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One-mode intermediate-coupling calculation of the Jahn-Teller effect
for an orbital doublet
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A multistep matrix formulation is used to analyze the intermediate-coupling problem for
an orbital doublet coupled to one doubly degenerate vibrational mode. First, the linear-

coupling problem is formulated in terms of a basis that reduces the effective Hamiltonian to
blocks of tridiagonal matrices. The eigenfunctions for the lower states from this first step
are then used as a new basis when including the lowest-order nonlinear coupling and anhar-

monic terms. The energies are computed and the final eigenfunctions are used to calculate
reduction factors and polarizability matrix elements among many of the lower-energy states.
Linear coupling, nonlinear coupling, and anharmonicity are varied independently over a
wide range. Even though these calculations are accurate (being equivalent to diagonalizing
a matrix of order up to 16000) and cover the intermediate-coupling region on the strong-
coupling side, the deviations from strong-coupling theory are primarily in the states whose

energies exceed that of the ground state by an amount comparable to or greater than the
zero-coupling —mode quantum. The properties of the lowest three states are not significant-

ly different from those in strong coupling.

I. INTRODUCTION

The Jahn-Teller effect' occurs because an orbital-

ly degenerate state of a molecule or crystalline defect
is unstable against an asymmetric distortion that
lowers the energy and removes some of the degen-
eracy. The effect results from a coupling of vibra-
tional modes with electronic orbital states. The
standard approach to the theory of the Jahn-Teller
effect2 4 is to analyze specific cases. The specific
case considered in this paper is that of a doubly de-

generate electronic orbital state coupled to a single
doubly degenerate vibrational mode in cubic (0)
symmetry. (The results should also apply for other
cubic symmetries and for trigonal or hexagonal
symmetries. An additional anharmonic term cubic
in the Q's exists for C3, C3;, Ts, and T, while no
anharmonic term cubic in the Q's exist for D6I„D6,
C6„, C6I„C3I„and C6. )

The vibronic coupling can be classified as linear
or nonlinear and the potential energy as harmonic or
anharmonic. The nonlinear coupling and anhar-
monicity have the effect of warping the harmonic
plus linear-coupling adiabatic potential energy sur-
faces. Hereafter, the term warping will mean the
nonlinear coupling plus anharrnonicity. jLonguet-

Higgins et al. did a comprehensive calculation for
the doublet problem considering only linear coupling
and a harmonic potential. Their results exhibited a

partial lifting of the degeneracies of the uncoupled
states and demonstrated the usefulness of a matrix
formulation of the problem. O' Brien considered
warping (nonlinear coupling and anharmonicity) for
the limit of strong linear coupling and showed that,

~s the warping increases, vibronic singlet states ap-
proach the vibronic doublet states in energy. Ham
formalized the effect of other perturbations on these
vibronic states, and in so doing, defined the reduced
effect of orbital operators on vibronic states in terms
of reduction factors. Setser and Estles extended the
O' Brien and Ham calculations to find energies and
reduction factors for more excited states and for
larger warping. These calculations are not com-
pletely general, in part because the strong —linear-
coupling approximation makes the theory inapplic-
able to intermediate coupling. Other investigations
of the orbital-doublet problem suggest that coupling
to one vibrational mode is unrealistic and that mul-
timode coupling must be used.

Motivated by the desire to examine intermediate-
coupling effects and to compare them to strong-
coupling calculations, we developed a different ap-
proach to the one-mode vibronic coupling problem
for an orbital doublet. This new approach allows us
to independently vary linear and nonlinear coupling
and anharmonicity. It is an exact method (to the ac-
curacy of our computational means) for the Hamil-
tonian considered and for intermediate coupling on
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the strong-coupling side. It gives energies and eigen-
furictions for many excited states.

The method of computation used in this paper is
an extension of the calculation of Longuet-Higgins
et al. ' by including warping (higher-order vibronic
coupling and anharmonicity} over a range of linear-

coupling strengths. The effective Hamiltonian for
this doublet problem leads to a sparse Hamiltonian
matrix if the basis is properly chosen. The resulting
matrix diagonalization problem is best handled in
two stages: First, solving the eigenvalue problem
with only linear vibronic coupling present and
second, including the effects of nonlinear coupling
and anharmonicity. Once the eigenfunctions of the
final states are obtained, quantities such as the
reduction factors and polarizability operator matrix
elements (used in finding Raman intensities} can be
calculated. This is the approach taken in the present
calculations.

In Sec. II we explain the details of how the calcu-
lation is done. A method for generating the proper
symmetrized basis to give a sparse Hamiltonian ma-
trix is presented. The problem is then formulated so
that the various matrix diagonalization steps can be
done numerically. The eigenvector components are
stored and used to calculate final matrix elements
(such as reduction factors). The matrix calculations
are done for a wide range of intermediate —and
strong —linear-coupling strengths and include warp-
ing in the form of the lowest nonlinear coupling and
anharmonic terms.

