)

for the decay of the spin-echo amplitude. The
correction can then be made by moving terms (it de-
pends on what correction shall be made) from the
right-hand side of Eq. (8) to the left-hand side (this
will be the experimental data) on the computer.

In the motional narrowing limit and for isotropic
correlation times, Eqs. (5b) and (6b) also become

( I/T1p)F or ( 1/T2 )F,=y hl r
where hL is the fluctuating local field, which de-
pends on how far a Nb spin is from a Fe spin. Its
value can be roughly estimated with Eq. (1) as ex-
plained earlier. It is then obvious that the study of

I

ponential decay. If one has the same fluctuating lo-
cal fields as in Eq. (Sb), T,z would be equal to T,H.
We shall call T&I the "spin-lattice relaxation param-
eter." From relaxation matrix A, we get a multiex-
ponential decay for the T1 process. Different transi-
tions have a common T1», but the coefficients for
each "normal-mode" exponential are different.

The same conditions used in Eqs. (Sa) and (Sb)
also change Eq. (3) into

I /Tl y /2[—k—~+ 17(k + k»» )]

and
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T,p and T2 of Nb spins would provide us with some
information about ~, the correlation time of Fe
spins.

YV. EXPERIMENTAL

A. Samples

All the 28-NbSe2Fe„powder samples, except the
pure sample, uied in this experiment were kindly
loaned to us by Professor R. V. Coleman of the
University of Virginia (Charlottesville). The pure
sample was prepared by the same procedures as Hil-
lenius and Coleman used to prepare their samples
for the susceptibility measurements. ' The resulting
powder was sieved with a No. 200 mesh to keep par-
ticles with sizes smaller than 75 pm. We checked
the crystalline structure of this pure sample and the
borrowed 0.25-at. lo sample with x-ray diffraction.
They have exactly the same x-ray powder patterns.
The positions of peaks are also consistent with those
reported in the literature for 2H-NbSe2.

S. Spectrometer

We followed an add-subtract technique to mea-
sure T~ and Tz by spin echoes. This technique was
based on a method of D. M. Follstaedt and D. C.
Barham, modified by our group. The T2 sequence
is rr/2 rd n(0—' ph—ase, add) ( rr/2) rd —~ (180—'
phase, subtract). The Ti sequence is rr /2 —r

m. /2 Td r—r (ad—d) 1—7/2 —r& —( —71'/2) rd —7T—
(subtract). In the Tq sequence, rd is varied to map
out the spin-echo decay curve, while w is changed
in the T~ sequence. This method eliminates the
coherent noise which follows the rf pulses, thus al-
lows the use of a rd as short as possible. The advan-
tage of using our version of the Ti sequence is that
the base line [M( oo)] of the Ti decay curve is sub-
tracted out during the measuring process. This al-
lows us to measure points at the tail more accurately
than the conventional rr/2 r~ e/2 —rd n—. s.e-— —
quence.

All the samples were mixed with fine A1203
powder to reduce eddy-current effects. They were
encapsulated in nylon containers. Small holes were
drilled on the container's cap, which was then
covered with filter paper and sealed with epoxy.
This allows liquid helium to flow into the container
to ensure good cooling at low temperatures.

An external tuning technique was adopted due to
the temperature dependence of the coil's Q value,
which caused the tuning to drift with temperature.
The tuning capacitors were placed inside a brass box
external to the dewar. This scheme makes goad tun-
ing possible at any temperatures. We suffered from

acoustic ringing effects at low temperatures even in
a zero magnetic field. It was samp1e dependent, and
occurred only when the Ts of each sample was ap-
proached. A coil wound with stranded wire was
used to cut down this ringing to a tolerable extent.
The Hi (rf field) used through this experiment is es-
timated to be about 100 G at 200 W.

A Janis Super Varitemp Dewar was used to vary
the temperature from 300 to 1.6 K. A calibrated
1/8-W, 560-0 Allen Bradley carbon resistor was
used to read the temperature abave 4.2 K. The
resistance of the thermometer at 77 and 4.2 K has
been constantly checked since the calibration. The
drift was found to be about 3% in terms of 5T/T
after one year's extensive use. For temperatures be-
tween 4.2 and 1.6 K, ee pumped the dewar with the
probe can immersed in liquid helium. The tempera-
ture was measured by reading the vapor pressure on
a Wallace and Tiernan gauge (0—100 mm Hg).

C. Susceptibility rig

An ac mutual inductance bridge was constructed.
This bridge is easy to build and needs only a small
ac magnetic field (several gauss) to get 10 emu/g
sensitivity. It is ideal for the detection of the sus-
ceptibility cusp in spin-glasses around the T~. Two
secondaries with 1000 turns of No. 34 copper wire
were wound on two separate sections of a machined
nylon form. The primary had 2500 turns of No. 34
copper wire and was wound on top of two secon-
daries with a layer of thin Mylar sheet between
them. The GE 7031 varnish-toluene mixture was
painted on the coil every two or three layers during
the winding. Two secondaries were connected in
the opposite direction so that their induced voltage
can be compared. We followed the bridge circuit
designed by C. M. Brodbeck et al. to provide an
electronic version of the variable mutual inductor,
but with some modifications. The bridge was driven
and detected by a PAR HR-8 lock-in amplifier at
500 Hz. The ac magnetic field produced by the pri-
mary is estimated to be about 0.5 6.

