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Polaron effective mass in GaAs heterostructure
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The effective mass of an electron in a GaAs heterostructure is calculated in the presence of
electron —LO-phonon interaction within leading-order perturbation theory. In the purely two-

dimensional limit and without any screening effect, the polaron mass correction is found to be
enhanced by almost a factor of 3 over the three-dimensional Frdhlich result. Inclusion of
screening and the subband wave-function effects decreases the mass correction appreciably, and

excellent agreement with recent experimental results reporting negligible polaronic effect in

GaAs heterostructure is obtained.

A number of recent experiments' ' report mea-
surements of electron effective mass in GaAs
heterostructures. In these systems electrons are
confined in a one-dimensional (1D) potential well on
the GaAs side of a GaAs-Al„Gai „As interface —the
quantizing potential being provided by the donors
within the Al„Gai „As side which release electrons to
the GaAs conduction band lying approximately half
an electron volt below that of AlGaAs. The one-
dimensional potential well (in the z direction, taken
to be the normal to the interface) quantizes electron-
ic motion along that direction giving rise to subbands,
each of which is dynamically two-dimensional (allow-

ing free effective-mass-like electronic motion in the
xy plane parallel to the interface only). When only
the lowest subband is occupied by electrons, the sys-
tem is two-dimensional in nature. Since GaAs is
weakly polar (the Frohlich coupling constant' a being
only 0.07), these two-dimensional electrons weakly
couple to the LO phonons of GaAs. This
electron —LO-phonon coupling is known to modify
the electron effective band mass from M to M'
=M(1++/6) in the bulk. ' Thus for GaAs this
correction is expected to be of the order of 1% in the
bulk. This bulk polaronic correction has recently
been observed in cyclotron resonance measure-
ments. However, all the measurements' ' carried
put on GaAs heterostructure find negligible ((1%)
polaronic correction. As a matter of fact, Lindemann
et al. conclude4 that the polaronic correction in the
two-dimensional GaAs heterostructure is at least a
factor of 3 smaller than the corresponding three-
dimensional bulk GaAs result. This is consistent
with all the other experimetal findings' that the
electron effective mass in GaAs heterostructure can
be completely understood invoking only the band-
structure effects (in particular, the nonparabolicity
correction). Polaronic correction seems to be smaller

E"(k ) = E (k ) (ntcaLp)IC (k/qp)

where E(x) is the complete elliptic integral of the
first kind and qp= (2MppLp/t) with s&tp as the
LO-phonon frequency. For k ) qp (a case in which
we will not be interested in this paper), the correction
vanishes.

Expanding the right-hand side of Eq. (1) up to k~

we get, for small k,

E~(k) +tk 9na tk 1

2M 128 2M fo)Lp
(2)

The zero-order energy shift &0 is given by
pp= watcher, p/2, whereas the effective mass M' is
given by M'=M(1+ m a/8). The third term in Eq.
(2) is the nonparabolicity introduced by the polaron
effect. Comparing with the corresponding bulk
results' Ep= elf ppapntd M"'=M(1+ a/6), we con-

than the experimental accuracy ((1%) in all these
measurements.

These experimental observations are puzzling at
first sight. Purely on the basis of phase-space argu-
ments, interaction effects are expected to be com-
paratively stronger in two than in three dimensions.
To solve this puzzle, we calculate the electron —LO-
phonon interaction correction to the electronic energy
dispersion relation E(k) =t'k'/2Min a two-dimen-
sional system where k is a two-dimensional wave
vector. We neglect any nonparabolicity corrections of
the band mass M. Using Rayleigh-Schrodinger per-
turbation theory, it is straightforward to calculate the
correction to the energy dispersion up to 0 (a) where
u is the dimensionless Frohlich coupling constant for
the electron —LO-phonon interaction. Since 0. = 0.07
for GaAs, corrections of O(n2) and higher are
neglected. We get, for the corrected energy E"(k),
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elude that the polaronic corrections are actually larger

(by a factor of w/2 for the binding energy eo and by a
factor of 3m/4 for the effective mass M") for two-
dimensional electrons compared with the three-
dimensional system. This is consistent with our in-
tuitive expectation, but is in total contradiction with

experimental results' which report polaronic correc-
tions in two-dimensional systems to be smaller than
that given in Eq. (1) by an order of magnitude.

To understand this difference between the experi-
mental results and the simple theory, we now include
two physical effects that have been left out of the
theory. These are (1) the screening effect and (2)
the wave-function effect. Experimental conditions in
Refs. 1—5 were such that free carriers of the order of
3 x 10"cm were always present during the
effective-mass measurement. The presence of these
free carriers affects the problem in two important
ways. Firstly, screening becomes an important in-
gredient of the physics. Secondly, the situation can-
not be taken to be just one electron interacting with

the lattice anymore; Fermi-surface effects due to fin-
ite electron density has to be taken into account. It
turns out that for the electron density Nq( & 4 x 10"
cm ') involved in these systems, ' ' kt; = (2m')'/' is
smaller than qo and Fermi-surface effects are not so
important. However, screening (which in two-
dimensional systems is independent of N~ in the sim-
ple Thomas-Fermi theory) must be taken into ac-
count. The other effect that must be included in the
model is the subband wave-function effect. In the
purely two-dimensional case we take the electron
wave function to be of the form (neglecting normali-

zation) p( r ~~, z) =e 'g(z) with Ig(z)l =8(z).
Thus electrons are considered to be confined in an
infinitesimally narrow layer. This is an idealization
and, in reality, electron wave function will have some
natural width zo. The result of Eq. (1) is valid only
in the limit of z0=0. To model the actual electron
wave function g(z), we use a variational approxima-
tion assuming the potential barrier at the interface to
be rather large so that g(z) can be taken to be zero
for z & 0 (we take z = 0 plane to be the interface with

the electrons confined to the z ) 0 GaAs side of the
heterojunction). A suitable variational wave function
for the ground state of this system is

1/2

g (z) ze bt/2-b

2

where b = 3/zo is the variational parameter. We will

not discuss the variational solution in this paper.
We just mention that the parameter b and the
ground-state energy Eo are known6' analytic func-
tions of the electron densities and the effective mass
of the system. The main effect of the wave function
is to reduce the effective interaction between the con-
fined electrons and the LO phonons.