Sections III and IV present some of the results
and the conclusions, respectively. The effects of
both warping terms, nonlinear coupling and anhar-
monicity, on the values of the final energies and
reduction factors, are found to be virtually the saine.
Our results show no important deviations from the
previous strong-coupling calculations for the lowest
three states for all intermediate values of hnear-

coupling strength on the strong-coupling side. The
deviations are significant for energies above the
ground state by about an uncoupled vibrational
quantum or more. Any significant differences of
actual observed behavior of the lowest vibronic
doublet and singlet from strong-coupling predic-
tions6' are probably due to other effects (such as
multimode coupling) although weak intermediate
coupling cannot yet be excluded.

II. COMPUTATIONS

The Hamiltonian for a degenerate orbital state of
a molecule or a point defect in a crystal coupled to
vibrational modes can be written in the form

~=&n+ VvIb+~n ~

where T„ is the kinetic energy of the nuclei, V„;b is
the vibrational potential energy, and 4 iz is the
Jahn-Teller interaction or vibronic (vibrational elec-
tronic) coupling between the orbital state and the vi-
brational modes. The specific case considered here
is that of a doublet-orbital state coupled to a single
doubly degenerate vibrational mode in cubic symme-
try. The orbital states transform as partners of the
E irreducible representation in cubic symmetry: the

~
8) partner transforming like 3z r, a—nd the

~

e )
partner transforming like ~3(x —y ). Orbital
operators connecting these two states can be written
in terms of four matrices7:

1 0
0 1

0 —1

1 0

—10 01
O 1 ~=1O

The first index refers to
~
8) and the second index

to ~e). The single vibrational normal mode that
couples to the orbital state also transforms as the E
representation in cubic symmetry. It is represented
by the generalized coordinates Qe and Q, and has
an effective mass p and frequency co. Pe and P, are
used to represent the conjugate momenta.

An effective Hamiltonian for this system can be
obtained by writing V„;b+P Jz in a Taylor series in
the vibrational coordinates and keeping only the
lowest-order terms. Each term is required to
transform as the totally symmetric A, irreducible
representation to guarantee that the Hamiltonian is
invariant. The effective Hamiltonian can be written
as

P —P 0+4 I +P //+AD Q+

where

~H . (Pe+P )+ }M (Qe+Q
2p

~z, =Vi(QeI'e+Q. @'.»
~x =Vil(Q'.—Qe) &e+2QeQ. @'.)

~~ = V3[Qe(3Q'.—Qe) l~

The terms shown are the Hamiltonians for a two-

dimensional harmonic oscillator (4 H), a coupling
(P'I. ) which is linear in Q, the lowest-order non-
linear coupling ( A N } which is quadratic in Q, and
the lowest-order anharmonicity ( P'z ) which is cu-
bic in Q. The V's are expansion coefficients serving
as parameters indicating the relative strength of
each term. Vi is the same as the V used by other au-
thors. ' We will use the following dimensionless
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quantities as measures of the strengths of the linear
coupling, nonlinear coupling, and anharmonic
terms:

Kr. =(Vi /fico)( A'/2pco)'/',

KN (V—2—/fuu)( A'/2@co),

Kq ——( V3 /fico )( Ii/2pco) /

Note that E~ can be written as
' 1/'2

JT
Eg ——

where EJT is the Jahn- Teller stabilization energy. '

The Schrodinger equation can be solved as a ma-
trix eigenvalue problem by rewriting the above
Hamiltonian in terms of ladder operators (see the
Appendix):

1
(pcoQ iP), —

v'2p fico

C= (pcog+iP) .1

2p fin)

By considering only the two-dimensional harmonic
oscillator term 4 Ic, the eigenfunctions can be writ-
ten as

I
ns) I n, ) I

S), where no and n, are harmon-
ic excitation numbers for the 8 and e partners of the
vibrational mode and S signifies the 8 or e orbital
state. These functions could serve as a basis for
solving the whole problem, however, the remainingte™~ L +PPic+A q+ mix these basis func-
tions, and the total Hamiltonian would be a fairly
dense matrix. Choosing a different basis can simpli-

fy the problem by making the Hamiltonian matrix
sparse (mostly zeros).

A particularly convenient basis which gives a
sparse Hamiltonian matrix can be generated using
the linear-coupling term ~~ . By starting on the
lowest state, I0) I

0)
I
8) (or

I
0) I0)

I
e)},repeated

operation with the raising part of 4 L generates a
series of zero-coupling functions, all transforming
like the E irreducible representation of the group O.
Each operation with A q+ produces a new function
with N =n8+ n, (the vibrational excitation number)
larger by 1 ~ Some of these symmetrized zero-
coupling functions are shown in Table I. A parallel
series of functions is generated by starting with the
N=l function which is orthogonal to the N=l
function of the first series, then again by starting
with a function with X=2 orthogonal to the N =2
functions in the first two series, etc. (This technique
is similar to a Lanczos method applied to a system
with high degeneracy. ' ' ) Each series is labeled
with a quantum number M (equal to 0 for the first
series, equal to 1 for the second, etc.), and these are
schematically illustrated in Fig. 1. The Appendix
gives more detail on this basis generating process.

