
PHYSICAL REVIEW B VOLUME 27, NUMBER 1 1 JANUARY 1983
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We present an analysis of the spin-wave spectrum of a semi-infinite stack of ferromagnet-
ic films, each of which is separated by a gap filled by a nonmagnetic medium. This is done
within a formalism which includes the Zeeman and dipolar contributions to the spin-wave

energy, with exchange omitted. We then calculate the spin-wave contribution to the Bril-
louin spectrum of such a system, in the backscattering geometry. The aim is to compare the
spectrum for scattering from a sample with this geometry, with that from an isolated film.
Two features unique to the stack appear in the spectrum. Each film, in isolation, possesses
surface spin waves on its boundaries (Damon-Eshbach waves). In the layered geometry
these interact to form a band of excitations of the array, which has nonvanishing component
of wave vector normal to the stack. We find a feature in the spectrum associated with

scattering from this band of modes; the position of the peak is controlled by dispersion in-

troduced by interfilm interactions. Under certain conditions, the semi-infinite stack
possesses a surface spin wave, whose eigenfunction is a linear superposition of individual
film states, with amplitude that decays to zero as one moves down into the stack
interior. This mode also produces a distinct feature in the light-scattering spectrum. These
points are illustrated with a series of calculations of the spectrum, for parameters charac-
teristic of layered ultrathin coherent structures.

I. INTRODUCTION

An intriguing development in materials science is
the appearance of methods which allow one to syn-
thesize samples in the form of a sequence of very
thin layers of different material, with the thickness
and composition of each element subject to precise
control. When the layer thicknesses are very small,
for example, on the order of a few angstroms, the re-
sulting entity may possess unique physical proper-
ties distinct from those of the constituents of the in-
dividual layers. Most particularly, by means of a
sputtering technique, one may prepare specimens
from two metals, each of which is present as a layer
with thickness from ten to perhaps a few hundred
angstroms. ' Samples prepared in this manner have
been referred to as layered ultrathin coherent struc-
tures (LUCS).

The spectrum of elementary excitations in layered
structures is of interest, most particularly if there
are features unique to the sample that are also acces-

sible to experimental study. Comparison between
data, and the theory appropriate to a model struc-
ture may then allow one to assess how close the
sample comes to the idealized forms one wishes to
realize in practice. In LUCS samples, which are not
prepared in a low-temperature environment, dif-
fusion of atoms across the interface between two
successive layers may lead to a composition profile
softened substantially, from an ideal "square-wave"
spatial modulation.

In the recent literature, LUCS samples have been
described in which one of the two materials is nickel
metal which forms a ferromagnetic film of thickness
d&, and the second is a nonmagnetic metal of thick-
ness d2. The idealized version of the structure is
thus a finite stack of ferromagnetic films of thick-
ness d~, separated by magnetically "dead" layers of
thickness d2. The purpose of this paper is to explore
the nature of the spin-wave spectrum of such a sys-
tem, for the case where we have a semi-infinite stack
of ferromagnetic films. We do this within the
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framework of a description valid for modes whose
eigenfunctions vary slowly on the scale of the lattice
constant. Then the dominant contribution to the
spin-wave energy comes from dipolar and Zeeman
energy, and exchange effects may be ignored. In
this limit, a number of key features of the excitation
spectrum may be extracted by analytic methods and
we shall see aspects unique to the LUCS structures.
Since the Brillouin scattering of light in a back-
scattering geometry has proved a powerful probe of
spin waves on metal surfaces and in films, and
the data have agreed with the theory, ' ' we also
calculate the light-scattering spectrum expected for
LUCS structures.

In Sec. II we discuss the spin-wave excitations of
an infinitely extended stack of films, and also for a
semi-infinite one. Then we turn to the light-
scattering spectrum in Sec. III. Here we require cer-
tain Green's functions which may also prove useful
in other contexts. We remark that while we ignore
exchange effects in the present discussion, they may
be included straightforwardly with a considerable
increase in algebraic complexity. From our earlier
work, we see that no difficulty in principle is en-
countered here. Also, the methods used here to ex-
amine the elementary excitation spectrum and to
construct the Green's functions are readily extended
to discuss the nature of other elementary excitations
in these structures, such as the acoustical normal
modes.

II. SPIN-WAVE EXCITATIONS
IN A SEMI-INFINITE STACK

OF FERROMAGNETIC FILMS:
THE DIPOLAR REGIME

This section is devoted to the analysis of the
spin-wave spectrum of a semi-infinite stack of fer-
romagnetic films such as that illustrated in Fig. 1 ~

In each film the magnetization M, and applied mag-
netic field Ho are parallel to the film surfaces, and
parallel to the z direction. In what follows, the coor-
dinate system is oriented so the y direction is normal
to the interfaces in the structure. Finally, d& is the
thickness of each magnetic film, and d2 is the thick-
ness of the nonmagnetic medium between each mag-
netic layer.

As remarked in Sec. I, we shall ignore exchange in
the analysis presented here, and we begin by com-
menting on the regime of validity of this assump-
tion. First, consider a spin wave of wave vector Q
which propagates in the plane perpendicular to the
magnetization, in a ferromagnet of infinite spatial
extent. With frequency measured in units of mag-
netic field, and with D, the exchange stiffness con-
stant, and Ho, the applied magnetic field, the spin-

NONMAGNETIC MEDIUM

XXX/8;
NONMAGNETIC MEDIUM

ta,
dp

da ~V

NEER-:;;;;;:;-X.WXXEXX/r.

NONMAGNETIC MEDIUM 42

Wxxixx;;;::;:::e.;Wiiixxx~ I a,

YACUUM

FIG. 1. Sample geometry considered in the present pa-
per. One has a semi-infinite stack of ferromagnetic films
each of thickness d &, and they are separated by a nonmag-
netic film of thickness d2 ~

4' M, exp( ——2Q~~d')]' (2.2)

In film so thin that m. D/d ~
is large compared to ei-

wave dispersion relation is given by the well-known
expression

Q(Q) =-[(H, +DQ')(H, +4~M'+DQ')]'~'.

(2.1)

In what follows, we assume Ho and 4~M, are com-
parable in magnitude.

In an isolated ferromagnetic film of thickness d&,
one encounters standing-spin-wave resonances with
wave-vector component Q' normal to the surface
given by Qz"'=-n~ld, . In the light-scattering ex-

periments of interest in Sec. III, one detects these
standing mode resonances, ' ' and the spin waves

probed in the experiment have wave vector
(I) (S)

Q~ parallel to the surface equal to k~~
—k~~,

(I) (S)where
II

and
II

are the projections of the wave
vector of the incident and scattered photon on the
plane parallel to the film surface. For all materials
of interest to us, one has DQ~~ very small compared
to either Ho or 4m.M„and if the film is so thick that
m D/d& is also very much smaller than these two
quantities, then the influence of exchange can be
safely ignored.