V. RESULTS AND DISCUSSIONS

We used two different ways to measure the inten-
sity for two different studies. In the line-shape
study (to measure the linewidth), the intensity was
measured at a fixed time (rd) as the integrated spin
echo. In the intensity study as a function of tem-
perature, it was measured as the spin-echo ampli-
tude extrapolated to time zero. In ather words, it
was obtained as a result of the Tz measurements.
And it was measured Bt 10.15 MHz for all the sam-
ples. An H& of 100 G was used and kept constant
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through the entire measuring temperature range
(300—1 K). From the resistivity measurements, 0

the dilute non-spin-glass samples can be estimated to
have a skin depth which varies from 160 to 70 pm
over the whole temperature range. For the spin-
glass samples, the skin depth was about 160 IMm and
has very little temperature dependence. We there-
fore conclude that the temperature dependence of
the skin depth will not cause a large deviation in the
intensity from Curie's law.

25—

LIJ
o 20
e
g l5-

a IO-

5-
0
9.2

) i ) i I

9.6 IO.O I0.4
Frequency (MHz)

I0.8 II.2

A. Linemidth measurements

The linewidth is defined as the full width at half
maximum (FWHM). One can use the frequency
dependence of the linewidth to determine whether
the mechanism of the inhomogeneous broadening is
of electric or magnetic origin. If it is due to the
magnetic effects, the linewidth should be inde-

pendent of which transition is involved (e.g., —-—or
7 5

2 2

—,- —,). The linewidth would be proportional to the
resonant frequency of the transition, if it is due to a
random distribution of static electric field gradients

9 7 7 5
(EFG}. At 77 K, the —,-—, transition and the —,- —,

transition have the same linewidth in all samples,
and the linewidth i@creases proportionally to the
concentration up to 5%; then it saturates at higher
concentrations.

At 23.1 K, the resonance line of each transition
splits into two peaks in the pure and 0.25-at. % sam-
ples. The separation between these two peaks is pro-
portional to the peak resonant frequency. This is a
proof that the splitting is caused by the EFG's in-
duced by charge-density waves (CDW) (T, =36 K in
the pure sample}. These two peaks collapse into a
central peak again in the l-at. %%uosampl e[Fig . 1(a)].
This is consistent with the Hall-coefficient measure-
ments that the CDW transition is completely
quenched by doping 0.6 at. % of Fe in 2H-NbSez.
The linewidth is proportional to the resonant fre-
quency, showing it is of electric quadrupole origin.
This observation together with the line-shape study
and the Hall-coefficient measurements show that the
CDW only loses the long-range order in the l-at. %%uo

sample, but it still exists in the short range.
The linewidth is the same for the two transitions'

9 7 7 5
( —,-—, and —,-—,} in the higher-concentration samples
(5 at. % and up) at 23.1 K, as shown in Fig. 1(b), in-
dicating that magnetic effects are more prominent
here than the CDW effects even at low tempera-
tures. For the same sample, the linewidth changes
very little when the temperatures changes from 77 to
23.1 K. In contrast, it increases several times in the
l-at. % and more dilute samples over the same tem-
perature range.

IO at % Line shape, 25.IK

~ 80- (b)
hl
c 6.4—
(0
~ 4.8—
C)

3+2 FWHM= I.48 MHz

l.8
-FWHM = I 40 MHz

I i I i I i l

6.5 75 8.5 9.5 I0.5
Frequency (MHz)

FIG. 1. (a) Line shapes for the pure, 0.25-, and 1-at. %
samples at 23.1 K. The solid line is a guide for the eyes.

0: pure, Q: 0.25, 0: 1 at. %. (b) Line shapes for the —-
7 7 5

—, (peak frequency=9. 7 MHz) and —,-—, (peak frequen-

cy=7.15 MHz) transitions for the 10-at. % sample at 23.1

K. The ratio of peak frequencies for these two transitions

is about 0.74, very close to the theoretical value of —.

B. T2 at 10.15 MHz

The spin-echo decay curves of the non-spin-glass
samples are neither Gaussians nor exponentials. At
short times they are exponentials, but become
Gaussians at longer times. Later analysis will ex-
plain the mechanisms behind this kind of decay. As
the temperature is lowered, it takes longer and
longer time to decay down to 1/e of M(0) in the
pure, 0.25- and l-at. % samples. This 1/e decay
time does not change with temperature in the 5-
at. %%uosample . Foral 1 spin-glas ssample s, th edecay
curve is a single exponential throughout the entire
measuring temperature range, and T~ decreases with
decreasing temperature to develop a shallow
minimum around Ts (Fig. 2). The change of Tz is
only about a factor of 3 over the entire measuring
temperature range. At 77 K and 10.15 MHz, Tz de-
creases slightly with increasing concentration in the
spin-glass samples.

C. T~I at 10.15 MHz

Tu is obtained by finding the best fit of the ex-
perirnental data to the calculated T~ decay curves.
We have studied the Ti decay curves at the peak
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FIG. 2. T2 as a function of temperature for three
spin-glass samples.
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9 7 7 5
resonant frequencies of —,-—, and —,-—, transitions in
the 1, 5, and 10 at. % samples at 77 and 4.2 K. It is
found that one can use a single parameter T~I to fit
these two decay curves fairly well.