The linear-coupling term of the Hamiltonian 4 L

has matrix elements only between adjacent states
with the same M value (AN=+1, 6M=0}. The
harmonic oscillator term 4 8 has only diagonal ma-
trix elements (BN=O,™0).As a result the
linear-coupling Hamiltonian P'H+P I consists of a
semi-infinite number of blocks of semi-infinite tridi-
agonal matrices. Higher-order terms contribute ad-
ditional nonzero matrix elements as shown by the
selection rules in Table II, but the Hamiltonian
remains sparse in this zero-coupling basis.

The matrix elements for 4 r, , A iv, and 4 ~ were
found inductively. For many states with the lower
values of N and M, the matrix elements were com-

TABLE I. Parts of tm o series of normalized zero-coupling basis functions generated by
[A c+]n

I
0)

I
0)

I
8) for M=0 (8 partner of E representation) states and by

[4 c+] '
I

N=1, M=1,A ) ifor M=1 (Ai representation) states. These are referred to as
the symmetrized zero-coupling states. The basis functions on the right are written as

I ne)
I
n, ) I

S), where S stands for the partner of the E orbital state (either 8 or e), and

N =ne+n, .

Zero-coupling basis functions

IN=0M=O, 8&= Io& Io& I8&

2,0,8)=(1/v2)(
I

2&
I

0&
I
8&+

I
0&

I
2&

I
8&)

I
3,0,8&=(1/2i »[~/3( IO&

I
3&

I
~& —

I
3&

I
o&

I 8&)+I» I
»

I
~& —

I » I
»

I
8&]

Nl, MI, A, )=(1/V2)(I0)
I
1) fe)+ I 1) f0) I8))

I
2, l,~i &= —,'( IO& I» I

8& —I» I0& I
8&+~2

I » I
1 &

I
~&)

f
3, 1,&g &=(1/2~2)[i 3(

I
3&

I
o&

I
8&+

I
o&

I
3&

I
~&)+

I

1 &
I

2&
I
8&+

I
2&

I
1&

I
~&]
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(E)

FIG. 1. Labels used for symmetrized zero-coupling
basis states.

puted by hand. The resulting values suggested
closed-form formulas for the matrix elements (see
the Appendix). These formulas were used when
solving the eigenvalue problem numerically on a
computer.

Our approach to the sparse matrix eigenvalue
problem allows consideration of a large number
(2000—16000) of initial basis states using modest
amounts of computer time and memory space.
Many physical insights also result from this ap-
proach. Computing eigenvalues and eigenvectors
for a tridiagonal matrix is a straightforward numeri-
cal task. So the approach is to first solve the

Term from

Hamiltonian

selection rules

b,M

~H
~L
~N

0
+1

0, +2

+1, +3

0
0

2(N even, M =0)
0(Ã odd, M=1)

+3(N +M odd)

2(M =0)
0(M =1)

+3(otherwise)

TABLE II. Matrix-element selection rules to illustrate
that nonzero matrix elements exist only between certain
symmetrized zero-coupling basis functions.

Matrix-element

3.0
3

O
0
Lal

2,0

laJ

II

3+~lo
LLI

Cl

I
0

~ 3
2
I

0
7

6
-S

1.0
i

2,0
KL

$.0 4.0

FIG. 2. Linear-coupling energies with respect to the
ground level. Units of hE are fur. Most of the levels in
the upper right-hand side of the figure were omitted.