An isolated ferromagnetic film also has surface
spin waves which propagate along the film. These
modes, referred to frequently as the l3amon-
Eshbach modes, " have the dispersion relation (in
the absence of exchange, and with propagation per-
pendicular to the field)

Q, (Qii) =[(H +2 M, )
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V X hz(x, t) =0,
and so one writes

(2.3)

ther Hp 01' ATM„ the spin-wave spectrum consists
of a surface mode close in frequency to Eq. (2.2),
and high-frequency, exchange-dominated, standing-
spin-wave modes with frequency Q(Q) -=D(Q&"') .
Theoretical studies show that even in very thin films
of Fe or Ni exchange shifts the frequency of the sur-
face spin wave only very slightly from the form in
Eq. (2.2), for values of Q~~ of interest in light-
scattering studies. Furthermore, in this very-thin-
film limit, the surface-spin-wave features are by far
the most intense features in the spectrum. This is
clearly illustrated in the paper by Camley and
Grimsditch, who compare theoretical and experi-
inental light-scattering spectra for very thin films.
Note that when Q~~d i && 1, Q, (Q~~) lies very close to
[Hp(Hp+4aM, )]', which is the frequency of the
uniform mode discussed by Kittel. ' The surface-
spin-wave eigenfunction is thus uniform across the
film, so its excitation energy is influenced little by
exchange.

So when mD/d i is. very large compared to Hp
and AM„ th.e low-lying surface spin waves are well

described by a theory which ignores exchange, and
these dominate the light-scattering spectrum. If a
number of such films are brought together to form a
stack as in Fig. 1, the surface modes on the various
films interact to form a band of excitations capable
of propagating normal to the interface. The dipolar
theory provides a fully adequate description of this
band, which we shall see contributes strongly to the
light-scattering spectrum.

Thus we conclude that the theory which ignores
exchange is useful both in the thin-film limit (of pri-
mary interest here), as well as in the more obvious
thick-film limit. For films where mD/di is c.om-
parable in magnitude to both Hp or 4m.M„quite
clearly a full theory is required.

We consider first the description of spin-wave ex-
citations in an infinitely extended stack, then we
turn to the semi-infinite array illustrated in Fig. 1.
In the magnetostatic limit, we consider the demag-
netizing field h~(x, t) generated by the spin motion,
which has vanishing curl,

and

X„y(Q ) = —Xy„(Q ) =iX2(Q ),
where

M, Q
X2(Q) =

H —Q —i 20 I

(2.7b)

(2.7c)

Throughout the paper we measure frequency in
units of magnetic field, and I is a phenomenological
spin-damping time. It is easy to show that in the
magnetic films, in the coordinate system of Fig. 1,
yM satisfies

d'PM ~ gM
V y~+4mXi(Q) + =0,

Bx Bp
(2.8)

an anisotropic form of Laplace's equations some-
times referred to as the Walker equation. In the
nonmagnetic film and in the vacuum, in essence

X&
—=0, so we have

V yM ——0. (2 9)

One basic task in this section is to solve this set of
equations subject to the constraint that tangential
components of hd are conserved across each inter-
face, along with normal b. Translational invariance
in the two directions parallel to the interface (within
the xz plane) allows us to seek solutions of the form

ig„x iQ z
%M(x 3 z) e e @M(J)

(2.10)

where the subscript
~ ~

is appended to vectors which
lie in the xz plane.

magnetic susceptibility tensor which, in the long-
wavelength limit, depends only on the frequency Q
of the spin motion. Thus

b = hg+4nX(Q.
)hd, (2.6)

where the nonvanishing elements of the tensor X(Q )

in the ferromagnet are

M, Hp
X (Q) =Xy,, (Q) =—Xi(Q) =

Hp —0 —i 2Q I

(2.7a)

h~(x, t) = —Vp~(x, t), (2.4)

V b=0. (2.5)

In the magnetic medium b and hd are related by the

where p~(x, t) is the magnetic potential. If M(x, t)
is the time and spatially varying magnetization asso-
ciated with the spins, we require the field
b = hd+4m M which has vanishing divergence:

A. The infinite stack of ferromagnetic films

We begin by considering an infinitely extended
stack of ferromagnetic films of thickness di with
nonmagnetic spacer material of thickness d2 inter-
spersed, as in Fig. i. Now we have a Bloch theorem
which applies to the variation of the magnetic po-
tential in the direction normal to the interfaces. We
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thus seek solutions of the equations above for which

@M(y) satisfies

—iQ&(y —nL) (+ ) +Q(y —nL —d& )u(y)=e (u e

@sr(y+L)=e ' C'~(y) (2.11)
( —) —Q(y —nL) ~+u e (2.16)

so 4))r(y) is a linear combination of exp(+Q)(y) and
exp( —Q((y). This allows us to write u(y) in the
form

—iQy(y —nL) (+) Q)~ [y —(n+ &)L]
u (y)=e (u e

+u e ),( )
—Q)((y —nL —d$ )

nL+d) &y&(n+1)L .

(2.14)

The variation of 4M(y) within each ferromagnetic
film may be discussed in a similar manner. We
shall write

g„=g~)cos(f), (2.15a)

Q, =Q~(sin(g ),
where 1( is the angle between Q) and the x axis.
Then within each ferromagnetic film, we may write

where L =d1+d2 is the length of a "unit cell" in
the direction normal to the interfaces. We arrange
the geometry as follows. The nth unit cell consists
of a ferromagnet film which lies between y =nL and

y =nL+d1, followed by a nonmagnetic film be-
tweeny =nL+d) andy =(n+1)L. We then write

(2.12)

where u (y), in analogy with the form used in elect-
ron energy-band theory, is necessarily periodic:

u (y +nL) =u (y) .

Now inside each nonmagnetic film, we have

where

Img &0 (2.17)

and with the damping constant set equal to zero,

n~ =H, (H, +4nM, )
.=Hoa,

O' =IIo(Ho+4mm, cos'q) .

(2.18a)

(2.18b)

(2. 19)

while the same condition at y =nL +d
& gives us

u'+'+u' 'e '=u'+'e ') '+u' '. (22O)

Then continuity of normal b(b~) at y =nL provides
a third relation:

If we have 0 &assr or II &0, Q~( &s real while if
Q & 0 & QM, Q is pure imaginary. As indicated in

Eq. (2.17), in the latter case, we choose Img posi-
tive. If we consider an infinitely extended ferromag-
net, and examine spin waves with wave vector

Q=Q))(x cosf+z sing)+yQ),

where Q(( and f are fixed and Qj is allowed to vary,
then 0 is the smallest spin-wave frequency

(Q) =0) and QM is the maximum (Q~=N)), so II
and Q~ are the lower and upper bounds of the bulk
spin-wave manifold.