At 77 K, T~I does not change among the pure,
0.25 and 1 at. %%uosamples . It the ndecrease sslightly
with increasing concentration, as T2 does. Tip(T)
obeys a 1/T behavior (Korringa relation) fairly well
in the pure sample and not as well in the 0.25 at. %
sample. We get T~pT-900 ms in the pure sample
and TipT-700 ms in the 0.2S at. % sample. These
values are a bit higher than the 500 ms reported in
the literature. ' '

In the 5 at. %%uosampl e, afte r abroa dT,pmax-
imum at about 17 K, T&I decreases with decreasing
temperature (Fig. 3). But in the 10%%uo sample, Tip
has not only a broad maximum at about 37 K but
also a shallow minimum around Tg (=7.6 K), where
a T2 minimum has already been observed. Again
the overall change of T&z is only about a factor of 2
or 3 over the entire measuring temperature range.
The T~z maximum can readily be understood as the
result of the interplay between the contributions
from the conduction electrons and from Fe spins.

D. Treatment of T~ and T2 data

From the temperature dependence of 1/e decay
time of the T2 decay in the pure, 0.25 and 1 at. %
samples, we shall assume the interaction with Fe

spins is not important in these samples. Equation
(8) (for the spin-echo decay) can be rewritten as

M(t}/Mp =exp[ —17.5t/( Tip}CEG(t)Nb.Nb, (10)

where the contribution from the conduction elec-
trons is represented by 17.5/Tip as predicted by
Redfield theory. (Tip)cp =900 ms/T has been
chosen as the standard Tip from the conduction
electrons. Equation (10) is then used to pull out
G(t)Nb. Nb from the T2 decay curves at each tempera-
ture. G(t)Nb. Nb is found to be a Gaussian function.
If we define a Gaussian decay as M(t)/
Mp =exp( —t /Tz ), then the corresponding
linewidth is 2(ln2)' (2/Tz }. We assign T2 T2/——
2(ln2)' as our Gaussian Tz, so the corresponding
homogeneous linewidth is simply 2/T2.

Figure 4 shows the residual Gaussian T2,
(Tz)Nb. Nb, after the subtraction. This (Tz)M Nb not
only has very little temperature dependence but also
has closely similar values in three dilute samples.
This is a qualitative proof that the residual interac-
tion is indeed the Nb-Nb dipolar interaction. These
samples have an average (T2)Nb Nb of about 1100its.
This corresponds to a dipolar halfwidth (or
(bco )'~ ) of 3&(10 rad/s, very close to the value
reported in the literature (Sec. IIA). We thus have a
quantitative basis to justify this data-processing pro-
cedure. For the 5 at. %%uosampl e, th e influenc e from
Fe spins becoines important, 17.5/(Tip), b, is used in
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Eq. (10) to represent the contributions from two Ti
processes. G(t)Nb Nb in the S-at. %%uosampl e isais o
found to be a Gaussian, and (Tz)Nb Nb changes from
about 900 to about 700 ps with decreasing tempera-
ture.

Since we observe that the T2 decay curves are ex-
ponentials in the spin-glass samples and that they
decay much faster than G (r)Nb Nb found in the non-
spin-glass samples, we assume that G(t)Nb Nb is not

important in the T2 decay of the spin-glass samples.
Equation (8) becomes

~(r)/Mo =exp[ —17.5r(Tip}cE]

Xexp[ t/(T2)p, ] . —

This is equivalent to

(1/T2}ob, ——17.5/(T&p) C+E(1/T )F2~ . (12)

We find that (Tz)p, has a linear temperature depen-
dence above Tg in all three spin-glass samples.

(Tip)F of the 5- and 10-at. %%uosample s isobtained
by using Eq. (7). The maximum has been removed
and (Tip)p decreases linearly with decreasing tem-
perature below 77 K in the 5-at. % sample and
above Ts in the 10-at. %%uosampl e(Fig . 5). Value sof
(Tip}F, at 77 K are sensitive to the magnitude of
(Tip)caT. In Fig. 5, (Tip}CET=900 ms is used,

which causes the larger deviation at temperatures
around 77 K. It is likely that this value would be
modified at high-concentration samples. The ob-
served regularity of the temperature dependence of
(Tip)p, and (T2 }„,is another essential support of the
justification of our postulates on the dominating re-
laxation mechanisms and the procedures to pull out
the contribution of Fe spins from the raw data.
From Eq. (9); this regularity also suggests a univer-
sal temperature dependence of w, or the "spin-glass
interaction, " in different samples.

To see whether or not the correlation times and

0 I ' } I } I I

0 IO 20 30 40 50 60 70 80
Temperature (K)

FIG. 5. (T)p)p, of the 5- and 10-at. /o samples ob-
tained by removing (T~p)~E from the measured T~p.
(T&p)~ET=900 ms is used.

the fluctuating local fields are isotropic in our spin-
glass samples, we construct (Tip/T2)p from our
(Tip)p, and (T, )„, data. (Tip/T&)„, at 77 K is,
respectively, for the 8-, 10-, and 12-at. %%ulosamples,
16.0+3.6, 15.1+3.6, and 15.1+3.6, which are close
to the predicted 17.5. It then jumps to about 28+7
at lower temperatures, then makes another jurnp to
about 42+ 10 below Tg. We believe that this is prob-
ably a manifestation of the temperature dependence
of the anisotropy in 2H-NbSe2Fe„.