Schrodinger equation including only terms through
linear coupling, P =A 0+%L. The Hamiltonian
matrix then consists only of blocks of tridiagonal
matrices in the zero-coupling basis. The eigenvalue
problem is solved numerically for each block to ob-
tain the lower energy states for each M value. This
approach was first used for the linear-coupling prob-
lem by Longuet-Higgins et al. ' M is a good quan-
tum number which behaves like an angular momen-
tum quantum number and N —M corresponds to the
excitation number for radial vibration. Figure 2
shows the variation of the energies of the various
linear-coupling states with the strength of the linear
coupling. In zero coupling the degeneracy of each
level is 2(N+ 1), each pair (8 and e or A i and A & ) of
the degenerate levels having a different M value.
For nonzero linear coupling the degeneracies are re-
duced to twofold and the lowest radial vibrational
state for each N value approaches the lowest state.
The second lowest radial vibrational state for each N
approaches an energy which is %co higher than the
lowest state; the third lowest radial vibrational state
for each N approaches an energy 2iric0 above the
ground state, etc. In addition to the energies, the
eigenvectors are also calculated for various values of
the linear-coupling strength, KL. For high energies
and large values of KL the clustering of levels
predicted by Sldnczewski and Moruzzi was ob-
served.
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The next step is to include the nonlinear coupling
P & and anharmonicity 4 z in the Hamiltonian.
For a given value of Ki, the lowest 5—20 radial vi-
brational states for each of the lowest 20—40 M
values, which result from the linear-coupling solu-
tion, are used as a new basis. The Hamiltonian ma-
trix in this basis consists of diagonal terms due to
A H+4 I and off-diagonal terms due to M~+~q.
The off-diagonal terms mix states of different M
values, so M is no longer a good quantum number.
However, states of different symmetry are not
mixed. Therefore, this final matrix can be reorgan-
ized into four blocks, two for the states transform-
ing like the two partners of the E irreducible repre-
sentation, one for the states transforming like the A2
representation, and one for the states transforming
like the Ai representation. (The nonlinear coupling
and anharmonicity split the A ~+A2 degeneracy
present for pure linear coupling, but the E states
remain degenerate. ) These final matrices are of a
size easily handled on a computer. This two-step
approach of first diagonalizing many separate tridi-
agonal linear-coupling matrices, reordering these
states according to energy, and then diagonalizing
reasonably sized matrices including nonlinear cou-
pling and anharmonicity allows us to calculate accu-
rately the energies and eigenfunctions of at least the
ten lowest-energy states for a wide range of KI, Klv,
and Eg.

The calculations were done on a National Ad-
vanced Systems AS/6-II computer using IBM
software. Standard EISPAcK subroutines were used
to tridiagonalize the matrices and obtain eigenvalues
and eigenvectors. Various size matrices were used.
For each M value in the linear-coupling computa-
tion the matrix was truncated at order 200—400, de-
pending on how many of the lower 5—20 eigenstates
were to be found. The number of M values con-
sidered was between 20—40. After solving the
linear-coupling eigenvalue problem, the 100—200
linear-coupling states found were grouped together,
reordered according to energy, and used to solve the
problem with nonlinear coupling and anharmonici-

t
ty. Approximately —of these states are of Hi+22

2
symmetry and —, of E symmetry. So the final ma-
trices are of order 65—134 for E states and 34—67
for A ~ or A2 states.

A wide range of coupling strengths El, K~, and
Eq were examined by this approach. By considering
how well the eigenfunctions converge as the matrix
size varies, one can set limits on the parameters for
which this method is valid. Converged results were
obtained for 1 &KL & 15. We did not do valid com-
putations outside this range as excessive amounts of
computer time and memory space would have been

required for KL & 15 and significant warping could
not be introduced by the terms used in A ~ and 4 z
for low KI. . More M values (more linear-coupling
matrices) had to be included for larger KL. More
linear-coupling eigenfunctions for each value of M
had to be used for the cases with smaller KI. values.
The warping (nonlinear coupling and/or anharmoni-
city) is conveniently measured in terms of the
parameter p/a,

p/a =16KI (Klv 2KI —Kg ) .

This p/a corresponds to the p/a parameter intro-
duced by O' Brien for the case of strong coupling.
The calculations were valid up to values of p/a of
about 100 for KI greater than 3. For values of KI
less than or equal to 3 the convergence was poor for
values of P/a which were about 3 for KL, ——1, 12 for
Kl ——2, and 60 for KL ——3. With only linear and
nonlinear coupling, the valid results extended to a
slightly larger (by -10%)p/a value than with only
linear coupling and anharmonicity. Note that even
though p/a is a useful parameter, this method al-
lows EI, E~, and E~ to be varied independently.

Once the eigenfunctions of the final states are ob-
tained, other useful quantities can be calculated.
Several authors ' have shown quantities called
reduction factors to be useful. By denoting a final
eigenstate as

~
i,S), where i is the relative excitation

number (i = 1 at the ground state) and S is the sym-
metry of the state, reduction factors can be defined
in terms of orbital operators as

Pkl = (k,E(0)
i
i& 2 i

l,E(e)),
q»= (k,E(e)

~

g'—, ~
I,E(e)),

rkj —(k,E(9)
~

@'
g ~

I,~ i )

rkl (k E(0)
I

@',
I
I ~2 ) ~

ski ( k,~ i I
l ~ 2 I

I ~2 )

Knowing the effect of an orbital operator on a sym-
metrized zero-coupling function and the com-
ponents of a final eigenfunction in terms of the
zero-coupling basis, we can easily compute values
for the reduction factors. A general formula for the
matrix elements of each orbital operator between the
symmetrized zero-coupling states was induced by
calculating several by hand and observing the result-
ing pattern of values. (This process is analogous to
that for terms in the Hamiltonian as explained in
the Appendix. ) The zero-coupling components of
the final eigenvectors are computed as part of the
solution to the eigenvalue problem. Numerical cal-
culation of the reduction factors is then done. Other
quantities that can be expressed in terms of orbital
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I,O