We now must turn to the boundary conditions at
the various interfaces. Continuity of @M(y) ensures
continuity of hd, and application of this condition at

y =nL leads to

v(+)e ~ )+v( —) e
'2~ (u(+)+ u( —)e &))~z)

[Q(1+4m X) )+4vrg)
~

cosgX2]v'+'e ' —[Q(1+4~X,) —4vrg)) cos()'jX2]v' ' =
Q~ ~e

' [u'+' u' 'e ' '—],
(2.21)

and the final condition is conservation of normal b at y =nL +d &
..

[Q(1+4~X))+4~Q()cosl('X ]v + —[Q(I+4~X))—4~Q))co'PX2]
(2.22)

We thus have four homogeneous equations in the four amplitudes u'+', u' ', u '+', and u ' '. The equations
admit a nontrivial solution only if the determinant formed from the coefficients vanishes, and this requirement
provides us with a dispersion relation for waves which propagate normal to the plane interfaces; i.e., for a par-
ticular choice of Q(( and g), the determinant vanishes for one particular frequency 0 =Q(Q)), g) ). In general,
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this dispersion relation must be studied by numerical methods, but there are special limits where the problem
admits an analytic solution. We focus our attention on these in the present paper. We continue the general
discussion, and then turn to the special limits shortly.

It is convenient to introduce r =QIQII, and two quantities A'-' defined by

A'+-I=r ( I+4m X1)+4m Xzcosl( . (2.23)

Then the condition that Eqs. (2.19)—(2.22) admits a nontrivial solution may be written

sinh(Qd1)sinh(Qlldz)(1+A'+'A' ') ~[cosh(gd, )cosh(glldz) —cos(Q1L)][A'+'+ A' ']=0 .

An important special case is / =0, so that Qll is directed normal to M, . Such orientations of Qll are com-
monly probed in light-scattering experiments. For f=0, r = 1, and we have

(2.25)

where, as above, B =Ho+4mM„and

sinh(gll d1)sinh(glldz)
~(gll Q1.}=

cosh(glld1)cosh(glldz) —cos(Q1L)
(2.26)

Note that Q1 is to range from 0 to m IL, which is the Brillouin-zone boundary for the present problem.
It is striking that the dispersion relation is symmetric with respect to interchange of d

&
and d2. If either d

&

or dz become small, in the sense that Qlld1 z is very small compared to unity, then the manifold of waves col-
lapses around HpB, i.e., 6(gll, g1) vanishes. Later we quote a more general form of the dispersion relation
valid when both Qlld1 and Qlldz are small.

The remark in the previous paragraph shows that when either Qlld1 or Qlldz is small, there is very little
dispersion. Maximum dispersion occurs when d1 ——dz. Then when Qj ——0, the frequency A(QII, O) equals
—,(Hp+B), a value identical to the frequency of the Damon-Eshbach surface spin wave on a semi-infinite fer-

romagnetic material. [See Eq. (2.2) with d1~ oo.] Note that with d1 ——dz, this value of Q(QII, O) is obtained
for any choice of Q lid

Another interesting limit of Eq. (2.26) is Qlldz »1, with Qlld1 arbitrary; i.e., we have a stack of ferromag-
netic films separated by thick layers of a nonmagnetic medium. Then Eq. (2.26) becomes

n'(gll, g, ) =(H, +2~M, )' —4~'M,'e ' ll"

+e II 'cos(Q1L) [e II 'tanh(Qlld1}[Hp+B 2HpBe II '—cosh(glld1 ] ~
(2 27)

By comparing Eq. (2.27) with Eq. (2.2), it is evident that we have a band of excitations which propagate normal
to the stack, and the band has its physical origin in the coupling of surface spin waves localized on the various
interfaces. This limit is analogous to the tight-binding limit of the electron energy-band problem, where the
surface spin wave associated with an isolated film is the analog of the Wannier function which becomes highly
localized around a given lattice site.

The case where /+0 generally requires numerical analysis of Eq. (2.24). However, when Qlld1 and Qlldz
are both small, once again an analytic solution of the problem may be obtained. Here we find

4vrHoMsdz 47THpM&d1 (Q1+Qllcos 1tj) z z z d, dzQII0 (Qll, gi)=Ho+ + z z
+16m. M, cos (1I() zdl+d2 dl+d2 gl+gll (Q II

+.Q1)(d1+d2 )

which for g =0 reduces to the simpler form

4nHpM, dz 4nHpM, d1 Q1
&'(Qll Q1. )=Ho+ +

d1+dz d1+dz Q&+Q II

(2.28}

(2.29)

B. The semi-infinite stack of ferromagnetic films

We next turn to the semi-infinite stack of ferromagnetic films. In this case we no longer expect the Bloch
theorem to hold since we no longer have perfect periodicity in the direction normal to the stack. As a result,
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Eqs. (2.14) and (2.16) are not appropriate.
We now look for surface-wave solutions, i.e., solutions which are localized near the surface of the stack and

which decay exponentially as one travels through the layers away from the surface. Thus for y~(y) in the
nonmagnetic film we take

p~(y)=e (Q e +& e ), iiL+di &y &(il +1)L

and in the ferromagnetic film we have

y~(y)=e " (v'+'e ' +u' 'e ~' " '), nL &y &nL+d, .

(2.30)

(2.31)

The constant a governs the exponential decay as one penetrates into the stack. It is readily seen that the forms
for yM(y) given in Eqs. (2.30) and (2.31) satisfy the differential equations for tpM(y) in the nonmagnetic and
ferromagnetic films, respectively. There is also a magnetic potential outside the stack which is set up by the
motion of the spins in the ferromagnetic layers. Thus for y~(y) in this region we assume a solution of the
form

pM~3») =toe 3 &o.+&ii& (2.32)

This potential decays to zero as y~ —ao and satisfies the differential equation for y~(y) outside the stack.
We proceed by matching the expressions for the magnetic potential in the various regions through the use of

the boundary conditions. To obtain the surface-wave dispersion relation, it is sufficient to consider the boun-

dary conditions along three interfaces: (1) y =nL, (2) Y =nL +di, and (3) y =0, the end of the semi-infinite
stack.

The application of the boundary conditions of y =nL and y =nL +d i gives a set of four equations for u'+', .

u' ', u'+', and u' ' which are identical to Eqs. (2.19)—(2.22) except that ig& is replaced by —a everywhere.
The variables u'+I and u' ', the amplitudes in the nonmagnetic film, may be eliminated from this set of four
equations. One obtains two equations in the two unknowns, v'+ ' and v'

(1+A' ')(1—e 'e I 'e )u'+'+(1 —A'+')(e ' —e ' 'e )u' '=0 (2.33)

and

A( —
~)(1 e~ ie ~II e~ )v + +(1+A + )(e —e II eaL)u( —) 0 (2.34)

The solvability condition for these two equations
gives an expression for a in terms of QII and Q.

