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The linewidth of the electron-spin resonance in aluminum has been studied experimental-
ly in many laboratories over the frequency range 1.3—80 GHz and at temperatures from 4
to 100 K. At low temperatures the width is thought to be due to motionally narrowed g an-
isotropy, and at high temperatures spin-flip scattering by phonons is assumed to dominate.
Models are developed in this paper, based on previous calculations of the g anisotropy by
Beuneu, which give a good semiquantitative account of the linewidth variation over the full

range of frequency and temperature.

I. INTRODUCTION

The temperature and frequency dependence of the
magnetic resonance of the conduction electrons in
aluminum have a number of features which have
remained unexplained for a number of years.!™¢
One of the most remarkable features of the existing
data is the frequency dependence of the low-
temperature linewidth. Data are available at a num-
ber of frequencies from 1.27 to 79 GHz, a range of
frequencies varying by a factor of 60. The
linewidth, either the residual linewidth or the
minimum linewidth for those experiments in which
the width is observed to increase again at the lowest
temperatures, is observed to increase linearly with
measuring frequency.

A natural but unsatisfactory explanation is that
there is g anisotropy over the Fermi surface
described by a g(k), that electrons with different
wave vectors resonate at different fields
H=*%w/g(k)B, and that the spread in resonant
fields is therefore proportional to the spread in g
values and to the frequency of the experiment. At 9
GHz the observed spread in field corresponds to a
spread in frequencies of the order of 100 MHz. The
difficulty with this explanation is that the electrons
are being scattered from place to place on the Fermi
surface at a rate of the order of 10'° sec™!, as es-
timated from typical resistivity ratios, so that any
given electron samples roughly 20 different k values
on the Fermi surface during the relaxation time T,
characterizing the linewidth. As a result, the reso-
nance line should be motionally narrowed and have
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an observed width (in frequency) which, using con-
ventional wisdom, would be given by

2
Aw~-%wf7‘, (D
g

with ((8g)*) the mean-square deviation of g( K)
from its mean value g, o, the spin procession fre-
quency, and 7 a time characterizing the scattering
from one k state to another on the Fermi surface.’”
The prediction then is of a quadratic, rather than of
a linear dependence upon frequency, a prediction
confirmed by experiment for copper and silver,' but
not for aluminum.

No satisfactory explanation of the linear frequen-
cy dependence was proposed until Beuneu® calculat-
ed explicitly the k dependence of the g shift,

8g(K)=g(k)—{(g(k))
d 8 - & @)
=g(k)—g.

A remarkable feature of the calculation is the ex-
istence of very long tails in the distribution of g
shifts, N(8g), which extend to values of &g as large
as plus and minus several hundred.

The existence of these very large g shifts is a
natural consequence of the existence of degeneracy
points on the Fermi surface® where the second and
third zones contact one another in the absence of
spin-orbit coupling. The opening of spin-orbit gaps
at these points gives rise to locally very small effec-
tive masses and hence to exceedingly large orbital
moments which, in turn, are strongly coupled to the
spin, because it has in fact been the spin-orbit cou-
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pling which produced the gap. The very long tails
in the g shift distribution N(8g) should make one
wary of any prediction, such as Eq. (1), which in-
volves the second moment of that distribution be-
cause the second moment is likely to be overwhelm-
ingly dominated by the extreme tails.

Beuneu, in a paper hereafter referred to as LS has
presented a number of sound physical arguments
concerning the linear frequency dependence of the
linewidth. The discussion here extends those argu-
ments, making fewer ad hoc assumptions, and pro-
vides a very natural explanation for the linewidth
behavior. Section II of the paper, after a brief sum-
mary of Beuneu’s results, develops predictions of the
frequency and temperature dependence of the
electron-spin-resonance (ESR) linewidth in alumi-
num. These results are compared in Sec. III with
the experimental observations and points of agree-
ment and disagreement are noted. There are many
points which arise in developing these arguments
which complicate the issues significantly, and
several are discussed briefly in Sec. IV. Our con-
clusions are summarized in Sec. V.

II. A MODEL CALCULATION

A. The g anisotropy

There are a number of important features of
Beuneu’s results which are reviewed here. Figure 1
gives the histograms individually for the second and
third zones of the distribution of g shifts N(5g).
Note first that the hole surface (2nd zone) has dom-
inantly negative shifts, while the electron surface
(3rd zone) has dominantly positive shifts. Thus the
assignment of negative (positive) shifts to electrons
(holes) that is common in the study of the ESR of
defect centers is inconsistent with the calculated
shifts in aluminum, as it is occasionally in defect
problems.