I- 0.8
C3

~06
O

CI

~ 0.2

I.O
(I)

I

3.0
(9)

I

4,0
(I6)

FIG. 4. Some reduction factors calculated as a func-
tion of pure linear coupling (strength is equal to EI.). The
reduction factors are defined in the text. The labels in
parentheses are the Jahn-Teller energies E» in units of
An).

two methods for at least the lowest 20 states and for
P/a(100. Even for lower coupling, agreement
remains good for the lower few energy levels. Fig-
ures 3(a)—3(c) demonstrate that the lower levels
behave qualitatively the same for different El..
However, the more highly excited levels mix and
behave differently, especially the ones near the first
(and higher) radial vibrational energy
(hE/%co=1. 0). For large EI.()6), where there are
ten or more energy levels below the first radial vi-
brational energy, behavior is so much like that
found by the strong-coupling approximation that
this can be called the strong-coupling region. Situa-
tions with smaller EI. (down to what we can feasibly
calculate, Er, —1) can be thought of as being in the
intermediate-coupling region but on the strong-
coupling side. Though the higher energies are not
calculable by the strong-coupling approximation, it
agrees well with our exact calculation for the lower
energies both in the strong-coupling region and the
intermediate-coupling region.

Knowing the eigenvectors permitted us to calcu-
late important matrix elements. Several reduction
factors (matrix elements of the orbital operators}
were calculated. Figure 4 is a plot of reduction fac-
tors as a function of linear-coupling strength only.
Their behavior is identical to that shown by Ham,
whereptt and q» correspond to thep and q of Ham.
Figure 5 shows reduction factors for some lower en-

ergy states as a function of P/a for El ——3.0. Their
behavior is almost identical to that found by Setser
and Estle, who used the strong-coupling approxi-
mation. (The differences are on the order of a few
percent or less. }

The two ground-state reduction factors p» and

O.6~
0.4-

I r2+I

q,l
(0

o 0,2
C3

0
O
~~ -0.2
C3
~~ -0,4

KL = 3.0

-0.6
-Ir~~l&

I

30IO 20
p/a = l6KL KN

(p/ = 32KL KA FOR DASHED CURVES)

FIG. 5. Some reduction factors calculated as a func-
tion of warping, Pla=16EL, (ltN 2EL,Eq)—, for the inter-
intermediate-coupling case of ECI. ——3.0. The curves for
the cases of anharmonicity (EN ——0) and nonlinear cou-
pling Ez ——0) are indistinguishable except for r &2 and r&3.
In these instances the anharmonic case is shown as dashed
lines.

q~~ have been of particular interest. For linear cou-
pling to a single E mode, one has 1 —2q ~ i+pi ——0.
However, if more than one E mode is coupled
linearly then this becomes an inequality (Refs. 14
and 15) 1 —2qti+ptt &0. Slonczewski showed for
strong linear coupling that q~i varies with warping,
P/a, having a maximum value of —, for P/a zero
and very large. The minimum value is about 0.484
and occurs at P/a 10. Since pit ——0 for strong
coupling this gives 2q it —pi i values from 0.968 to 1.
Our intermediate-coupling calculations give virtual-
ly identical behavior and therefore confirm that a
value of 1 —2qii —pti significantly greater than z'ero

must arise from inultimode coupling or from a sys-
tem in which weak intermediate coupling occurs.

One use of the intermediate-coupling calculations
is fitting experimental data. Guha and Chase ob-
tained Raman spectra of a doublet Jahn-Teller sys-
tem, Cu2+ in CaO. They also showed how matrix
elements of the polarizability tensor (see the Appen-
dix) can be used to find transition probabilities and
intensities. We have tried to fit their data with po-
larizability operator matrix elements found from our
calculations. These efforts have not been successful,
but the closest fits occur for EL ——3.0—4.0 and
P/a =4—5. The system thus appears to be in the in-
termediate Jahn-Teller coupling range. Guha and
Chase found that the strong-coupling approxima-
tion of O' Brien does not give a good fit to the data
either. A poor. fit from our intermediate-coupling
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calculations is not surprising in light of the fact that
for these coupling parameters they have not signifi-
cantly modified the results of the strong-coupling
calculations for other quantities (e.g., the reduction
factors) for the lower states. In order to explain the
Raman scattering data other considerations, such
as orbital coupling to multiple vibrational
modes, ' are necessary.

IV. CONCLUSIONS

This paper presents a new approach to numerical
calculations for the Jahn-Teller system of an orbital
doublet coupled to one doubly degenerate vibrational
mode. Several useful features of this approach have
been demonstrated. The relative values of the linear
and nonlinear vibronic coupling and of the harmon-
ic and anharmonic terms in the potential can be
varied independently, allowing one to determine the
effects of each contribution. Energies and eigen-
functions of many excited states can be found and
used to calculate useful matrix elements such as
reduction factors and polarizability operators. The
results are valid for intermediate to strong linear
coupling and for a wide range of P/u. All results
are "exact,"being limited only by the size and speed
of the computer being used.