( +P(+)P(—)

cosh(~L) = . . . , sinh(gdi )sinh(QIId&)w(+)+w(-)

( 1 A I —))e u(+I+( 1+A(+))u I —I ()

(2.38)

Upon combining (2.34) and (2.38) we obtain the
dispersion relation for the surface mode:

+cosh(gd, )cosh(QIId2) . (2.35)
(1—A' ')(1+A'+')sinh(gd i ) =0 . (2.39)

The remaining boundary conditions connect the
amplitude of the potential outside the stack to the
amplitudes of the potential in the outermost fer-
romagnetic film. The continuity of yM at y=0
gives

There are several different ways to satisfy this equa-
tion but not all of them will correspond to true sur-
face modes of the semi-infinite stack.

We examine the following three cases:
(1) 1 —A' '=0. One can show from Eq. (2.34)

that u' '=0. Then from Eq. (2.33) one finds

v(+
—"i+ ( —) (2.36) aL = —(Qdi+QIId2) . (2.40)

Continuity of bz at y =0 gives

P( —)p 1v(+) P(+)v( —) (2.37)

By subtracting (2.37) from (2.36) we obtain an equa-
tion involving only v'+' and v'

Since u must be positive in order to have exponen-
tial decay, and since g and QII are positive, we con-
clude that 1 —A' '=0 is not a good surface-wave
solution.

(2) 1+A'+'=0. From Eq. (2.34) one can show

that in this case u'+'=0. Then from Eq. (2.33) one
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finds

0= , (H—o/c os8+8 cos8), (2.42)

which is just the dispersion relation for a surface
spin wave on a semi-infinite ferromagnet. Physical-
ly, this solution corresponds to a surface wave of the
semi-infinite stack composed of surface waves in
each ferromagnetic film. It is remarkable that its
frequency coincides precisely with that of the semi-
infinite simple ferromagnet.

(3) sinh( Qd i )=0. This equation may be satisfied

aL=Qdi —Qt~d, . (2.41)

This clearly can be positive if Qdi is larger than

Q~~di. Thus this is a true surface-wave solution.
The condition 1+4'+'=0 may be written

(a) Q))4(&-0.50 Qgd2&0. 25
o L=0.25

(b)

I

I

I
I
I

I

I
I

I

I

I

I

I

I

I

I

I

n~ 2.00
IL=0.25

Q=, n=0, 1,2, 3, . . . , .
1

(2.43)

The decay parameter a may be calculated from Eq.
(2.35):

Such a solution corresponds to a bulk standing wave

in each ferromagnetic film. The dispersion relation
corresponding to Eq. (2.43) is

4srM, Hosin Pn'=H, (H, +4~M, ) — .', (2.44)

FIG. 2. Illustration of the two types of surface modes.
In (a) we have a surface mode of the stack composed of
surface modes in each ferromagnetic film. In (b) we have

a surface mode of the stack composed of bulk modes in

each ferromagnetic film.

applied field. In Fig. 3 we present results for the
frequency of the various modes versus the ratio
d i/dz. Results are plotted for three different values

of Q~~dis. The general features common to all three
sets of curves are as follows:

cosh(aL) =( —1)"cosh Qlld2) . (2.45)
(a)-Q~~d~ = O. l

In order to satisfy this equation for real, positive a,
one is restricted to even values of n. We then see

aL =
Q~ ~d2/L. If n is odd, then one finds

aL =
Q~~ (d2/L )+in (2n + 1)/L,

and the imaginary part produces a 180' phase shift

as we move from film to film. This solution thus

corresponds to bulk standing waves in each fer-
romagnetic film, where the amplitude of the stand-

ing waves is decreased exponentially as one moves

away from the surface of the stack of films. For n

odd, we also have solutions for which

aL =Q ~d, +in. The two types of allowed surface
modes for the semi-infinite stack are illustrated in

Fig. 2.
%e now turn to some numerical examples to illus-

trate the dispersion relations for the bulk and sur-

face spin waves, As a model system we consider al-

ternating layers of ferromagnetic Ni (M, =480 G)
on nonmagnetic Mo. The applied field Ho is 1000
6. This system h@s been studied experimentally re-

cently through Brillouin scattering. '

First consider propagation perpendicular to the

SURFACE
~Q~L * 0.0

~ o XXW%%9XXXg-Q L*0.2

QgL = I.Oz
Q~L = 2.0

X QgL& ~
(b) Qi)di = 0.5

~ Q)L= 00-
, i'm&wj~iiix'j Qgl =0.2

Qj L= 2.0
QgL= w'

)5 - (c) Q))d) & l.O

SURFACE
Q L 0 2

) 0
' ' "'&»~Qg L = ) .0

Qgl = 2.0
QgL= ~

3 'U

47
2

4 CL
CL

2 0
CA

5 'c=

4~

I I

4

d) /dp

FIG. 3. Frequency of various modes vs the ratio
d ~/d2. Bulk modes of the stack are shown with a shaded

region the surface modes are shown by a solid line.
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(1) There is a band of "bulk states" (bulk states
for the stack—in each ferromagnetic film there is a
surface-wave-like mode) with a maximum range in

1

frequency from HOB to , (H—0+B)
(2) In general, as QjL increases, the frequency of

the mode decreases. For the values of Q~~d& used
here, the density of states is largest near Q&L =n. .
As Qqd~ is increased, the density of states becomes
more uniform over the allowed frequency range.

(3) There is a surface mode for which the frequen
ey is independent of the ratio of d

~ /dz, and equal to
that of the Damon-Eshbach frequency of the semi-
infinite magnet. This mode exists, however, only if
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FIG. 4. Frequency of various modes vs the ratio
d~/d2. Bulk modes of the stack are shown with a solid
line, surface modes of the stack have a dashed line.
Modes with n & 1 lie very close in frequency, and cannot
be resolved on the scale of the graph.

We also note that for d ~
——dz, as

Q~ d &
increases, the

modes near QzL =m are shifted up in frequency.
Since the density of states is large near Q&L =~ one
would imagine that in a light-scattering experiment
the scattering from these states should dominate. In
this case, a shift in frequency should be observed as

Q ~d& increases, and we will see later that this is so,
when we present our detailed calculations of the
light-scattering spectrum.

In Fig. 4 we present results for frequency versus
the ratio d

& /dq for different modes. Propagation is
now at a 30' angle with respect to the x axis, and we
have taken Q~~d~ ——1.0. In addition to the bulk
modes there are several surface modes. One at high
frequency is at the Damon-Eshbach frequency given
by Eq. (2.42). In addition we see other surface
modes below the bulk band. As mentioned earlier,
the low-frequency modes are surface modes of the
stack, but composed of standing bulk waves in each
ferromagnetic film, as illustrated in Fig. 2(b).

FIG. S. Frequency of different bulk modes vs applied
field.