Second, note that this calculation was performed
with the assumption of a positive value of the pseu-
dopotential matrix element V;;; which enters the
Ashcroft theory.® It is interesting that a number of
papers on aluminum state unequivocally that V,; is
positive, the ultimate reference for the assertion be-
ing the Ashcroft paper in which no comment what-
soever is made concerning the sign, and in which the
V111 enters all equations quadratically so that the
sign is clearly undetermined by any of the argu-
ments in that paper. A reversal of the sign of ¥y,
is expected,® very roughly, to result in a reflection of
the distributions of Fig. 1 about the free-electron g
value, giving a second-zone tail extending to positive
6g, and a third-zone tail extending to negative g. In
this paper, which focuses principally upon the reso-
nance linewidth, the results will not be greatly influ-
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FIG. 1. Distribution of g shifts N(8g), as calculated by
Beuneu (Ref. 6) for the second and third Brillouin zones
in aluminum.

enced by changing the sign of 7, and Beuneu’s as-
sumption of V;;; >0 will be continued here.

Finally, note that the histograms continue out
only as far as g shifts of +0.1 but that the ends of
the distributions are nowhere in sight. Because of
the finite grid spacing in the numerical calculation it
is not very helpful to look for the detailed shape of
the tails in the extreme wings. The qualitative
behavior in the wings, however, is easily estimated.
As noted in the Introduction, these tails are a reflec-
tion of the degeneracies (R points®) on the Fermi
surface. Near the R points the g shifts in magnitude
are given roughly by

8g(K) A °F
8K~ (W24 ek2)12 (A1 o2k 2)i/2
A.EF
T ek ¥

A is the spin-orbit coupling,® k here is the distance in
k space of k from the R point, €7 the Fermi energy,
and e the rate of splitting of the two bands as a
function of k at the R point in absence of the spin-
orbit splitting. er/(A>+e%k?)!/? gives the effective
mass enhancement of the orbital magnetic moment
for k values near the degeneracy point, and
A/ (A*+e%k?)!/? gives the strength of mixing of the
two bands.’ Noting that k is the magnitude of a
two-dimensional displacement vector, along the Fer-
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mi surface in any direction from the R point, the
density of k states on the Fermi surface near the R
points may be written as

N,(k)dk ~2mk dk /4mk}

from which it follows that

1 A
N(k>—~———
N(sg)=1{ " 16 €5 (8g

0, og >6g,,, . 4)

1 €F
)2 ’ 8g <8gm A’

Detailed numerical coefficients have not been calcu-
lated in making these estimates. Noting that there
are 24 R points on the Fermi surface, one may esti-
mate the contribution from the tails to the mean-
square g shift as

88, A1
((g?)~ [, " (88" Gerde~1,

(5)

recalling 8g,, ~€r/A. Comparison with the value
determined in I, {(8g)?)=0.22, shows clearly that it
is the extreme tails of the g distribution which dom-
inate the moment. The apparent disagreement is of
no significance without a more careful calculation of
the numerical constants in Eq. (3).

Remarkable is the fact that ((8g)?) does not de-
pend upon A. The result emphasizes both the
danger in arguing that ((8g)?) is simply related to
spin-orbit energies and typical band splittings, and
the importance in ESR of possible degeneracies in
the polyvalent metals, a point suggested by Beuneu
and Monod!? in a survey of ESR results in metals.

B. A free-electron simulation
of the aluminum problem

In the preceding section it was noted that practi-
cally all of the second moment of the g(k) distribu-
tion in aluminum is contributed by those portions of
the Fermi surface, in both the second and third
zones, which are near the zone contact points, or R
points. This suggests the use of the following, rath-
er oversimplified but easily calculable, model to il-
lustrate the important physical ideas underlying the
conduction spin relaxation in aluminum.

The model is illustrated in Fig. 2. The electrons
are taken as a free-electron gas with Fermi sphere
radius kr and cyclotron frequency w,=(eB)/m*c,
with B the applied magnetic field. Almost any-
where on the Fermi surface the g shift is taken to be
zero, but over a few small selected areas, referred to
as the R disks, the g shift is taken to be large and
constant, 8go. The radius « of the R disks is ap-
propriately taken to give a disk area 7«? equal to the

g
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FIG. 2. Schematic view of the free-electron Fermi sur-
face in aluminum with randomly distributed R disks (see
text), cyclotron orbits, and orbital segments as limited by
the resistivity scattering.

area, near the R points, of the real Fermi surface in
aluminum over which the energy gap is dominantly
determined by the spin-orbit interaction. 8g, might
be taken to be a suitable average over this region of
the real 8g(k), though in fact it will be determined
by a somewhat more complex argument. For the
moment, the magnitudes of x and 8g, may be
thought of as given roughly by

K‘/kp*\-'lo_3 . (68.)
|80 | ~10+3. (6b)

The sign of 6g, is of little import in this discussion,
but is most conveniently thought of as positive on
one-half of the disks, negative on the rest, to leave a
mean g shift of zero.

There are 48 R points on the Fermi surface of
aluminum, 24 on each of the second- and third-zone
surfaces, after lifting of the R degeneracy by the
spin-orbit splitting. In the model the 48 R disks are
supposed to be randomly distributed over the sphere,
the randomization to simplify the calculation by
avoiding the need to keep track of whether or not
particular cyclotron orbits traverse only one or
several R disks:. Because of the small value of k, the
probability of a given cyclotron orbit traversing
more than one disk is small and the consequences of
a double traversal are neglected. In randomizing the
distribution, possible anisotropy in the linewidth is
of course omitted from the model.