In a zero field and for temperatures above Tg, one
does not expect the amplitude of the fluctuating
field to change with temperature, as can be seen
from the expressions for the fluctuating field in Eq.
(2) and the coupling constant between Nb spins and
Fe spins in Eq. (1). Then from Eqs. (Sb) and (6b),
the temperature dependence of (Tip/Ti)F must in-
dicate that p„, p~, and p, do not have the same
correlation time and also that the amplitude of the
fluctuating local field is anisotropic. In susceptibili-
ty measurements, a sharp cusp can only be detected
when the measuring magnetic field is applied along
the Z direction, which is perpendicular to the layer.
Hall-coefficient measurements also show this aniso-
tropy iri the anomaly of the conduction-electron's
scattering-off by Fe spins. ' We shall assign ~„as
the correlation time for p„and pz, and ~, for p, .
Then, we can write from Eqs. (5a) and (6a),
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(T)p/T2)F, 1——7+k~/(k~+kYp), (13) 200

where k, k~~, and k contain both contributions
from r„and r, . The different temperature depen-
dence of r„and r, causes (T~p/T2)p to deviate
from 17.5 and vary with temperature. %e shall dis-
cuss this point in more detail in Sec. VI C.
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FIG. 6. Intensity as a function of temperature for the
S-at. % (non-spin-glass) and S-at. % (spin-glass) samples.
This figure shows the most striking difference between
the non-spin-glass samples and the spin-glass samples.

E. Intensity at 10.15 MHz

In the 5-at. % and more dilute samples, the inten-
sity increases as the temperature is decreased (Fig.
6). In the spin-glass samples, the curves of intensity
vs temperature all have a broad maximum and a
very deep minimum (Fig. 6). The maxima occur at
different temperatures for different samples. It is at
23, 37, and 43 K for the 8-, 10-, and 12-at. % sam-
ples, respectively. This can readily be explained by
the interplay between Curie's law and the "spin-
glass interaction" which causes intensity loss when
the temperature is lowered near Tg. The minima are
at T& in the 8-at. %%uo(Tg

=4K)an d 10-at. %%uo

(Tz ——7.6 K) samples. In the 12-at. % sample, the
minimum is not at Tg ——12 K, rather somewhere be-
tween 16 and 20 K. %e cannot pin down the posi-
tion of this minimum more accurately because of
the extremely small signal around the minimum. A
good parameter to be plotted to show the signifi-
cance of the intensity result is intensity times tem-
perature. This is exactly the number of the observed
nuclei by Curie's law. In Fig. 7, one can see that,
for all three spin-glass samples, roughly a constant
number of nuclei is observed on the high-
temperature side. At the minima, one detects only
about 1% of the total Nb nuclei.

As mentioned in Sec. IIC, no temperature depen-
dence of the static magnetic broadening is expected
in our NQR study above Ts. We already know that
this is supported by the linewidth measurements on
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FIG. 7. Intensity-times-temperature as a function of
temperature for three spin-glass samples. It can be clearly
seen that for the 12-at. %%uosampl e, th eminimu m isdefin-
itely not at 12 K, the reported Tg by Hillenius and Cole-
man (Ref. 16).

8 at. %

the 10%%uo samples: The linewidth at 23.1 K has the
same value as that at 77 K. In the 10-at. % sample,
23.1 K is not a temperature close to Tg (7.6 K), but
at this temperature only 40%%uo of the Nb nuclei ob-
served at higher temperatures is observed. Thus we
can say that Hj/~ is constant above Ts in the
spin-glass samples. The dramatic temperature
dependence of the intensity in the spin-glass samples
can then only be explained by the dynamic effect.
There are different groups of Nb nuclei. Each one
has a different value of T2, depending on its loca-
tion relative to Fe spins, and each T2 decreases with
decreasing temperature as measured. As the tem-
perature is lowered, only those groups of Nb nuclei
with long enough T2 at that temperature are still ob-
servable.

F. Susceptibility study

In order to solve the puzzle which arises from the
discrepancy in the 12-at. % sample with regard to
the temperature at which the sharp susceptibility
cusp occurs (measured by Hillenius and Coleman)
and the temperature where we find a deep intensity
minimum, a TII and a T2 minimum, we decided to
set up a rig to measure the susceptibility of our
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spin-glass samples. Qualitatively, we tested our rig,
at first, by measuring the susceptibility of the 8-
at. % sample. A sharp peak at about 4.6+0.1 K is
detected. This is consistent with Hillenius and
Coleman's result. Then we did an empty coil test by
going through the entire temperature range (25—2
K) twice, 24 hours apart. We found that the back-
ground signal not only is very flat over the entire
temperature range but also has very good reproduci-
bility.