In Fig. 5 we present a plot of frequency versus the
applied field for different values of Qj. For this ex-

ample we have set Qqd &

——Q ~d2
——0.1, and propaga-

tion is perpendicular to the ields. %e see here that
as Q~L is increased the frequency decreases. Over
most of the range of field values here, the frequency
varies nearly linearly with applied field. A similar
plo t «Fig. 5, b«with Q~ d, =Q~~d, =1.0 ~~~ld
show the Q&L =0 line of the same position as in

Fig. 5, but the Q~L =n' line would be upshifted by
about 2 6Hz from its position in Fig. 5.

III. CALCULATION OF RESPONSE
FUNCTIONS AND LIGHT-SCATTERING

SPECTRUM

In order to calculate the light-scattering spectrum
we need the appropriate set of response functions or
Green's functions for the layered structure. These
functions give the response of the system to an
external perturbation.

In Sec. II we wrote the equations for the magnetic
scalar potential in terms of a frequency-dependent
susceptibility. Here it is more convenient to begin
with the equations of motion for the transverse corn-
ponents of magnetization and the scalar potential.
The equation of motion for M„(x,t) and M~(x, t) are
given by the Bloch equations,

dM;

dt
(x, t) =[M(x, t) X hr(x, t)], , (3.1)

where hT(x, t) is the total effective field acting on a
spin at x at time t. Now hT(x, t) has three contribu-
tions: (1) the applied field Ho in the z direction, (2)
the demagnetizing field h~(x, t) set up by the spin
motion, and (3) an externally applied field h, ( x, t)
which varies in space and time. The demagnetizing
field may be calculated from Maxwell's equations,
which in the absence of retardation has the form
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—Hp

Hp

—4m B/Bx —4~B/By

M, a/ay
—M~B/Bx

p2

(3.4)

V)& h~(x, t)= V [h~(x, t)+4aM(x, t)] =0 .
(3.2)

The first part of Eq. (3.2) means we may write h~ in
terms of a scalar potential cp

h~(x, t) = —V qrM(x, t} .

In Eqs. (3.1) and (3.2) we use the approximation
of spin-wave theory and replace M, by the satura-
tion magnetization M, . Also we linearize the equa-
tions by dropping terms which are nonlinear in M„,
Mz, or yM. We introduce a compact notation where

u1 ——M, u 2 ——M~, and u 3 ——yM. Also we let

f~ ——-+M, h, , f2 —M, h, ——, and f3 ——0. We also as-

sume a time variation of e '"' for M„, M~, pM, and

h, . In this case the equations of motion may be
written in the compact form

3

g Lj(x)uj(x)=f;(x) . (3.3)
j=1

The matrix L is given by

(3.5)

3

u;(x)= g f d x'gij(x, x', Q)fj(x') .
j=l

We may exploit the translational invariance parallel

to the surface by Fourier transforming out the

dependence on x~~ and x~~. We thus expand the
Green's tensor and the 5 function as follows:

gij(x» III ) = 2 gij (y$y 9Q~(I'I )
(2n }

Xe

d2
5(x x') f 5(y y')e'

(3.7)

In the interest of a compact notation, we will write

gz(y, y';Q~~, Q) simply as gj(y, y') in what follows.
The equations for g;j (y,y') may then be written

The formal solution of Eq. (3.3) is found by intro-
ducing an array of Green's functions g;;(x, x', 0)
which satisfy

3

g Lk(x)gkj(x, x';Q)=5j5(x —x') .
k=1

The solution to Eq. (3.3) may then be written in
terms of the Green's tensor

HpiQ g11 g12 g13

Ho iQ— iM~Q—„g2& g2z g23

—4~iQ 4nci/dy —8'./ay' —
Q~~ g» g» g»

5(y —y')
0
0

0 0
5(y —y') 0

0 0

(3.9)

In earlier papers we have solved Eq. (3.9) for the
semi-infinite geometry and thin-film geometry using
a direct method. There we first solved the inhomo-
genous problem for a ferromagnet which was infin-
itely extended in all three spatial directions. In that
case, g j(y,y') is a function of y —y' only and one
may do a Fourier transform of Eq. (3.9) to reduce
the set of differential equations to an algebraic set of
equations. To obtain solutions which satisfied the
boundary conditions we added, to the solution of the
inhomogeneous problem in an infinite ferromagnet,
solutions of the homogenous one in the confined
geometry under consideration.

The method described in the preceding paragraph
does not work in the case of the layered system.
The reason for this is that, even for the infinitely ex-
tended layered system, g;J(y,y') is not a function of
y —y since there is no infinitesimal translational in-
variance in the direction perpendicular to the layers.

We thus employ a different method in this paper.
For all values of y&y', the 5 function vanishes iden-
tically, and elements of the Green's tensor obey

l

homogeneous differential equations. We will find
solutions to these homogeneous equations (we have
found these solutions already in Sec. II) in the re-
gions above (y )y'} and below (y (y') point y' where
the argument of the 5 function vanishes. These
solutions will already satisfy the boundary condi-
tions at each interface and at the surface of the
semi-infinite stack. To fix the coefficients in front
of the solutions for the two regions y )y' and y &y'
we will match the solutions across the singularity
provided by the 5 function at y =y'. For the prob-
lem of interest here it will be sufficient to consider
y' fixed in one particular ferromagnetic film.

Consider now the set of equations involving g»,
g21, and g31. It is easy to show that g31 obeys the
following differential equation:

[8 /By —Q„—Q, /(1+4@Xi)]g3i(y,y')
T

4~ Ho Qn-B

By
(3.10}

(4n.M, Ho+Ho —0 )
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The homogeneous version of this equation is just the
Eq. (2.8) satisfied by pM in each ferromagnetic film
in the layered stack. We thus introduce two func-
tions y~(y) and p~(y) which satisfy the equations
of motion and boundary conditions for pM in the re-
gions of y&y' and y &y', respectively. Explicit
forms for y~(y) and p~(y) in both the ferromagnet-
ic and nonmagnetic films will be found later
through the use of Eqs. (2.14) and (2.16). Thus, we
expect the solution of Eq. (3.10) to be of the form

g3l(y y') =q 'U»~(y')e(y —y')

where the Wronskian is

g '(y)q '(y') —q '(y)q '(y')
By By

and p~ (y) and y~(y) are the solutions of

B
k + q&(y)=0

By

(3.14)

+g '(y)&(y')e(y' —y) . (3.11)

While the prefactors A and 8 are clearly indepen-
dent of y, we shall find they are functions of y', the
location of the singularity in the 5 function. The
particular values of A and 8 must be chosen so that
g3l(y, y') will satisfy Eq. (3.10). We note that Eq.
(3.10) is somewhat unusual in that the right-hand
side contains not only a 5 function, but the deriva-
tive of a 6 function as well. It is well known that
the equation

@(y,y') =— p~(y);y'(y') e(y —y')8 By'

Then

+g'(y), p (y') e(y' —y)By'

(3.15)

in the region y &y' and y &y', respectively.
It is also easy to show that if we consider

k + C (y,y')=5(y —y')
By

(3.12) B2
k + 4= 5(y —y') .