Individual electrons are assumed to scatter ran-
domly from point to point on the Fermi surface at a
rate 1/7, while between scattering events they move
in cyclotron orbits on the Fermi surface with a
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linear velocity in k space,

| K| =@ kpsing , (7)

with 6 the angle between the electron wave vector k
and the applied field B.

C. Solutions for this model

The arguments for the magnitude of the motion-
ally narrowed conduction-electron-spin-resonance
(CESR) linewidth depend crucially upon the magni-
tude of the typical orbital segment length in k space,
w,7kg, traversed by an electron between scattering
events. The results discussed below fall naturally
into three different regimes, appropriately defined
by this parameter.

The high-temperature region is defined by the re-
lation

o 7kp <<k , (8)

or the requirement that the orbital segments on the
Fermi surface be small compared with the radius of
an R disk. In this regime the electrons are scattered
on and off the disks much more rapidly than they
move on and off the disks as a consequence of their
cyclotron motion, and hence the effects of the cy-
clotron motion are negligible. In this regime the
conventional result for motional narrowing is ap-
propriate. Noting that in the model the rms spread
in g values is given by

((8g)%) =(8go)X(48m? /4mk}) )
the conventional narrowing result for the linewidth
gives

2
R4

2 2
L=< > ir 12(8g0) Ko, 10
Tonz g* ki
1/T,,, denotes the contribution of the motionally
averaged g anisotropy to the full linewidth 1/T,, as-
suming, for the present, a scalar g shift rather than
tensor.

This result is inappropriate in the intermediate-
temperature regime k <<, 7kr << kp because in this
regime the correlation time for the narrowing is
determined not by the time between collisions, but
by the average time spent on the R disks, which is
now determined by the speed of the cyclotron orbital
motion, not the collision rate. An approximate re-
sult is obtained by the replacement of 7 in Eq. (10)
by the disk transit time 7y, ~k/krpw.. Note that
the resultant expression for the width varies as
w2/, and is therefore linearly proportional to the
field at which the experiment is performed, and a
natural explanation is obtained for the experimental-
ly observed linear dependence of linewidth upon fre-

quency. Further, the coefficient of proportionality
does not involve 7, in accord with the experimental
result that the slope of the plot of linewidth versus
frequency is nearly independent of temperature.’

A more quantitative result is easily obtained. The
precession phase, relative to the mean phase of all of
the spins, accumulated by an electron in an orbit of
polar angle 6 as it traverses a disk along a trajectory
with impact parameter 8k, is

dgo

g

2(K2_8k2)1/2

’ k)=
9(6,5k) o kpsing

(11)

The rate at which any given electron meets R disks,

if it is in orbit of polar angle 6, is

48 X 2k
4k}

where (48/4wk}) is the R-disk density, 2« its col-
lision cross section, and w.kpsin@ the electron’s k
velocity. The rate at which the electrons gain
mean-square precession phase error is then given by

R(6)=(w kpsin) ) (12)

A2 =-L [T
7 ($0y=_— [[2msingdOR(6)

X (640,8k) sk (13)

where ( )g; is the average of Eq. (11) over impact
parameters —k <8k <x. Equation (13) is easily
evaluated if sinf is assumed constant over the disk,
which is reasonable for k << kp, and with the results
of Abragam!! gives

K1

= a9

F @c

dgo

1 _14d %
g s

T,, 2dt

Finally, the low-temperature regime is character-
ized by the condition w.7>>1, for which the elec-
tron moves in a single cyclotron orbit for a number
of periods before scattering to a new orbit. The cy-
clotron motion now gives effective averaging over
the full orbit of the g variation associated with the R
disk for those orbits which traverse a disk. The or-
bitally averaged g shift for an orbit with polar angle
6 which traverses a disk on an orbit with impact
parameter 8k is

(¢*)=16

2[K2'—(8k )2]1/2

5g(0,8k) =880 =" "o

(15)

The probability of an orbit of polar angle 6 travers-

ing a disk is
2k2mkpsing

P(6

8, (16)

which allows the calculation of the appropriate aver-
age over the Fermi surface of the mean-square orbi-
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tally averaged g shifts as

1 7
2 _
([8g(6,8k)1 ) rs= - [, 27 sin6d6 P(9)

X ([6g(6,8k)*)sr=(g3) .

