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Deformation-potential-theory calculation of the acoustic-phonon-limited
conductivity and Hall mobilities for p-type silicon
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Acoustic-phonon-limited conductivity and Hall mobilities of p-type silicon are calculated for
the first time within the framework of the deformation potential theory of Tiersten. We solve

the Boltzmann equation for the distribution function using hole —acoustic-phonon transition

rates which are functions of hole energies and incident and scattered hole wave vectors. We

employ no band-shape approximations and use deformation-potential parameters from indepen-

dent experiments. The calculated mobilities are in excellent agreement with experiments
without any empirical adjustment of input parameters.

Phonon-limited-transport calculations for p-type
nonpolar semiconductors had attained a high degree
of sophistication with rigorous implementations of
the deformation-potential theory for germanium by
Tiersten' and Lawaetz. ' This approach has hence not
been pursued in favor of less exact models where the
fundamental input parameters, the deformation po-
tentials, became regarded as empirically adjustable in
order to fit the data. ' " Moreover, no attempts have
been made since to go beyond the relaxation time ap-
proximation in solving the Boltzmann equation. In
this work we reinitiate calculations within the more
exact model for silicon without any band shape ap-
proximations, using the hole —acoustic-phonon transi-
tion rates from the deformation-potential theory of
Tiersten, no relaxation time approximation, and no
adjustable parameters.

The conductivity and Hall mobilities are calculated
from the low-field expansion of the average thermal
velocity'
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where f~(k) is the steady-state distribution function
for band N (heavy, light, and spin-orbit valence
bands) at wave vector k with energy E~(k). F and
B are the electric and magnetic fields, respectively.
p, , is the conductivity mobility and p, H the Hall mo-
bility (their ratio p,H/p, , is the so-cailed r factor).
First we must solve the Boltzmann equation
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for the distribution fun
term in Eq. (2) contain
II'~~(k, k') for elastic
at k to band Mat k' w

an acoustic phonon. T
lated" using the deform p
sten' with experimentally determined deformation-
potential parameters. ' '6 Band dispersions and hole
wave functions were obtained from the full 6 x 6
Kane's k ~ p Hamiltonian. ' The rates were then
least-squares fitted' to a double cubic harmonic ex-
pansion in angles k and k' for each N, M band pair
and energies EN(k) =EM(k) = E. —

The field expansion of the distribution function
takes the form'

r
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Here S and g are energy dependent factors, K is a
vector with components Ki" (k)e„, where Kz" (k) is
a cubic harmonic transforming like the vth row
(v =xy, z) of the S = I'tq irreducible representation of
Oq with angular index X., and e„ is a unit vector in
the vth direction. Inserting the expansions (3)—(5)

fw(k) =f~(k) [1+F C&~(k)

+(FxB) Rg(k)+ ], (3)
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ctions f~(k). The scattering where fg(k) is the Fermi-Dirac distribution func-
s the transition probability tion, The coefficients 4 and Xare expanded in a sin-
hole scattering from band N gle cubic harmonic series for the I'i5 representation
ith emission or absorption of of Oi, (St, S3, S5, and Ss cubic harmonics were used
he transition rates were calcu- in the expansion of the distribution function). 'c Ex-

ation- otential theor of Tier- plicitly, '
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in (2) then multiplying both sides of (2) by

ZJP(k) S(E„(k)-E)dk, (6)

and integrating over the whole Brillouin zone, results
in two sets of linear inhomogeneous equations for 8
and ( at each energy E. The form of these equations
is similar to those derived by Lawaetz, ~ except that
our scattering matrix S „„(E)is symmetric in the

J

combined NA. indices. '9 With 8 and ( calculated, the
mobilities are obtained as a function of absolute tem-
perature T from Eq. (1).

Our calculational and theoretical approach was test-
ed on germanium using the input parameters of Tier-
sten' and Lawaetz. In the case of p,, our respective
calculations agree to within 7.7%, the small difference
here being ascribed to our use of nonparabolic bands
versus the parabolic approximation employed in Refs.
1 and 2. Our p,~ is significantly closer to the experi-
mental value than the p, H calculated by Lawaetz. His
81-K r factor is r —1.7, compared to our r =1.43,
and measured values r =1.37," r =1.27 (Ref. 22)
for high-purity p-type Ge. To be sure, the compar-

ison here is complicated by the fact that optical-
phonon scattering becomes significant in germanium
for T )80 K. Our calculation indicates that the
light-hole band contributes overall twice as much as
the heavy-hole band to p, H in spite of its lower ther-
mal hole occupancy. Therefore the nonparabolicity
of the light-hole band has to be included accurately in
calculation for p, H. In calculation for p, , the heavy-
hole band contributes four times as much as the
light-hole band so that the nonparabolicity of the
latter band is not as critical to the final value of con-
ductivity mobility. %e surmise that Lawaetz's
neglect of the light-hole band's nonparabolicity ac-
counts for the difficulty in his calculation to fit all of
the four lowest galvanomagnetic coefficients of Ge
with one set of deformation potentials. ~ Lastly, our
calculated p,, agrees to within a couple percent with
the relevant data. '

Figures 1—3 provide the comparison between our
calculated results and the most recent data on high-
purity p-type silicon in the acoustic-phonon-limited
temperature region. Figure 1 shows the r factor and
the temperature exponents of both mobilities
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together with the data of Mitchel and Hemenger
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FIG. 1. Calculated and measured temperature exponents
for the conductivity mobility 0;, and the Hall mobility nH.
Experimental data for u, (open circle) and nH (filled circle)
from Mitchel and Hemenger {Ref.25). The r-factor data of
Mitchel and Hemenger is from sample 1202-H (triangles,
Hall bar acceptors 6.57 x10 cm, donors 3.96 x10'
cm 3) and sample 1300-V (circles, Van der Paul configura-
tion, acceptors 9.14 X 10 ' cm, donors 3.33 &&10" cm ).
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FIG. 2. Calculated conductivity mobility for silicon (solid
line) and the experimental data of Mitchel and Hemenger
{Ref.2S) for sample 1202-H.
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I 'I'I'I- consistent with accuracy of the data.
The IM,, and p, H curves, Figs. 2 and 3, respectively,

are within 2% of the experimental mobilities.
The agreement is admittedly better than our
knowledge of the deformation-potential constants for
Si and accuracy of the calculation and theory it-
self. ' ~ For Si we estimate these to produce a
+10% limit on the accuracy of the calculation. ' "
For Ge the deformation potentials are not as well
known and the set we adopted from Tiersten, ' for
calculational comparison only, appears to be on the
high side of the spread of experimental deformation
potentials. "

In conclusion, we have shown on the examples of
Ge and Si that phonon-limited transport in semicon-
ductors can be quantitatively modeled within the
deformation-potential theory. With sufficient care
taken to incorporate band anisotropies and nonpara-
bolicities in transition rates and band dispersions, to-
gether with the use of full Boltzmann equation solu-
tions for the distribution functions, very good agree-
ment with the data can be obtained.
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FIG. 3. Calculated Hall mobility for silicon (solid line}

and the experimental data of Mitchel and Hemenger (Ref.
25) for sample 1202-H (circles), and the data of Elstner
(Ref. 26) (triangles, acceptors 1.0 X 10' cm, donors
6.5 &&10~0 cm 3).

20

(Mitchel et al. fitted only one temperature exponent
in the 20—40-K range). The calculated and measured
exponents are seen to agree quite closely. The r-
factor data are generally higher than the theory
predicts, but the overall agreement is to within 4%,
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