In our calculation we use the above variational
model for the wave function and employ a static
Thomas-Fermi model for the screening. We get the
following for the polaronic energy shift &0 and the ef-
fective mass M' of the system in the presence of
these two effects:

and

7F'oko) i„o60=
2

Io, (4)

M =M1+ I,
8

where

Ip= dx, , (6)
x(8p'+9p'x +3px')

(1+x') (x +y) (x +p)'
and

x'(8p'+ 9p'x + 3px')
I,= d — . . . (7)(1+x')'(x+ y) (x+P)'

The parameters y and p are given by y = q T„/qo and

p = b/qo. The two-dimensional screening constant

q TF is obtained within the simple long-wavelength
Thomas-Fermi theory, qTF=2Me'/~It' with tt the
lattice dielectric constant of GaAs.

The integrals Io and I2 are obtained numerically for
a variety of values of the parameters y and p. We
note that we recover the purely two-dimensional, un-
screened result if we take y =0 and p=~ limit of
Eqs. (6) and (7). We present our results in terms of
the known three-dimensional results by writing
e =e| /eo = (~/2)Ip and AM, =/3MQo///3M3Q
= (3m/4)I3 where we clearly understand that the
three-dimensional results have been obtained with
only one electron interacting with the polar lattice (i.e.,
without any screening). We define bM = (M' —M)/M.

In Fig. 1 we show e, as a function of p for a
number of values of y. For P very large and y very
small, we recover the expected two-dimensional
result e, = w/2. However, depending on the actual
values of y and p, e, could be much smaller than un-
ity, as has been seen experimentally. For example,
the experimental conditions of Ref. 4 correspond to
y, p = 1 whence we find that e, =0.18 which is al-
most a factor of 10 smaller than the purely two-
dimensional result. In Fig. 2 we show AM, as a func-
tion of p for a number of values of y. Again the
two-dimensional result is recovered for large p (i.e.,
small zo= 3/b) and small y (i.e., small q TF). For the
experimental situation of Ref. 4, we get LM, = 0.34,
which is about a factor of 7 smaller than the purely
two-dimensional result.

For any particular situation we can obtain ~, and
LlM, from Figs. 1 and 2 by using the expressions for
qo and q TF given earlier in the paper and by using the
variational' result b = (48m MNe'/&') ' ', where
N =Nz+ (11/32)N, and Nd and N, are the depletion
and the carrier densities, respectively. For GaAs,
taking Pf = 10"cm, we get qo= 2.6 x 10 cm ',
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FIG. 1. Shows the polaron binding energy &„=eP/&P in

the two-dimensional heterostructures in the units of the cor-
responding bulk result eo = nfcoLo, as a function of the
wave-function parameter P = b/qc for four values of the

screening parameter y = q TF/q0=0, 1.0, 2.0, and 3.0. For
each of the curves the limiting pure two-dimensional

(P=c ) result is shown by the dashed line.

q TF = 2.2 x 10 cm ', and b = 2.6 x 10 cm '. This
corresponds to y =0.8S and P = 1.0, giving hM„= 0.4.
The important point we want to emphasize here is
that the polaronic effective-mass correction in GaAs
heterostructure is indeed rather small when all the ef-
fects are taken into account. This is in excellent
agreement with experimental observations. ' ' This
clearly shows the importance of including the screen-
ing and the subband wave-function effects in the cal-
culation of polaronic corrections. It will be mislead-
ing to state that polaronic effects are smaller in two
dimensions compared with the three-dimensional
case. As we have shown explicitly in this paper, the
purely two-dimensional result is actually enhanced
over the three-dimensional value; however, the
screening and the wave-function effects reduce the
effective polaronic correction in GaAs heterostruc-
ture by almost an order of magnitude giving excellent
agreement with the null experimental results. ' '

In conclusion, we calculate the electron effective
mass in the GaAs heterostructure in the presence of
electron —LO-phonon interaction, taking into account
electronic screening and subband wave-function ef-

FIG. 2. Shows the polaron mass correction b,M, = AM2D/

AM3D in the two-dimensional heterostructure, in the units
of the corresponding bulk result EM3D ——a/6, as a function
of the parameter P = b/qc for four values of the parameter

V=qTF/qc. The mass correction is defined by
LLM = (M —M)/M and the dashed lines indicate the purely
two-dimensional limits (P = ~) for each curve.

fects. We find that in the purely two-dimensional no
screening limit polaron corrections are appreciable.
But, inclusion of the screening and the subband ef-
fects reduce the polaron effects considerably, giving
good agreement with experimental observations. To
observe enhanced polaronic effect in a two-
dimensional system we suggest experiments in
heterostructures without containing many free car-
riers. This can be done by photoexciting carriers in
GaAs heterostructure or probably more conveniently
by doing an experiment in nipi system. ' To reduce
the wave-function effect, one should probably do the
experiment on rather thin layers of GaAs. Also, ma-
terials with higher values of the Frohlich constant
(a) may be more suitable for observing the two-
dimensional enhancement discussed in this paper.
One such material" could be inversion or accumula-
tion layers on HgCdTe.
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