In the 12-at. % sample, a sharp cusp is found at
19+0.1 K which is more consistent with the intensi-

ty minimum (between 16 and 20 K) and the T2
minimum than 12 K. Hillenius and Coleman used
single crystals in their susceptibility measurements,
while our 12-at. %%uosampl e ispowder . Tw osamples
possibly come from different batches, so they likely
have different Fe concentrations. In 2II-NbSe2Fe„,
T~ is rather sensitive to the change of Fe concentra-
tion when the concentration is over 12-at. %. For
example, 25 and 45 K have been reported as the Tg's
for the 15- and 18-at. % samples, respectively. In
any event, what is important for our study is not the
exact knowledge of the iron concentration, but rath-
er the knowledge of the temperature of the suscepti-
bility cusp to compare with our various NQR data.

VI. THE CORRELATION- TIME MODEL

For the sake of simplicity, Eq. (9) (the isotropic
model) will be used to illustrate our model calcula-
tion. A more complicated model involving two
correlation times (the anisotropic model) will be
used to get the temperature dependence of r„(for p„
and p~) and r, (for p, ).

A. The isotropic model

The explanation of the drastic intensity loss due
to the dynamic magnetic effects implies a distribu-
tion of Tz. If one assumes an averaged correlation
time r for all Fe spins, it would also imply, by Eq.
(9), a distribution of fluctuating local fields hL,
whose magnitudes depend on the distance between
Nb nuclei and Fe spins. Then for a given w at each
temperature, there exists an h~ such that any Nb
nucleus seeing a fluctuating local field larger than
this h~ would have too short a T2 to be observed.
As ~ changes with the temperature, h also changes.
At the intensity minimum, only those Nb nuclei see-

ing very small hL are observed.
An essential need of our model is a method to cal-

culate h~. %e propose that this h~ can be obtained
from the intensity data. A distribution of Auctuat-

ing local fields produced by Fe spins at Nb sites is
denoted as P (h ), which is normalized. Then,

where the angular brackets mean an average over all
the observed Nb nuclei. In writing Eq. (14), we as-
sume that hL and ~ can be averaged independently,
although we have no proof that this is justified. The
fact that we observed only a single (T2)i, over the
entire measuring temperature range indicates that
the observed 1/(T2)i;, is simply the averaged one on
the left-hand side of Eq. (14). Some cross-relaxation
mechanism must exist and be efficient enough to
produce a unique (Tq)p, among all the Nb nuclei.
(hL, ( T) ) can be determined by

h

(hL(T)) = f h2P(d)dh
h

f P(h)dh

(15)

The validity of Eq. (14) is based on two assump-
tions, besides the assumption of the isotropy of the
correlation times: (1) co„r «1, where co„ is the
measuring rf frequency and (2) yhl 7 « 1, the
motional narrowing limit. The motional narrowing
limit is supported, at least above T~, by the follow-
ing two observations: (1) By Mossbauer experiments
on our 12 and 18 at. % (Ts ——45 K) samples, the
Fe atom is found to be in Fe+ state, which is also
confirmed by magnetic susceptibility measurements
on Fe&&4NbSe2. Fe has an orbital angular momen-
turn, so the spin-lattice relaxation of Fe spins is fast
due to the spin-orbital interaction. (2) The strength
of the spin-spin interaction between Fe spins is
roughly ksTs. The mutual spin-flip time is then
about 10 " s. The spin flips of Fe spins can change
the local fields at Nb sites because Fe spins are at
different distances from each Nb site.

B. Forms of the distribution function

To calculate (hL ), we need an analytical form of
P(h). Since there exists no calculation of P(h) in
the literature of spin-glasses, we look for some possi-
ble mathematical forms.

Assuming that the Fe-CE exchange interaction is
approximately isotropic just as the Nb-CE hyperfine
interaction and also that the Fe-CE interaction is
roughly represented by a delta function of position,

P(h)5h is the probability of finding a Nb nucleus
sitting in between h and Ii +5Ii. To get the number
of Nb nuclei seeing a local field smaller than and
equal to h~, we simply integrate P(h) from 0 to h~.
So, the intensity times temperature at each tempera-
ture can be used to get the value of h~ at that tem-
perature.

Since our model claims a distribution of T2 and
hL, we rewrite Eq. (9) as

(14)
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Heisenberg I:

4h, exp( h, /bh )/(vr' —hh ) .

Heisenberg II:

4h, /[m b h (1+h, /b, h ) ] .

Note that the above Q(h, ) forms are also valid in
the 2D case, except that the numerical coefficients
in the expression of b,h's are different from that in
the 3D case.

hh is the physical quantity needed to be calculat-
ed out explicitly. Its expression has been given for
Q(h, ), ' but we shall use the same expression for
P(h) also. The appropriate coupling constant for
the Fe-CE-Nb interaction is used:

bh=( , )m cnAo, — (16)

where c is the Fe concentration. n is the number of
sites per unit cell for Fe spins and we assign 2 to it
in 2H-NbSe2. Ao is the strength of the interaction at
Nb sites from Fe spins at a distance of one lattice
constant, and it can be roughly estimated from Eq.

then by the second-order perturbation theory, the ex-
pression for the Fe-CE-Nb interaction should be
similar to that for the Fe-CE-Fe interaction. Then
the static local field at the Nb site is proportional to
that at the Fe site, as is the dynamic local field. It is
not unreasonable to assume that the static and
dynamic functions have similar forms. We see that
one possible source of the mathematical form for
P(h) at Nb sites is the distribution functions for the
static local fields at Fe spin sites.