Although any other general matrix approach
would ultimately be limited by the speed and
memory capacity of the computer being used, such
limitations are not as severe for the method used
here. An extremely large matrix (of order
4000—16000) is diagonalized by transforming to a
new basis, breaking down the first step of the prob-
lem into 20—40 smaller tridiagonal matrices (of or-
der 200—400 each}. The last step of the problem
need only use 100—200 of the eigenstates from the
first step to obtain the lower energy states. Thus
this method effectively solves a huge (approximately
16000&( 16000) eigenvalue problem. The lower
10—20 eigenstates can be found for linear-coupling
strengths in the range 1 &El & 15 plus a reasonable
range of nonlinear coupling and anharmonicity.
Significant additional amounts of computer time

I

and memory space would be required to appreciably
expand this range, consequently, such calculations
were not judged worthwhile.

Although this new, versatile, precise approach ex-
tends the range of calculations and has advantages
over previous strong-coupling approximation calcu-
lations, ' no qualitatively new physical insights
have been gained concerning the lowest three states,
those of most importance in many experiments.
Those states whose energies exceed that of the
ground state by about fur or more do not occur in
strong-coupling calculations. Avoided crossings of
states corresponding to differing numbers of radial
excitations occur as P/a is varied. These calcula-
tions covered the range of EiT, the Jahn-Teller ener-

gy, from about fico up to about 200 times fico. The
range of values from EiT /fico equal to 1 down to
0.1, the weak coupling side of intermediate coupling
was not explored because of the singular nature of
the lowest-order term in A z and the very small
range of P/a which could be considered using the
lowest-order term in A N.

APPENDIX

The effect of various operators on basis functions
must be known in order to do matrix calculations
such as those in this paper. This information can be
used to generate matrices for the operators. Those
for operators appearing in the Hamiltonian are
needed to calculate energies and eigenfunctions.
Knowing final-state eigenfunctions in terms of basis
functions and the matrix elements of operators
among these basis functions, one can obtain final-
state matrix elements like reduction factors (from
orbital operators) or Raman transition intensities
(from polarizability operators). The first step is to
obtain the symmetrized zero-coupling basis func-
tions using the linear-coupling term P L from the
Hamiltonian. Then the effect of other terms
(4 N, P z) on these basis functions can be found.

The terms of the effective Hamiltonian written in
terms of raising (C ) and lowering (C) ladder opera-
tors become

4 I, —Icr,fico[(Cg+Cg)$'g+(C, +C—, ) /I, ],
4 N %~fico[[(C,——+C, )—(Cg +Cg)+2(N, Ng)]$'g+2[(Cg+Cg)(C—,+C, )]S',],
4 g =%glue[3(Cg+Cg)(C, +C,+2N, Ng} Cg —Cg+—3Cg]—W,

where

C = -(pcoQ —iP), C= (pcoQ+iP), N=C C,1 = 1

v'2p fico &2p iric0

Cg
~
ng) =(ng+1)'~i

~
ng+1}, Cg

~

ng}=(ng)'~
~
ng 1}, Ng —

~
ng) =ng

~
ng} .
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TABLE III. Matrix elements of A ~ between zero-coupling basis functions.

For AM=0, M=1,N odd (For A~-symmetry states —with Aq states the sign is opposite)
(N', M = 11 4 ti I

N M= 1 ) =ficoK~5iiM [v'(N —1)( N+1) 5~,~ i+2(N +1)5',~+5~,~~iv (N + 1)(N+3)]
For EM=2, M=O or 2,N even (For Eq-symmetry states —with E, states the sign is opposite)

(N', M'=2l 4 x IN, M=O) =ficoK~5ii ii+i[25~ ~v N(N+2)+(5~N+i+5~~ i)v'N'(N'+2)]
For hM =3,N+M odd

(N', M'
I
~~

I
N, M ) = Ra)K—~S' ii+3[25~ ~ V (N —M —1)(N +M+3) +5~ N +i@{N—M —3)(N —M —1)

+5~ ~' iv (N +M +3)(N +M +S)]
Note (N', M'I 4 ~ INM)=(NM

I
P'~IN', M') can be used to find the other nonzero matrix elements

All other cases (N', M'
I
8 N I

N, M ) =0

The subscripts on the ladder operators refer to the components of the doubly degenerate vibrational normal
mode. The raising portion of the A L term is used to generate the symmetrized zero-coupling basis functions.
To illustrate this, start with the lowest (N =O,M =0) 8-partner state,

IN=0, M=0, 8)= lne ——0& I" =0& le&

By using A I+ on this,

8 I I
N=O, M =0,8) =fin)KI (CeS'e+C, S',)

I
ne ——0)

I
n, =o) 18)

=~&~(—
I
ne= 1 &

I
n. =o&18&+

I
ne=o&

I n.= 1 &
I

&& &

( —
I

1 &
I

o&
I
8&+

I
0&

I
1 &

I
e&)

2

We associate the normalized function obtained in this way with

I
N=1,M=0, 8)=

Operating on this function again with A L+ gives

I
N=2, M=0, 8) = '

(12&
I
0&18)+ I

0)12)
I
e&) .