(17)
This gives, finally, for the low-temperature regime
1 ([82(6,8k)) )ps
= 5T

Tz g2
2
o) 3
~16 | %0 — ;s %1’ (18)
m g kF

The considerations up to this point have tacitly
assumed a scalar g shift and have thus dealt only
with the fluctuations in the z component of the ef-
fective field felt by the spins through the g-
anisotropy contributions g, ( K). There will also be
transverse components of the effective field felt by
the spins arising from off-diagonal elements of the
g-shift tensor, ngx(k) and ngy(k) These elements
of the g tensor contribute to the relaxation of both
the longitudinal (z) and transverse (y and x) com-
ponents of the spins and hence also contribute to the
linewidth (see Ref. 12, Sec. 5.7). Qualitative con-
siderations based on the work of I suggest that typi-
cal off-diagonal elements of the g-shift tensor are
comparable in magnitude to the diagonal elements;
this implies,'? in the limit of short correlation time
w,T << 1, an additional contribution to the linewidth
comparable in magnitude to 1/7,,, as well as a con-
tribution to the longitudinal relaxation 1/7;. The
situation is more complex, depending critically upon
w;/w,, for long correlation times as noted briefly in
Sec. IVB. For the present analysis and comparison
with the data it is adequate simply to increase all of
the rates calculated above by a factor of 2,
1/T,, ~2/T,,, with 1/T,, the full predicted width
due to motional narrowing of the full g-shift tensor.
With this modification, the results in the three re-
gimes are conveniently summarized by introducing
the definition

(8,
g") 48T
g 47TkF

A=2 Os

) (19)

W

where A, apart from the factor w;/w,~]1, is the
mean-square fractional g shift over the Fermi sur-
face. The linewidths, expressed as a fraction of the
resonance field, are then for high temperature

5Ty, =dlee), (20a)

for intermediate temperature

1 4 «k
= —A — 20
ouT, kr (20b)
and for low temperatures
L _ 2 45 (o). (200)

[ 317' kr

The values of w,7 dividing one regime from the next
are

(21a)

(a)cT)I.Lz‘IT , (21b)

where H represents high temperature, I represents
intermediate temperature and L represents low tem-
perature. These results are summarized schemati-
cally by the straight line segments of Fig. 3, and
again we emphasize that the result of Eq. (20b),
valid over a range of the order of 10° in w,7, gives
naturally the prediction of a fractional linewidth in-
dependent of frequency, or equivalently, a linewidth
proportional to frequency, over a wide range of
scattering times 7.

D. The Freedman-Fredkin formalism

The results of Freedman and Fredkin (FF),!? with
the neglect of exchange, can also be applied to the
model to give essentially the same results, but a

17wgTy (arbitrary origin)
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ool ol | 10 102 103 10*
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FIG. 3. Schematic representation of the dependence of
the motionally narrowed linewidth vs scattering rate for
the R-disk model described in the text; the straight-line
segments correspond to the several limiting behaviors dis-
cussed in Sec. IIC; the curve is a simple interpolation
scheme.
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somewhat different viewpoint of the physics. Cru-
cial in the FF development is the Fourier expansion
of the g shift as seen by an electron as it traverses its
cyclotron orbit, Eq. (4.4) of FF. For the model dis-
cussed here, with constant velocity o kpsinf around
the cyclotron orbit of polar angle 6, it is convenient
to define the Fourier amplitudes by

sgk)= 3 gnexplimk /kysind) , 22)

m=-—o0

where the g,, will depend both upon the polar angle
6 of an orbit, and the impact parameter 8k of those
orbits which intersect the R disks. All g,, are of
course zero for orbits which do not traverse the
disks. Note that in Eq. (22) the g, are the orbitally
averaged g shifts discussed briefly [see Eq. (17)] in
obtaining the low-temperature result in the preced-
ing section, and are not the full average of g over the
Fermi surface which is denoted simply by g without
a subscript.

For Fourier components at frequencies whose
period is long compared with the transit time
through the R disks, the Fourier amplitudes
8m(0,8k) for given 6 and 8k are all equal in magni-
tude and are given directly by Eq. (15), i.e.,

| 8m(6,6k) | =go(6,8k) (23)
for small m, and averaging over 8k and 6 gives
3
(1 2m(6,8%) |2y =28 X (5g,)2 (24)
T ki

for small m.
The Fourier amplitudes fall off for large m,
namely when the period of the oscillation,

exp(imk /kgsinf) ,

in k becomes comparable with the disk diameter 2«.
More specifically, the cutoff m, denoted m,, for or-
bits with 8k =0, 6=7/2, is

me=mkp/k . (25)

This is an adequate estimate for all orbits for the
purpose of the following discussion.

FF equation (4.8), deleting the exchange terms
and adapting to the notation of this paper, gives the
linewidth in terms of the Fourier amplitudes g, as

1 . el (lgm]2> 2 T
=1
Tonz ot m=2_w g? @s 1+(w—mo, )
(26)
= (lgm!|®)
=3 T 0f—— 27)

The form of Eq. (26) is introduced to emphasize

that the result, Eq. (27) of FF, is the zero-frequency
component of the spectral density sketched in Fig. 4.
Again Eq. (27) is easily evaluated in three regimes of
.

Starting this time with the low-temperature re-
gime w,7>>1, the many peaks in the spectral densi-
ty of Fig. 4 are well resolved, and only the m =0
term in the sum contributes to the zero-frequency
spectral density, which, in this limit, gives

2
{go) wir, (28)

i

Tz g 2

which is just the result Eq. (18).