Various forms of Q(h, ) for the static exchange
field produced by Fe spins at other Fe spin sites
have been calculated by the mean random field
(MRF) approximation or by computer simulation
utilizing the randomness feature of spin-glasses.
The coupling constant J~~ in the Hamiltonian of the
"spin-glass interaction" is chosen to be either a
Gaussian function of distance between Fe spins or
random with equal probability for J&J——+a/(R;1)
and —a(R,J) . The spins can also be either Ising
spins or Heisenberg spins. There are four different
situations out of these combinations. We shall as-
sign the name "Ising I" to the case with Ising spins
and Gaussian J,J and "Ising II" to the one with Is-
ing spins and random Jz, and so on. The following
four forms have been used:

Ising I:

2 exp( —h, /bp)/(~'~ bh) .

Ising II:

(1) in the 30 case, and the corresponding expression
in the 2D case. In the 3D case, hh is found to be
about 2.6 kG for the 10-at. % sample. We might
not get the right absolute value of hh from Eq. (16),
but it will not effect the deduced temperature depen-
dence of r T.he qualitative behavior of r(T) is
determined by the experimental intensity data and
the particular P(h) forms.

For temperatures below Tg, one has to consider
the decrease of the amplitude of the fluctuating lo-
cal fields due to the appearance of static Fe magnet-
ic moments. As shown in Eq. (4), the mean-square
amplitude of the fluctuating local fields decreases
approximately as (1—q). Therefore, we assign
b,h' =Eh (1—q) as the width of the distribution
function for temperatures below Tg.

(17)

where k~, k~~, and k~ contain contributions both
from r„and ~, . Since no susceptibility cusp is
found in the directions parallel to the layer, we ex-
pect r„(T) shows no anomaly at T = Tg. r„c osnists

of two parts: one part from the interaction with con-
duction electrons and the other from the interaction
with other Fe spins. The latter produces a rate
which increases with increasing Fe concentration.

Since the 5-at. % sample is not a spin-glass and its
NQR intensity roughly follows Curie's law (Fig. 6),
we do not expect the mean-square amplitude of the
fluctuating local fields would change with tempera-
ture. The temperature dependence of (T,p)F, in the
5-at. %%uosampl emus t therefor ecom e from th ecorre-
lation time. (T&p)F, varies linearly with T which
suggests that the correlation time varies with
1/(b+T) in the 5-at. % sample, where b is a con-
stant (Fig. 5). Then by assuming that r„ in the
spin-glass samples has the same temperature depen-
dence as that in the 5-at. %%uosampl e, w ecanwrit e

r„=Ak/(b +T), (18)

where Ak is a constant. b can be obtained from the
slope and the intercept at T =0 K of the ( T~p)F, vs
T curve in the 5-at. % sample, which is b =6.82.
Note that b is determined mainly by points at low
temperatures which follow 1/(b+T) fairly well.
Equation (18) produces a temperature-independent

at low temperatures, but ~„possibly still has a
temperature dependence. So another possible form
of temperature dependence to be considered is a

C. The anisotropic model

Equation 6(a) can be rewritten in the same way as
Eq. (14):
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Korringa relation:

&x =Bk/T, (19)

where T/Ts is used as an approximation for (1—q).
The width of the distribution of the fluctuating local
fields will be adjusted accordingly as

where Bk is also a constant. We shall analyze our
data using both Eqs. (18) and (19).

The temperature dependence of r, gives all the
anomalies in T&p, T2, and the intensity versus tem-
perature curves. Questions then arise as to the mag-
nitudes of k, k~~, and k . By Eq. (4), we can write

2ap7 +be (20)

k =2co~x+dovz . (21)

In writing Eqs. (20) and (21), we assumed that the
coupling constant between k~ and }u„(orpz) is the
same as that between k~~ and p„(or p„). Then
( T]p/T2 )F, [from Eq. (13)] is given by

17+(2cpl ~ +dp1 i )
(Tu /T2)F. =

z z (22)
[2(2ap7 +bye )]

((I/T2)z, ) =y (36.4ap)(0. 934m„+0.066', )

(23)
for T & Ts. From Eq. (23), we can follow the isotro-
pic model to get r„(T) and r, (T). (hL ) in Eq. (14)
is equivalent to (36.4ap) in Eq. (23), which can be
calculated by Eq. (15) for each temperature from the
intensity data.

To get r, (T), r„must be determined first. Ak in
Eq. (18) and Bk in Eq. (19) can be obtained by
choosing a suitable temperature and the correspond-
ing (Tip/T2)F value to get the relative value of r,
and v„at this temperature. We find
Ak ——3.09X10 ', 1.53)&10 ', and 3.71&(10 " s,
and Bk ——2.7&(10 ', 1.35)&10 ', and 3.25&(10
s for the 8-, 10-, and 12-at. % samples, respectively.