By
2 (3.16)

has a solution

lm'(y)m'(y')e(y —y')8"

+q '(y)q '(y')e(y' —y)], (3.13)

Thus in order to solve Eq. (3.10) we need only to
add the solutions of Eqs. (3.13) and (3.15) with ap-
propriate constants to obtain the prefactor of the 6
function in Eq. (3.10). We thus find the following
solution for g» (y,y'):

2 m'(» —Hp, m'(y') —Q.Qm'(y') e(y —y')
8'cu i

+ q '(y) —Hp-, y'(y') —Q„Qy'(y') 8(y' —y) (3.17)

where ro l =Hp(Hp+4nM, ) —Q . We note from the homogeneous equations of motion that

M,
m~(y) =

z Hp +QQ„y(y) .0 —Ho

The function g3l(y, y') may thus be compactly written

4n (Q Hp)—
g31(y y )

~M p [V '(y)m;(y')e(y —y')+q '(y)m, '(y')e(y' —y)] .

(3.18)

(3.19)

(3.20)

The remaining two functions g2l and gl l may be found in terms of g3l through Eq. (3.9).
The full set of Green s functions necessary for the light-scattering calculation may be found by similar

methods. The results are the following:

lQ5(y y') 4'(Q —Hp)
Gll(y y')=, —,lm '(y)m;(y')e(y —y')+m. '(y)m, '(y')e(y' —y)l

CO2,
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Hp5(y —y') 4m (Q' —Hp)
[m„'(y)~„'(y')6(y —y')+I& (y)m (y')8(y' —y)],

N~ 8M, m)

4~(Q' —H,')
G31(y y') =—,[(p'(y)))2;(y')6(y —y')+qr ~(y)m~ (y')8(y' —y)],

(3.21)

(3.22)

G12(y y') =—

G32(y,y') =—

gf) (y y') 4' (Q H()—)
2 [m„(y)m„(y')8(y —y') +m„(y)m (y') 8(y' —y)],

CO ) 8M, co ~

&Qf)(y y ) 4'(r(Q Hp)—
622(y,y') =

2
—

2 [m~ (y)m„(y')6(y —y')+m„(y)rn (y')8(y' —y)],
co i 8'M, a) i

4n (Q —H() )
[)(()~(y)m„(y')8(y —y')+)p (y)m„(y')8(y' —y)] .

8'M, co )

(3.23)

(3.24)

(3.25)

%e note that within the ferromagnetic films, the %ronskian 8 is independent of y. Also, m„may be found in
terms of )p through the homogeneous equations of motion:

iM,
m, (y)=, , Hpg„+Q )p(y) .O' —H,' ~y

(3.26)

(3.27)

and

d1) I —Q(y —«) 'Q
~~

"~~ ++&«. 8 Q(& «di) R —Q(y —«) iiyi=e e &u+e +u e r+e e ju+e +u e

The formal solutions for the Green's functions given above are essentially independent of geometry. If we
wish to consider a semi-infinite ferromagnet, then we must only substitute in Eqs. (3.20)—(3.25) the forms for
m„~(y), m„(y), m~~(y), m~ (y), 1p~(y), which are solutions for waves in the semi-infinite ferromagnet. One may
show that Eqs. (3.20)—(3.25) do in fact reproduce the correct Green s functions for the infinite ferromagnet,
the semi-infinite ferromagnet, and for a single isolated film.

For the layered structure considered here q&~(y) will be a wave in the region y &y' propagating toward + oo.
Similarly y~(y) is composed of two waves: One propagates away from the singularity in the 5 function at y'
toward the surface, and one is a reflected wave which propagates away from the surface. Thus in the fer-
romagnet we set

i Q ii
x

ii
+iQ)nL, & Q(3' nL —d)) —) —Q(p —nL))ly) =e e t, u+e +u e

(3.28)

and

R, & gg R, &
+ (3.29)

The form of these equations is chosen so that y~(y)
and )(()~(y) satisfy the differential equation for )p(y)
in the ferromagnet, as we saw in Sec. II. As we have
seen then Q)L may be found f'or a given Qii and Q
through Eq. (2.24). Also v+ and v are related to
each other through the boundary conditions at

y =nL and y =nL +d1. From Eqs. (2.15)—(2.22) it
can be shown that

Q 1 ~Q) Qii 2 (1 A(+))

(A —1)

."'—e""'e 'ii" (1+A(+))
+IQ) L Qd) —Q((d2 (A ( ) 1 )

J

(3.31)

(3.32)

v+=3 u
I I

where

(3.30) The equations for (p~(y) and (p~(y) in the nonmag-
netic material may also be obtained through Eqs.
(2.19)—(2.22). However, we will not need these re-
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suits in the present paper.
Thus in the expressions for qr~(y) and q& (p) we

have only three arbitrary constants, u, u, an(&) (I

U . To completely determine the Green's function,
we need only to find U'"' in terms of O' '. This is
done through the boundary conditions at the surface
of the semi-infinite stack. In the region outside the
stack (y &0) there is a magnetic potential set up by
the motion of the spins inside the ferromagnet. This
potential has the form

po(y) =Doe
s q

II
x

t) +g)ly

The boundary conditions are the continuity of

[g(y)]„=o+= [No(y)]y =o-

and the continuity of by at the surface

(3.33)

p~(y)+4@My(y)
Bg

y =0+

a
a

yo(y) . (3.34)
y=p—

From the preceding two equations, we may obtain
the following expression for U in terms of U . I.et

(A' ' —1)A' ' —(1+A'+')A= t

(1—A' ')A e '+(1+A'+')
then

(3.35)

u =Au (3.36)

With these results, explicit expressions for the
Green*s functions may be obtained for the semi-
infinite layered material. Since these equations are
derivable from the preceding work, and since the
equations are lengthy, we do not give the final form
for the Green's functions here.

Having found the Green's functions, we may
directly calculate the scattering of light by spin-
wave fluctuations in the ferromagnets. The detailed
theory for such a calculation has been given by the
current authors in Refs. 5 and 7.

The geometry of the light-scattering experiment is
illustrated in Fig. 6. The applied field and satura-
tion magnetization are parallel to the z axis. The in-
cident laser light, with wave vector k and frequen-
cy coo, makes an angle Oo with respect to the surface
normal. The scattered light, with wave vector k'
and frequency ~„makes an angle 0, with respect to
the surface normal.