If k/kp <<w,T<<1, the peaks in Fig. 4 overlap
strongly, but the wings of the peaks for small m do
not extend out as far as the cutoff frequencies m ..
In this regime the spectral density at zero frequency
is independent of 7; the sum on m in Eq. (27) may
be converted to an integral which is independent of
the cutoff m, for m.w.7>>1 to give, using Eq. (24),

1 (|gm|?) w? 8o PR
- =16 |2e, | 5 —,

T, 82 (o kp o,
(29)

which is the result Eq. (14).

Finally, for w,7<<1/m.=wkp/k, each peak in
Fig. 4 extends far beyond the cutoff frequency
m,w,, and the sum of Eq. (27) is again easily
evaluated to give

w 2
L i § (1&m| >=<

2

2

Joir
(30)

namely Eq. (10). Before comparing these results
with the experimental data it is useful to present
some arguments concerning the ‘“phonon-induced
spin-flip scattering.”

R/ 4

m=—o 4

Spectral density

L 1 1 L L
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FIG. 4. Spectral density function appearing in Eq. (26).
The solid lines indicate the individual components enter-
ing the sum of Eq. (26), the short dashed lines are the sum
of these overlapping contributions for the case illustrated
with w,7=4, and the long dashed line is the spectral den-
sity when the overlap is large, w.7<<1, but still
. 7>>1/m,.
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E. Phonon-induced relaxation

The previous sections are concerned with the
motional narrowing of the g anisotropy in alumi-
num. A second important feature of the experimen-
tal results is the increase in linewidth at high tem-
perature, the phonon-induced relaxation. The model
suggested above also implies an easily calculable
phonon-induced relaxation rate, which will be denot-
ed 1/T,. Although it turns out that the R disks do
not dominate the process sufficiently that the model
is adequate, the R-disk model is conveniently illus-
trative of the essential physics, and appropriate
modifications to it are indicated at the end of the
section.

In the regions within a distance « of the R points,
the wave functions for the conduction electrons are
roughly equal mixtures of spin-up and spin-down
components k, since the R point is a point of a
spin-orbit-induced gap. Far from the R points,
however, the wave functions are almost purely spin
up or purely spin down. Consider a phonon scatter-
ing process in which the electron-phonon interaction
potential is supposed to contain no spin dependence.
Any scattering between the neighborhood of an R
point and elsewhere on the Fermi surface, scattering
either to or from the R neighborhood, will result in
randomization of the spin since the scattering in-
volves the matrix element of a spin-independent po-
tential between a state with an equal mixture of spin
up and spin down and a state which is either pure
spin up or pure spin down.'*° In this crude model
of the R disks the resultant phonon-induced relaxa-
tion rate is simply

L (s /amk2y /7 . (31)
T,

Unfortunately, the model, though illustrating the
important physics, does not give a correct quantita-
tive estimate of the phonon-induced relaxation. As
discussed briefly below this is because the strength
of the weighting of this process near the R points
does not overwhelm the contributions from else-
where on the Fermi surface, as it does for the
motional narrowing contributions to the width.

Consider, instead of the R disks, the ridges at the
intersection of the square-like and hexagonal-like
sections of the second-zone Fermi surface. Along
these ridges the second-zone surface is split from the
next higher band by a crystal-field matrix element of
the order of Vy;, but which vanishes (apart from
the spin-orbit splitting) because of symmetry at the
R points which terminate these ridges. V7, is not
very large, ~0.0179 Ry, compared with the spin-
orbit splitting of the bands, A ~0.001 Ry, at the R
points. Thus there is substantial spin-orbit mixing

along and in the neighborhood of these ridges, and,
as in the discussion of the previous paragraph, spin
flips associated with the spin mixing for states on
the ridges and scattering into or out of these states
from or into states elsewhere on the Fermi surface
with nearly pure spin states are thought to dominate
the phonon-induced relaxation observed at high tem-
perature.

In more detail, one estimates the relaxation rate
associated with scattering onto, and subsequently off
of, the (111) ridges on the Fermi surface using the
formula

1 o
T, o single (111) ridge €2(k |, k)
LAk | aga . (3
4rk} )

A two-dimensional integral is taken along a (111)
ridge from one R point to a neighboring R point.
k) is a coordinate along the ridge, and k| is perpen-
dicular to the ridge. e(k ,k|)) is the gap between the
nearly degenerate bands which dominate the g shift
for k on the ridges, and is obtained from the calcula-
tions of I. The effective full width of the ridges, the
range of k, over which €* is within a factor of 2 of
its maximum value on the ridge crest, is of the order
of 5% of kr, becoming narrower as the R point is
approached. A is one-half of the spin-orbit gap at
the R point, and is taken from I to be A=3.8x 10~*
Ry. In Eq. (32), A%/€* is the probability of a spin
flip associated with scattering from (to) a pure spin
state to (from) a state with spin mixing A /€. A fac-
tor of 2 is included to account for the fact that the
spin flip can occur either on scattering to or from
the elements dk dk|. 1/7 is the scattering rate, and
dk,dk, /41rkF is the probability that a scattermg be
to the element dk dk). A factor of 48 gives the
number (including both second and third zones) of
(111) ridges on the Fermi surface. The final factor
of 2 is the usual factor of 2 relating relaxation rate
1/T; to spin-flip rates.'> Evaluation of Eq. (32)
using the techniques of I yields