For temperatures below Tz, we have to take into
account the spin-freezing phenomena. Since a sus-
ceptibility cusp is found only in the direction per-
pendicular to the layer (Z direction), we assume only

p, develops a static moment below T~. Then Eqs.
(20) and (21) .can be written as

k =key ——2aov +ho~, T/Tg,

k =d kg TITs,

(24)

(25)

The coefficients in Eqs. (20) and (21) will be de-
duced from the measured (Tip!T2)F values based
on the following three assumptions: (1) r„-r, at
high temperatures (T/Tz »1), (2) s, »r„near Ts,
and (3) all coefficients are temperature independent
above Ts (T&t /. T2)F,-30 at T= Ts has been

used, and we get ap ))bp and dp »cp. So the first
term of Eq. (21) can be omitted. The relative mag-
nitudes of three coefficients are obtained:
b p =2/25a p, d p =52/25a p. Thus, we finally get

bh' =Ah'2(34+2. 4T/Tg )/36. 4 . (26)

D. The results

We have tried all four forms of the field distribu-
tion function with two different forms of tempera-
ture dependence for r„given in Eqs. (18) and (19).
The main common result is that r, (T) increases rap-
idly near Tz. For the particular case of Heisenberg-
I P(h), r, changes typically from 10 " s to about
10 9 s (10 s s in the 8-at. go sample) as Tz is ap-
proached from above. This is quite a large change
as compared with the change of only a factor of 5 or
6 in T2(T)F,.

In phase-transition theories of spin-glasses,
1/r(T) has been postulated to have the form

1/r(T) =a (T Tg)~ . —

It has the similar expression below Ts, but P could
be different. The r(T) given in Eq. (27) is the corre-
lation time for the autocorrelation function
S(t)S (t +r ). Our r, (T), according to Eq. (4), is just
the ~(T) in Eq. (27) in the Z direction after averag-
ing over all Fe spins. Recent EPR experiments on
CuMn seem to indicate that the linewidth and the g
shift become divergent at Ts. The deduced 1/r is
found to follow Eq. (27) plus a constant term from
the dipolar interactions between Fe spins, and the P
is found to be around 1. In our case, the obtained
1/r, ( T) near Tz from Heisenberg-I P (h ) and
Heisenberg-II P(h) can be fitted fairly well in the
same way for temperatures above T~. But only
Heisenberg-I P(h) produces closer P values among
three spin-glass samples (Fig. 8). Given r„ in Eqs.
(18) or (19), we have P =2.7+1.0 or 2.5+0.5 for the
8-at. %%uosampl e, 2. 1+0.5or2. 8+0.5 for th e10-at. %
sample, and 2.8+0.05 or 2.8+1.0 for the 12-at. %
sample. The most likely P is then 2.5+0.5 for both
cases.

Figure 9(a) shows r, X Ts plotted as a function of
T/Ts for the case that r„ is given by Eq. (18), and
Fig. 9(b) is obtained if Eq. (19) is used. Near Ts, al-
most all points from three spin-glass samples fall
upon a single curve. This exhibits the scaling prop-
erties which spin-glasses are expected to possess.
We see that the maxima of ~, in the 10- and 12-
at. Wo samples are quite broad. In Fig. 9(a), r,
develops a shallow minimum at about 0.4T after
passing a maximum at T. The overall change of 1,
below Tz is only about a factor of 3 for all three
spin-glass samples. Because of the constant term in
the denominator, Eq. (18) sets the shortest limit for



290 M. C. CHEN AND C. P. SLICHTER 27

II
I

8 at. io P = 2.5
IQIO

910-

lo"-

«8
IQ

I I . I I I I I

f O/

~ IQ

o 12

s I s I i I s I 1

0 4 8 12 16 2Q
II

I

IO at. '/o P=2.8
IO

m IQ
E
I-
C0 9
o 10

Tg

I I I I I

0 5 10 15 20 25 3035
II

l2 at. '/o P=2.8

«9
10

hC

o 108

& 8 at. %
a 10
o 12

109

~IQ I I I

0.0 0.5 1.0 1.5 2.0 2.5 5.0 3.5 4.0 4.5

Qp T/ Tg
E
I- -7

9
IQ

s I t I ) I i I

0 C 20 30 40 50

Temperature ( K)

FIG. 8. 1/v, vs temperature in three spin-glass sam-
ples. ~„=Bk/T is used. The solid line is the result of the
best fitting by Eq. (27) plus a constant term.

-IQ

0.0 1.0
I

2.0 3.0 4.0

FIG. 9. (a) v, Tg plotted as a function for T/Tg for
three spin-glass samples. This result is obtained by as-
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(a), but it is obtained by assigning ~„=Bk/T.

~„at low temperatures, which produces the longest
r, from any possible temperature dependence of r„
Any temperature dependence of r„toehr than Eq.
(18) only enhances the r, maximum, as is shown in
Fig. 9(b).