In Ref. 5 it was shown that the intensity of the
scattered light was proportional to

s(Q)(, II)=ImI f dy"' f dy"exp[i(~kiy' —AkTy")][riig2i(Q(( II;y",y')+r)(igii(Q)), &;y",y')

(3.37)

In the above expression Q~~ is the wave vector of the
spin wave created or destroyed in the light-
scattering experiment. Thus

Qii = k'g —kg, (3.38)

where kll d kll are the components of the wave
vector parallel to the surface for the incident and
scattered radiation, respectively. Similarly,

where

(0),(s)kg~'
Q)p 1/2

e —Sin 80, Imk' "'g0

quantity Eked is the sum of the wave-vector corn-
ponent perpendicular to the surface for the incident
and scattered light in the medium:

(3.40)

0 =Np —CO (3.39)

Thus for a Stokes process (creation of a spin wave)
0 is positive. For an anti-Stokes process (destruc-
tion of a spin wave), 0 is negative. In Eq. (3.37),
rii, r~~i, rtI are factors that depend on the light-
scattering geometry and dielectric properties of the
ferromagnet. The definitions are given in Refs. 5
and 6. In essence, these are the Fresnel coefficients
which describe transmission of the incident and
scattered photon through the sample surface. The

(3.41)

and e is the complex dielectric constant of the fer-
romagnetic.

The materials in the I.UCS structures under con-
sideration here are metals and have a very small skin
depth, the order of 100—200 A. As a result, Akz
will have a large positive imaginary part, and from
Eq. (3.37) we see that the contribution from large y"
or y' will be small. We will then only require the
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1 ~2
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F2 ——

Ho+A A e

Q
Hp —0

(3.42)

(3.43)

H, +A A'+A A e0 H—Q~~

(3.44)

of the light-scattering experiment.
k fwith wave vector anTh incident light, wi

m
'

ace at an angle p wi0 'th respect to the
Ws)

m strikes the surface a
'

ht has wave vector k
COp,

1. The scattered hg asurface norma .
and frequency co, .

Ho —0 (1+2),0 —Ho Qii

. QxF F7 —— i F—3,F = i—5
Q

. Q.F Fa ——+i F4.6 2~

(3.45)

(3.46)

(3.47)

d ' are both in the0
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entire structure y
of the normal-mo ed eigen functionthat portion o e

which resides in the outer i m.

m„~(y) =F&e +F2em — ' e-Qy

m„(y) =F3e +F4em — @' e-@'

my~ (y) =Fse +F6em — Qy e- Qy

m (y) =F7e +FBeS e —Qymy

(3.48)

(3.49)

(3.50)

(3.51)

and we have

~( ) may be writtenThen m„(y), m„y,) m ~(y), m„y

y') =
z

i 05(y —y'—
CO

&

2 2

e
—Q~y+y')FF Q~ + +FF[ Fi,e

Q 3' J' +F F e
—Q~3' —3' ~)8(y y'+FiF8e + 2 7

e
—Q~y+y')F F eQ~&+x'~+F F e-+ F3F5e

.-Q"-")e(y' —y)]F F eQ(y-y')+F4F5e+ F3F6e (3.52)

F F eQ~J'+P +F F e
— )

2 2
—Q~y+y')

WM
g21 3'~f

CO i

e
—Q l~ —~'

I )F F eQ~y-' +F6F7e+ F5 se (3.53)
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4~«' —H2p)
B—5(y —y') — (F,F3e~'«+« '+F2F4e ~'«+« '

RM,

+ F F eQI« —«'I+F F e
—Ql« —«'I) (3.54)

1 4m. (Q —Hp)
g22(y, y') =, iQ~(y —y') — (F3F5e~"+« '+F6F4e ~'«+"

N) 8'M,

+F,F,e+~'««'+F, F,e &'«« ')e(y —y')

+(FiF7e~'«+« '+F2Fse ~'«+

+ F F eQV' —«'~+F, F e
—Q~« —«'~)e(y (3.55)

and the Wronskian is given by

W=ZQ(A" —JI )e

where

co i =Hp(Hp+4mM, )—Q.

(3.56)

With the above results, Eq. (3.37) may be easily in-

tegrated to provide the light-scattering spectrum.
In Fig. 7 we plot the theoretical light-scattering

spectrum for scattering from a semi-infinite layered
structure. The incident beam is at a 45' angle with
respect to the surface normal, and the scattered light

Frequency
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FIG. 7. Light-scattering spectrum from a LUCS struc-
ture of alternating layers of Ni and Mo for different
values of d~. Here d~ ——d2. The box over each spectrum
on the Stokes side gives the frequency range of bulk spin
waves in the layered structure. The arrow over each spec-
trum on the anti-Stokes side gives the frequency of a sur-
face spin wave on an isolated film of thickness d ~.

which is collected is that backscattered along the
direction of incidence. In this figure and the figures
which follow, the plane of incidence for the laser
l~iht is perpendicular to the surface and to Hp and
M, . The spin waves which are probed in this
geometry are those propagating perpendicular to Ho.
The structure is chosen so that d~ ——d2. The applied
field is Ho ——1 kG. The dotted lines at
co p

—co, = +2.7 give the frequency of the
bulk spin waves in an infinite ferromagnet
Qb =Hp(Hp+4wM ). The dotted lines at
cop —co, =+4.02 give the frequency of surface spin
waves on a semi-infinite ferromagnet:
Q, =(Hp+2mM, ). We see in this figure that for

0

small QIIdi (d ~

——100 A), there is a peak near Q» on
both the Stokes and anti-Stokes sides. As d& is in-
creased, a broad peak emerges from Qb and begins
moving toward 0, . This broad peak represents
scattering from the bulk spin waves of the layered
system. In Sec. II we saw that the density of states
for these bulk waves was greatest near the low-
frequency side, where QiL =m. This explains the
shape of the peak moving toward Q, . There is a
sharp increase in intensity at the low-frequency edge
of the bulk band, and then as the density of states is
reduced there is a reduction of intensity at higher
frequencies. On the Stokes side, we have drawn
above each spectrum a box which indicates the
width of the bulk spin-wave band for that choice of
d~. This box has been calculated using the disper-
sion relation given in Sec. II. As we saw in Sec. II
(Fig. 3), as QIIdi increases the width of the bulk
band decreases, and the low-frequency edge of the
band moves up in frequency. All these features are
easily seen in the calculated light-scattering spec-
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trum. On the anti-Stokes side, we have drawn ar-
rows representing the frequency of a surface spin
wave on an isolated film of thickness di. It is clear
that the position of the peaks is not in accordance
with the results for an isolated film, i.e., the features
present in the light-scattering spectrum are influ-
enced strongly by interactions between the fer-
romagnetic films in the semi-infinite stack.