2

TABLE IV. Matrix elements of P q between zero-coupling basis functions.

For EM=0,M =1 (Between A ~ states —with A2 states the sign is opposite)
(N', M'

I
~, I

N M & =~K„xiii[5„x,/2(I +1)(I+2)(I+ 3)+35„„+,/2J(I+1}{I+2)]
For ddif =2,M=0 or 2 (Between Ee states —with E, states the sign is opposite)

(N, M
I
P'g

I
N M) =ficoKg[5+' ++3(5'' I+i+5M'M i)v 2(I ~1)(I+2)(I+3)

+ 35N', ii+ l (5M',I+2+5M', M —2)+2J(I+ 1 )(I + 2 ) ]
For hM =3

(N', M'
I
4 g I

NM )= ficoKg [5N' ++3[5~'—ii+3V 2(J +1)(J+2)(J+3)+5M' ii 3V 2(I+ 1 )(I+2)(I+3)]
+35N ii+i[5M' ii+3''2I(J+1)(J+2)+5' I 3V 2J(I+1)(I+2)]j

Additional nonzero terms obtained by noting that (P'q) is symmetric

All other cases

(N, M
I
~„IN, M&=0

where

For N+M even I=(N —M)/2, J=(N+M)/2
For N+M odd I=(N —M —1)/2, J=(N+M+1)/2
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Successive operation with Pi L+ allows one to obtain all the higher N =ng+n, functions for M =0. (A parallel
set of functions for M =0 is obtained by starting with the

~
N =O,M =O,e) state. ) Note that the degeneracy of

each N level is 2(N+1}.
By starting again with an N = 1 f—unction orthonormal to

~

N =1,M =0,8),

i
N=1,M=1,A, ) = 1

2
(

~
ng ——0)

~
n, =l)

[ e)+ [ ng 1)
~

n——,=0) [8)),

a set of functions for M = 1 can be generated. For instance, the N =2 function is

4 I+, ~N=1,M=1 A)) =2(fin)KL)[ —,( —~2) ~0)
~

8)+ ~0)
~
2)

~

8)+& 2~ 1)
~
1)

~

e))] .

So

IN=»M=1 Ai & =-, ( —12& I o&18&+10&
I
2&18&+v 211&

I
1&

I
&&) .

Successive operation with A L+ on these functions would give all functions
~
N, M=1,A& ). The next step

would be to generate a series of functions for M=2 by starting with a function orthogonal to both

~

N=2 M= 1,At ) and
~

N=2 M=0, 8). Continuing on in this manner, one can generate all the functions

~
N, M,S) (see Table I}. This is how the symmetrized zero-coupling basis functions are generated using the

linear-coupling term 4 I . The result is a basis in which ( 4 I ) is tridiagonal and connects only states of the
same M value:

T

&N+M, N+M even
(N, M,S

~

A L ~N, M,S)=5' M5~~+)ficoKL

&N+M+2, N+M even
+ I' &&'—~

Other terms in the Hamiltonian have matrix ele-
ments between these symmetrized zero-coupling
(ZC) states. The harmonic term A Ir is diagonal in
this basis:

(N', M', S
~

MH
~

N M,S)=trtrg(N+1)5iv, ~5', sr .

The nonlinear and anharmonic terms ( A ~+A z)
have more complicated matrix elements in this ZC
basis. Operation with 4 z (written in terms of
ladder operators) on several of the ZC basis func-
tions indicated a pattern of nonzero matrix elements

I

between the ZC states. This pattern, for as many
matrix elements as frere calculated by hand, fits the
formulas given in Table III. Similarly, a pattern for
(A z) values was induced by operating on ZC
functions with the 4 q term (Table IV). These ma-
trix elements between ZC states can be calculated on
a computer following the formulas and used when
solving the eigenvalue problem for the total Hamil-
tonlan~ A =A 0+4 L +P ~+A g.

The process used for solving the total problem is
to first solve the eigenvalue problem for 4 H+4 I

TABLE V. Matrix elements of orbital operators between zero-coupling states (zero-coupling reduction factors). All ma-
trix elements are symmetric except those of i W2.