—4

1 _2X1077 (33)
T, T
The greater importance of the ridge relative to the
R points in this T'; process as compared with the
motional narrowing process may be argued as fol-
lows. From Eq. (32), estimating the integral along
k, across the ridge, the contribution to 1/ T, from
the element dk )| along the ridge may be shown pro-
portional to 1/e(k)|) where (k) is the energy gap
on the crest of the ridge. Noting that near the R
points €(k)|) varies linearly with distance from the R
point, one sees that the integral over k) diverges
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logarithmically, implying significant contributions
from all of the ridge. One can also extend the argu-
ments concerning the motionally narrowed g shifts
to orbits which cross the (111) ridges. Arguments
analogous to those leading to Eq. (11) and (13) give a
contribution to 1/T,,, from a ridge element dk)
proportional to 1/e(k) )2. This gives a stronger
divergence at the R point than for the calculation of
1/T,, indicating the dominance of the immediate
neighborhood in determining the motionally nar-
rowed width 1/T,,.

III. APPLICATION TO CESR IN ALUMINUM
A. Scaling

In the preceding section estimates have been made
both of the ESR width due to motional narrowing
of the g anisotropy [Egs. (20) and (21),] and of the
width due to relaxation associated with phonon (or
impurity) scattering, [Eqgs. (32) and (33)]. The re-
sults (20) and (21) are naturally represented in the
scaled form 1/w,T,, =F(w,7), and Eq. (33) is easily
forced into a similar form by writing

1/wsT,=2X 10w, /og) /0T

to give for the predicted width 1/T, the sum of the
two contributions
2X 10~ 4w, /wy)

=Flo. 1)+ —— . (34)
w;T, QT

An important confirmation of these ideas would be
the demonstration of this scaling in the existing
linewidth data for aluminum. Unfortunately, that is
not possible without knowing independently the
scattering rate 1/7. Figure 5 represents an attempt
to reveal this scaling with a minimum of data ma-
nipulation. At high temperatures one knows that
phonon scattering dominates over impurity scatter-
ing, and further that the phonon scattering rate, at
temperatures well below the Debye temperature, is
expected'® to vary as T If the data are plotted
versus o 'T3, then at least in the regime in which
1/7 is dominated by phonon rather than impurity
scattering, such a plot should reveal the scaling im-
plied by Eq. (34).

Figure 5 gives a log-log plot of the relative width
1/0,T, vs o, T* for data taken over the frequency
range from 1.27 to 80 GHz,!~> and with the hor-
izontal axis also explicitly labeled as temperature for
three of the different frequencies. The plotted
points are taken from the smoothed curves in figures
of published results and are not actual data points.
The figure does not include all available data, but is
selected to include results at a wide variety of fre-
quencies, namely six, and from four different la-
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FIG. 5. Scaled linewidth 1/w;T,, as a function of
T?/w, for the ESR in aluminum. Data are taken at the
following frequencies: O, 1.27 GHz (Ref. 1); A, 9.3 GHz
(Ref. 1); @, 9.3 GHz (Ref. 2); X, 21.0 GHz (Ref. 3); O,
35.0 GHz (Ref. 1); +, 60.0 GHz (Ref. 4); +, 79.0 GHz
(Ref. 5). The solid line is the fitted theoretical universal
curve. The scales at the top of the graph convert the
abscissa to a temperature scale for the data corresponding
to three of the experimental frequencies. The scale at the
very bottom converts the abscissa to a scattering rate ex-
pressed in units of ., under the assumption of a value
p=2.1X10" sec™' K3 of the constant in Eq. (35), and a
value of 1.6 for o, /w,.

boratories.

No attempt has been made to correct the data for
the effects of surface relaxation or of residual im-
purity scattering. The residual scattering is of
course the dominant contribution to the resistivity at
the lowest temperature at each frequency. The ef-
fect of correcting for the residual scattering is to
shift the lower-temperature points to the right for
each series of points, and such a correction to the
1.27- and 9.2-GHz data can be consistently chosen
to remove most of the discrepancy in the scaling to
the right of the minimum. The linear dependence of
linewidth upon frequency, remarked upon earlier, is
expressed in this plot as a frequency-independent
value of the relative linewidth minimum. There is
substantial scatter, ~+15% in the depth of the
scaled minimum, but recalling that the data are tak-
en over a range of nearly 2 orders of magnitude in
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frequency, the linear scaling of linewidth minimum
with frequency is indeed well obeyed. The scatter
from the scaling prediction to the left of the
minimum is again reasonably explained as the
consequence of the neglect of residual scattering
corrections, the neglect of the effect of surface relax-
ation (spin and/or resistivity), which in fact have
not been fully understood,” and possibly failure to
account for the effects of exchange.!* The scaling
predicted by Eq. (34) is in fact quite well obeyed.