We thus have obtained a temperature dependence
of r, which is what a phase-transition theory of
spin-glasses would predict: a maximum at Tg. After
a critical slowing down at Tg, ~, becomes shorter
again with decreasing temperature below Tg This
kind of temperature dependence of r, not only gives
a minimum in T&I(T) and T2(T) but also can easily
explain the rapid intensity recovery below Tg. Ex-
perimentally, the number of the observed Nb nuclei
recovers, relative to the high-temperature value, to
10%%uo at 0.4T& and up to 46% at 0.1Ts. Because of
the shorter correlation time, Nb nuclei with large hL
are becoming observable again at temperatures
below Ts, despite the fact that there are also some
Nb nuclei being wiped out of the range of our H

& by
the additional static broadening due to the spin
freezing in the Z direction. The existence of the fast
correlation time is supported by the recent neutron
scattering experiments. In 1 at. %%uocuM nwhose
"spin-glass-interaction" strength is about the same
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The solid line is a best fitting by Arrhenius law. Com-
pared with Fig. 8, it is clear that the deduced correlation
times obey Eq. (27) plus a constant term better than Ar-
rhenius law.
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as our 10-at. % sample, the spectral density is found
to peak at 10 "s at 0.8Tg.

There are still some unclear points in our model
for temperatures below Ts. Owing to the spin freez-
ing, the linewidth (~) is expected to grow with de-
creasing temperature. So, hH/Hi is no longer a
constant below Ts. Some corrections of the
intensity-times-temperature values, which are un-
known to us at present, must be made. The observ-
able number of Nb nuclei influenced only by the
fluctuating local fields should be higher than the
measured value. Furthermore, the relative values of
the coefficients before ~, in Eqs. (24) and (25) may
not simply be (1—q) times those at temperatures
above Tg. However, we do not expect that either of
these uncertainties would change the essential result
that ~, has a maximum at T=Tg.

E. Problems with nonequilibrium models

If we assume that the correlation time is isotropic
and use Eqs. (14}and (15), and hh' =Eh (1—q) for
temperatures below Tg, we get a correlation time
which keeps increasing with decreasing temperature
through Ts, although there is a significant change of
slope at T =Tg. This behavior is close to what a
nonequilibriurn model predicts. But as we men-
tioned before, this isotropic model is not only incon-
sistent with the anisotropy in the susceptibility but
also predicts a temperature-independent Tip/T2 ra-
tio which contradicts our NQR results.

New pSR (muon spin relaxation, time
scale=10 sec} techniques have been developed to
allow the possible study of the p, + spin dynamics in
spin glasses in a zero field or a longitudinal field.
The correlation time in 1 at. % CuMn is observed to
increase rapidly near Tg, and it keeps increasing
smoothly with decreasing temperature through Ts.

In nonequilibrium models, v possibly follows an
Arrhenius law, r=rpexp(E/k~T), or a Fulcher's
law, '

1 =1pexpIE/[kz(T Tp)]I, where —Tp is a
constant. When ~ is long enough, i.e., yhI ~-1, at
Tg to produce spin-freezing phenomena, the motion-
al narrowing limit breaks down. Then we have
T2-~ instead. As v keeps increasing below Tg, T2
increases again. Thus, we see that Ti (or T&p)
minimum can qualitatively be explained by a non-
equilibrium model.

But, some such models also predict that the nurn-
ber of loose spins (equivalent to the density of states
of small-amplitude fluctuations) decreases exponen-
tially with decreasing temperature below Tg. Ex-
perimentally, we observe a quite slow Tz recovery
and a rather fast intensity recovery. It is then clear
that with the predicted temperature dependence of
the number of loose spins, the fast intensity recovery

canriot be explained by the slow T2 recovery below
Tg 0

In the particular case of our isotropic model cal-
culation, it has been checked with computer fitting
for all four field distribution functions that our de-
duced correlation time does not obey an Arrhenius
law or a Fulcher's law (Fig. 10).

VII. CONCLUSION

From our NQR study, it is found that in those
samples which are spin-glasses the relaxation pro-
cesses of Nb nuclei are dominated by the interac-
tions with Fe spins, which are describable by Red-
field theory. The interactions with Fe spins cause
anomalies in T&p( T), T2(T), and the intensity versus
temperature curves at Tg. Based on the theory and
the linewidth measurements as a function of tem-
perature, it is concluded that the drastic intensity
loss near Ts is due to a dynamic magnetic effect.
More and more Nb nuclei must have too short a T2
to be observed near Tg. The Tip/Ti ratio is found
to deviate, at temperatures lower than 77 K, from a
value of 17.5 predicted by Redfield theory for the
isotropic fluctuating local fields. The deviation
varies with temperature. This observation plus the
anisotropy in the susceptibility lead us to conclude
that 2H-NbSe2Fe„ is an anisotropic spin-glass.

An anisotropic model is therefore constructed
with the presumption that the correlation time for
p„and p„shows no anomaly at Tg, since no suscep-
tibility cusp is found on the X-Y plane. This model
utilizes a distribution of fluctuating local fields to
obtain, from the intensity data, the mean-square am-
plitude of the fluctuating fields seen by the observed
group of Nb nuclei at each temperature. A max-
imum of the correlation time for p, 's, r„ is found at
Tg for all three spin-glass samples. The magnitude
of ~, increases rapidly when Ts is approached from
above. 1/r, 's functional form can be fitted with
5+a(T Tg)~. Some c—losely similar values of P
around a mean value of 2.5 are found for all three
spin-glass samples. These results are best described
by the phase-transition theories of spin-glasses.
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