Orbital

operator

(N', M', S'
~

w ~N, M, S }=5~~5M M5, ,,
(N', M', S'=E(e) or A2

~

(iraq)

) N, M,S=E(8) or A~ }=(—1) + +'5~,~5M, M

(N', M', S'=E(8) or A) ~(t Mg))N, M,S=E(e) or A2}=(—1) + 5pr~5sr, M

M=O, N even (N', M'=O, S'
~

I'g~N M=O, S}=5~,~(5,,, 5gg)—
N+M odd (N', M', S'

~

g'g) N, M, S}=5~,~5~,M+~(5gg+5gq, +5q, ,g+5,,,+5,,F2+4,,)

M=O, N even &N', M'=O, S'
~

g',
~
N M=O, S}=5~~(5g,,+5,,g)

N+M odd (N', M', S
~

g',
~
N, M, S }=5N,~5sr, ~+(( 5g, 5gg —5,g—

, ,,+5,—g+5~g, +5,g, g)

1 if S'=a and S=P
where S= symmetry of state [A~,A2, E(8),E(e)] and 5 p= 'O
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TABLE VI. Matrix elements of polarizability operators 9'i between zero-coupling basis states. All elements in the first

two columns are symmetric; all elements in the third column are antisymmetric. Otherwise, the other elements are equal

to 0. (The following formulas are for A ~ and Ee symmetry states only. )

&3=Q.@'.—Qe@'e +4=QW 9 S=lQ4&2

M=0, 1

Neven(N+1, M=1
i
%3iN M —0)

=VN+2
(N+1,M =0

i
%4iN, M =0)

, V'—N—+2

(N+ 1,M =0
i

9'&
i N, M =0)

, V'N——+2

N odd(N, M=1
i
9'3

i
N+1,M =0)

=V'N+1
(N il, M =Oi %4iN, M =0)

= ——V'N+ 1

(N+1,M=Oi e, iN, M=O)
VN+—1

All M
N+M even(N', M 2

i
H—3 i N, M )

5~ ~+—,VN —M+2
—5N, nr —P N+M

(N', M 1
i
9'4i—N, M)

1=5~ ~+, V'N —M—+2
1+4",nr i2V'N+M

(N', M —1
i
%5 iN, M)

1
=5pp, ~4. , 2

V'N —M+2
1+4,x i , V'N+M—

N+M odd(N', M+2
i
9'3

i
N, M )

5~ z+iV —N+M+3
—5~',~,V N —M —1

(N, M —1
i +4 IN, M)

1=5~.~+, VN —M— +1
+5„„]

&
V N+M+1

(N', M —1
i
R, iN, M)

1
5~ ~+(—VN —M— +1

1—5~~ i VN+M—+1

to obtain linear-coupling (LC) eigenfunctions. Then
the total problem is solved with A expressed in
terms of the LC basis. The (A H+P L) matrix
elements are the eigenvalues from the first part of
the solution. The ( 4 ~+4 z ) matrix elements are
found relating back to the ZC basis:

(+Lc(i) i (~„+~x}I
+Lc(~) &

= g &qzc(i)
I
(~,+~a)

I
'Bc(J}&

P(A, )=a;&+bi( 5'ege+ 8',Q,),
P(A, ) =a,i Mz+b2($'eg @Qe)—
P(E(8))=a38' e+b3( —g ege+@'4Q4)

+C3ge&+d3™f2Q,,

P(E(e))=a38 p+b3( I egg+ N 4ge)

+C3Q, ~—d3i ~2ge

x&+zc(J')
I
+Lc(m}&&+Lc(il I qzc(')&

where
i
+Lc(1})is a linear-coupling basis function

and
i
'Pzc(i)) is a zero —linear-coupling basis func-

tion. The LC functions are obtained as eigenvectors
in terms of the ZC functions when the linear-

coupling problem ( A H+A L ) is solved.
To obtain reduction factor and Raman polariza-

bility operator matrix elements, an approach is used
similar to that for finding ( A N+A, ). Formulas
are developed for matrix elements among ZC states
(Table V); the matrix elements among LC states are
then found by using the ZC values and the transfor-
mation between the ZC and LC bases. The reduc-
tion factors are easy to obtain as they are defined in
the text as matrix elements of the orbital operators.
The Ram an polarizability tensor is slightly more
complicated. The polarizability operator can be bro-
ken down into symmetrized parts and expanded in
terms of orbital operators,

where a;, b;, c;, and d; are arbitrary expansion coef-
ficients. Guha and Chase show how matrix ele-

ments of these operators are used to calculate the in-

tensities of lines in Raman spectra. Knowing the
form of any of these quantities in terms of orbital
and ladder operators, one can obtain formulas for
the effect of the operator quantity on ZC states
(Table VI). Matrix elements between the LC states
can then be calculated. This is the same as the pro-
cess illustrated above for 4 N and A z. The final
step in the solution gives the final eigenstates as vec-
tors whose components are LC states. Since matrix
elements among the LC states are known, matrix
elements among the final states (FS) can easily be
found. For an operator 0& ..

(eFs(i)
i O, i

eFs(ml)

g & q'Fs(i)
I
+Lc(i) & & PLc(J) I

'PFS(~ }&

«q'Lc(i)
I op I

'pLc(j) & .
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