B. Theoretical fit

In Fig. 5 we indicate as well, by the smooth curve,
a fit to the expected form Eq. (34), where a simple
interpolation scheme is used for Egs. (20) and (21)
and the scattering time is supposed to be given
by!516

1 3

—=pT3. (35)
r
Comparison of the results with the model requires
the assumption of a value of the ratio of the spin
precession frequency to the cyclotron frequency
which is taken!’ as w;/w,=1.6. The fit is quite in-
sensitive to the position of transition from the
intermediate- to high-temperature regime, deter-
mined by «/kp; the indicated fit is for
k/kp=0.7x1073,

Are the parameters giving the fit of Fig. 5 reason-
able? The parameter p of Eq. (35) used for the fit is
p=2.1x10" sec™! K3, which may be compared
with experimental and theoretical values'>!%18
which are in the range 0.3—3 X 107 sec™! K>, The
large range reflects the large anisotropy of the
scattering over the Fermi surface of aluminum, the
faster rates being for electrons on the ridges of the
second-zone Fermi surface and in the third zone,
and the slower rates on the broad faces of the second
zone. The value of p used in the fit must be con-
sidered reasonable.

The high-temperature width is dominated by the
phonon relaxation [Egs. (32) and (33)]. The fit of
Fig. 5 uses a ratio (1/T,)/(1/7)=1.5X107*, to be
compared with the estimated value [Eq. (33)] of
2X10~* The agreement is surely fortuitous since
the theoretical estimate is certainly reliable to within
no better than a factor of 3.

Finally, the fit implies a value for the relaxation
rate in the intermediate temperature regime, [see Eq.
(200)], (1/w3T,)=2.9X 1073, Comparison with the
model prediction requires values for the 8g, and
k/kg of Eq. (20). The radius  of the R disk is tak-
en such that 7«? is equal to the area of the Fermi
surface near the R points, calculated without spin-
orbit coupling, for which the crystal-field-induced
gap is less than or equal to the spin-orbit gap which

is 0.77x1073 Ry. This estimate gives «/kg
=0.7x1073.

Estimates of 8g, based simply on extrapolation of
perturbation theory results for 8g(k) are of the or-
der of 300, but use of this number underestimates
the effectiveness of the R disk in dephasing the
spins. The transit times through the disks are un-
derestimated in the simple model presented above
because that model does not account for the changes
in group velocity resulting from the crystal-field dis-
tortions of the shape of the Fermi surface. Esti-
mates, again treating the spin-orbit coupling as a
perturbation and extrapolating into the R point, in-
dicate a typical rms phase accumulation, Eq. (11), of
1 radian for a trajectory passing through an R point.
Using these calculated phase accumulations as the
basis for the identification with the formulas of the
preceding section leads to the assignment
8go=1.1Xx10%

These parameters, k/kp=0.7X10"% and
8g0=1.1Xx10% when used in Eq. (20b) for the relax-
ation rate in the intermediate regime yield
1/0,T,=4.4X1073 in good agreement, again for-
tuitous, with the value 2.9 10~ deduced from the
fits to the data of Fig. 5. Again the estimates are
not felt to be reliable to within better than a factor
of 3.

The parameters 6go=1.1X10> and «/kg
=0.7%10~3 may also be used, with the model of
Sec. II, to estimate an rms variation over the Fermi
surface of the g value of

((8g)2>1/2=8g02‘/§l(/kp=2.7
and of the orbitally averaged g of
(g3)'2=8g0(4/V'm) K /kp)*/*=0.046 .

These may be compared with the values of I of 0.47
and 0.067, respectively. The first is underestimated
in I because it is completely dominated by the con-
tributions of the R disks, a fact not recognized ear-
lier, which are poorly characterized in 1. The
second is in reasonable accord with the R-disk
model since the orbital averaging makes the result
less sensitive to neglect of the R disks. In fact,
much of the rms variation of the orbitally averaged
g is due to the different mean value in the second
and third zones, an important bit of physics not in-
cluded in the present model. In summary then, the
parameters deduced from the fits to the scaled data
of Fig. 5 are in quite reasonable arguement with the
simple model described in Sec. II and with the mag-
nitudes estimated here.

IV. DISCUSSION

Section III presents the main burden of the argu-
ment that the models of Sec. II give basically a satis-
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factory account of the full variation with tempera-
ture and with frequency of the ESR linewidth in
aluminum. This section gives a brief qualitative dis-
cussion of a few additional points.

A. Systematic deviations

Evident in Fig. 5 is a systematic decrease, with in-
creasing frequency, of the minimum value of
1/w,T,, the decrease being about 30% for an eight-
fold increase in frequency. No account has been
taken in this development of magnetic breakdown
across the spin-orbit gaps.!” Breakdown should be
occurring at the high fields and, because it transfers
electrons between orbits of opposite sign of g shifts,
tends to suppress the phase error accumulated upon
transit near an R point. The breakdown is proposed
as a possible source of the systematic variation not-
ed.