In Fig. 7 and the figures which follow, we always
see a peak at Qb. We believe this is an artifact of
our model, which includes only dipolar coupling and
ignores exchange interactions. In this limit al/ bulk
waves in a ferromagnetic film which propagate per-
pendicular to the magnetization lie at frequency Qb
When exchange is included, each bulk wave is shift-
ed up in frequency. As remarked earlier, the bulk
modes then have frequencies given roughly by

~ 2

+ H, +D Qi~+
1

'2

+4m.M,

n =1,2, 3, . . . ,

(3.57)

In Ni the exchange constant D is 3.08)&10 Gcm,
and it is easy to see that even for d

&

——1000 A only a
few bulk modes lie within the range of frequency ex-
plored here. Thus if exchange were properly includ-
ed, there would be no large peak at Qb ——2.7 GHz.
The inclusion of exchange will not alter the nature
of the peak which represents scattering from bulk
modes of the layered structure. The bulk modes of
the layered structure are composed of surface modes
in each ferromagnetic film. The introduction of ex-
change coupling only modestly influences the prop-
erties of the surface wave, because of the slow spa-
tial variation of the transverse components of mag-
netization for these modes.

In Fig. 8 we present several light-scattering spec-
tra for the case di&dz. We again consider a back-
scattering geometry for the laser light, with the in-
cident beam at Op=45. In the bottom curve where
d

~
——3d2 we see on the Stokes side three peaks. One

peak at cop —co, =2.7 is the spurious peak due to the
lack of exchange in the calculation. The peak of
cop —co, =2.9 is again due to the large density of
states of the low-frequency edge of the bulk spin-
wave band for the layered structure. Finally at
ep —co, =4.02 we see a peak at the surface-spin-
wave frequency for a semi-infinite Ni sample. This
peak is due to scattering from the surface wave of
the layered structure. From Eq. (2.41) we see that
this mode only exists if Qd» Ql~d2. For propaga-
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tion perpendicular to Hp, Q =Q~~, so this condition
reduces to di & d2 for the surface mode of the lay-
ered structure to exist. In the middle set of curves
(Hp ——1000 6) we have reversed the applied field,
along with the magnetization, with scattering
geometry fixed and we see that the feature at
cop —N& =4.02 cllanges from the Stokes to the anti-
Stokes side. This is characteristic of surface spin
waves on ferromagnetic materials, and indicates the
nonreciprocal nature of the mode. Finally in the
upper curve we consider the case di ———,d2. In this
case di &d2, and we see no peak at the surface-
spin-wave frequency. We thus predict a spectrum
for the case where d i & d2 that is strikingly different
than when d~ &d2.

Finally we wish to point out that large
Stokes —anti-Stokes intensity asymmetries will occur
for light scattering from the LUCS structures. This
asymmetry is strongly dependent on the angles Op

and H, and the choice of polarization. In Fig. 9 we
present results for the light-scattering spectrum for
Hp

——74', H, =34' and the incident electric field is po-
larized parallel to the plane of incidence. We see
that the features on the Stokes side are significantly
larger than on the anti-Stokes side. This is in agree-
ment with recent experiments. A complete discus-
sion of the Stokes —anti-Stokes intensity ratio for
light scattering from magnetic excitations has been
given recently. '

IV. SUMMARY AND GENERAL REMARKS

We summarize the main results of the paper
below.

FIG. 8. Light-scattering spectrum from a LUCS struc-
ture of alternating layers of Ni and Mo. Here d&&d2.
We see a peak at 0, in the case d~ & dq due to scattering
from surface waves of the layered structure. For d~ & d2
there is no peak at 0,.
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FIG. 9. Light-scattering spectrum from a LUCS struc-
ture of alternating layers of Ni and Mo. Here d~ ——d2,
and the applied field is Ho ——1 kG. For the geometry of
the light scattering (eo ——74', 0, =84'), there is a large
asymmetry between the intensity of the Stokes side and on
the anti-Stokes side.

(1) We have derived the dispersion relation for
bulk and surface spin waves in layered ferromagnet-
ic structures to find aspects unique to the layered
structure.

(2) The bulk waves in the layered structure are
composed of surface waves in each ferromagnetic
film. The surface waves in the layered structure
may be composed of surface waves in each fer-
romagnetic film, or composed of bulk waves in each
ferromagnetic film, as discussed in Sec. II. In the
first case the frequency of the surface modes of the
LUCS lies above the frequency for the bulk band for
the LUCS. In the second case the frequency of the
surface modes lies below the frequency of the bulk
band.

(3) The existence of the surface modes for the lay-
ered structure depends on the ratio d&/dq. For
propagation perpendicular to the applied field we
must have d& &d2 for surface modes to exist, and
the frequency of the surface mode is that of a sur-
face spin wave on a semi-infinite ferromagnet.

(4) We have obtained the Green's functions for
layered ferromagnetic structures, and used these
response functions to calculate the light-scattering
spectrum from ferromagnetic LUCS. We find that
the light-scattering spectrum will give detailed infor-
mation on those properties of the excitations unique
to ferromagnetic layered structures.

At the time of this writing, no light-scattering
data exists in the literature for these structures,
though experiments are underway and preliminary
results are in hand. ' These structures have been
studied extensively through use of electron spin res-

onance, however. Herring and White' have

presented a theory of the electron-spin-resonance
signal expected from a structure with spatially inho-

mogeneous magnetization, and find the simple and

appealing result

co =Ho Ho+4m2= (M')
M

(4.1)

We may inquire if the results presented here are con-
sistent with this relation.

In an electron-spin-resonance experiment, we may
expect @II and Qj, as introduced in Sec. II, to be
very small in the sense that

~ Q~I ~d~ 2 and Qqd~ 2
will be small compared to unity. If we consider a
sample in the form of a slab of width Wand thick-
ness L, where both 8' and L are large compared to
d ~ and d2, and furthermore let W and L be small
compared to a microwave wavelength, then one may
expect

~ Q~~ ~

to be the order of n/1V, and Qj to be
the order of m. /L or the inverse of the microwave
skin depth, whichever is larger. The mode excited
in a resonance experiment is then described by Eq.
(2.25) or (2.29). For typical sample geometries, W
will be large compared to either L or the microwave
skin depth, so we are in the limit Qq »

~ QII ~

. Then
both Eqs. (2.28) and (2.29) reduce to

II =Ho(HO+4aM, ), . (4.2)

where M, is not the average magnetization in the
LUCS sample, but rather that within one ferromag-
netic film; i.e., Eq. (4.2) is the ferromagnetic reso-
nance frequency (Kittel frequency) of an isolated
ferromagnetic film. For the particular magnetiza-
tion profile we have used in our analysis, the result
of Herring and White also reduces to Eq. (4.2), so
the two analyses would predict the same result for
the electron-spin-resonance frequency. Of course,
the analysis of Herring and White has the virtue
that it leads to a result applicable not only to the
"square-wave"-modulated magnetization profile
used throughout the present paper, but to other
more complex spatial variations as well.

We have learned recently that Grunberg' has also
completed a study of spin-wave excitations in lay-
ered media, though at the time of this writing, we
have no detailed account of his results.
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