As noted by a number of authors,”>® for alumi-
num the minimum ESR linewidth observed at any
frequency is proportional to the frequency. In the
model presented above this result is an immediate
consequence of the scaling illustrated in Fig. 5.
Plots of minimum width versus frequency will be in-
fluenced to some degree, however, by the fact that
for the lowest-frequency data' the residual scattering
has prevented attainment of the w,7 required to
reach the minimum, and for the high-frequency
points there may be some systematic variation, as
noted in the preceding paragraph, due to magnetic
breakdown.

Lubzens' and co-workers and Dunifer and Pat-
tison’ have also noted that in the regime in which
1/T, dominates the linewidth, the widths at a fixed
temperature fit well to a linear dependence on fre-
quency plus a constant, with the slope of the linear
frequency dependence being higher at the higher
temperature. Rather than attributing this effect to a
frequency dependence of the phonon relaxation, we
would note that the motional narrowing model
presented above in fact accounts qualitatively for
this observation. At the temperatures 50 and 80 K
for which Dunifer and Pattison® have plotted the
frequency dependence of the linewidth, w7 for 79-
GHz data is still in the intermediate regime of Egs.
(20), while the 1.27-GHz data are in the high-
temperature regime, particularly at 80 K, and thus
in the classical motionally narrowed regime. This
gives an additional temperature dependence which is
more marked at 80 K than at 60 K and which ac-
counts satisfactorily for the observations.

B. T, and T, at low temperatures

The discussion above has focused rather arbitrari-
ly on motional narrowing arguments for the

linewidth 1/T,,, with additional comments concern-
ing one T'; mechanism, the spin flips associated with
the scattering between states with different degrees
of spin-orbit mixing of spin-up and spin-down
states.!* There is an additional T; mechanism,
clearly related to the 1/T7,, result discussed above.
As noted briefly earlier, the g-shift tensor near the R
points has off-diagonal elements as well as diagonal
elements. The diagonal elements, as modulated by
the combination of cyclotron motion and scattering,
give a spectral density of fluctuating fields parallel
to the applied field which were discussed in conjunc-
tion with Fig. 4. This spectral density at w=0
determines the motionally narrowed linewidth. The
off-diagonal elements have a similar spectrum, and
will induce spin flips at a rate proportional to the
spectral density at the Larmor frequency w; which
contribute both to 1/7, and to 1/T,. In the inter-
mediate and high-temperature regimes, with the
spectral peaks of Fig. 4 heavily overlapping, the
spectral density at w=w, will be the same as at
=0, and the contributions to 1/7; and 1/T, will
be equal, as is conventionally assumed for the elec-
tron spins in metals. In the low-temperature regime,
however, this will no longer be the case since w, is
substantially different from w,, and one may expect
1/Ty <« 1/T, as (w,7)~! becomes small compared
with |w;—ao, | /0., leaving the spectral density
peak centered at w, well isolated from the Larmor
frequency w;.

C. Improved calculations

The discussion presented here is based on a very
simple model with numerical estimates based on
perturbation-theory results. The basic physical ideas
are felt to be sound and to offer the essentials of the
understanding of the temperature and frequency
dependence of the aluminum linewidth in the regime
in which electron-electron exchange is not playing
an important role. The quantitative estimates are of
course crude, and it is unlikely that they are reliable
to within better than a factor of 3.

Improvement in the calculations requires the full
solution of the g-shift problem near the R points,
treating the spin-orbit gap properly, and taking full
account of the distortions from sphericity of the
Fermi surface. Because the bulk of the contribu-
tions to the relaxation comes specifically from the
immediate neighborhood of the R points much in-
sight could be gained by focusing attention entirely
here, without need for tedious integrations over the
full Fermi surface. At the same time, the problem
of magnetic breakdown would also have to be seri-
ously addressed.
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V. CONCLUSIONS

Calculations of the g anisotropy in aluminum®

have been exploited and extended to develop a semi-
quantitative understanding of the full frequency and
temperature dependence of the ESR linewidth in
aluminum, including both the motional narrowing
regime and the phonon-dominated regime. The fol-
lowing points should be noted:

(1) The model predicts a scaling which is well,
though not perfectly, obeyed.

(2) The parameter values giving a reasonable fit to
the scaled data agree with estimates based on the
model to better than the estimated precision of a
factor of 3 in the model values.

(3) The linear dependence on frequency of the
minimum linewidth is a natural outcome of the
model.

(4) Systematic deviations from the scaling may be
qualitatively understood in terms of residual scatter-
ing contributions to 1/7 and the effects of magnetic
breakdown.

(5) An apparent frequency dependence of the pho-
non spin-flip scattering can be understood as a
consequence of the motional narrowing model, with
the phonon-induced relaxation remaining indepen-
dent of frequency.

(6) The model predicts that at low temperatures,
for w,7>>1, T should become long compared with
T, for conduction electrons in high-purity alumi-
num.

(7) Further refinement of these ideas requires ex-
act treatment of the spin-orbit interaction near the R
points of the Fermi surface and detailed considera-
tion of the effects of magnetic breakdown.
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