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Hopping conductivity in granular disordered systems
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We study the temperature dependence of conductivity for high-resistivity granular disordered
systems in terms of the critical-path method. It is shown that the low-field conductivity

exp( —A/T ) with a =—is obeyed over large temperature ranges with possible crossovers to
1 1e 4

at low temperatures and to a ) 2
at high temperatures. The temperatures at which the

crossovers occur depend on the distribution of grain sizes. Comparisons are made with experi-
ments and with other theoretical approaches.

In recent years, there is widespread experimental
evidence' that the hopping conduction in disor-
dered materials follows a temperature dependence of
—incr ce T, where o is the conductivity, T the tem-
perature, and e a constant ranging from 4 to 1.5

Although the a 4 [ 3
in two-dimensional (2D)]

behavior has been justified in terms of variable range
hopping proposed by Mott and derived by Am-

begaokar et al. , ' the e = —, temperature dependence,
which has been observed in diverse granular systems
with no apparent common feature, has no unique ex-
planation. In this work we show that the whole range
of the observed e values in granular systems can be
understood in terms of a general theoretical model
that gives ra= —for T 0 and a & 2

(but (1) as1 1

T ~. The interpolation between these limits then
yields the widely observed e =

2
behavior over the

intermediate temperature regime, However, the pre-
cise temperature range over which the n =

4 or

0,
2

dependence appears is determined by the dis-

tribution of the conducting grain (or region) sizes.
We adopt the critical-path method (CPM)' as our

basic approach to the analysis of the transport prob-
lem in random media characterized by random hop-
ping distances and random grain energies. In CPM,
one denotes by G& the conductance between any two
localized sites (or two conducting grains) i and j.
The conductance of the macroscopic medium is then
determined by the following argument: Pick a value
of conductance G and consider any two sites as con-
nected if G& ~ G. If G is sufficiently large, the
resulting connected sites will only form disjoint clus-
ters. As G is lowered, however, the connected clus-
ters are expected to increase in size until at G G„
the percolation conductance, an infinite network of
connected sites is formed. Since G, is the largest
value of the conductance at which conduction over a
continuous path becomes possible, it is identified as
the macroscopic conductance of the sample and is as-

sumed to dominate its temperature dependence. The
hopping conduction is generally a problem of corre-
lated bond-site percolation. In the CPM, however,
correspondence is made with the bond percolation
problem. G, is then determined by the condition for
bond percolation ~: In a d-dimensional system, there
should be on the average b, = d/(d —I ) allowed
bonds per grain (site). s '

In order to calculate G, through the average
number of bonds per grain, one has to define G by
considering the conduction mechanism. The electri-
cal conduction in granular systems results from tun-
neling of electrons and holes from charged grains to
neutral grains. ' " To generate the charge carriers,
electrons have to be removed from one neutral grain
to another. This process requires at least an energy
E„which is the charging energy"" E, = e'/KD,
where e is the electronic charge, D is the grain size,
and K is the dielectric constant of the inhomogene-
ous system. In the low-field limit, which we are in-
terested in here, the charge carriers are thermally ac-
tivated; the conductance G& between two grains i and

j is then7 9

Gtl -Go exp( —2XSI& E&&/kT)—
where X is the tunneling parameter,

Etl- ,
'

(I@ Ejl + IE—I+IEJ—I ),
and S» denotes the distance between the grain sur-
faces along the line joining their centers (tunneling
distance).

We now return to the percolation argument. The
condition G& ~ G, is expressed as

Stl I I@I+ IEJI + IE' —EJI
S 2 E

where S =(1/2X) In(Ge/G, ) and E =kTln(Ga/G, ).
S and E are the maximum tunneling distance and
the maximum energy that any initial or final state can
have, so that Gtl ~ G, . Equation (2) defines a corre-
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lation between the S& and the E;, EJ that construct the connected bonds.
From the above discussion, it is clear that the formation of the critical path requires the following equation to be

satisfied:

~Em ~Em
dE, p (Ei) dEjp (Ej) „4 Em m do

S, (E, S&)

dS~~ drj4rrrpg(rjj)S fjj—

Em

Ji dEp (E;)

D;+Dg
2

ij

(3)

g(rj) =
Di+ D)

N, rg &

D; +Dg
2

0, rj~

is the hard-sphere correlation function, where N
denotes the number of particles per unit volume.
The integral over rlj in Eq. (3) is required to give the

Here p(E) is the density of states, $, (EI,Ej) is the
maximum allowed non-negative value of S& satisfying
the inequality (2) for a given set of E; and Ej, r& is
the center-to-center separation between particles i

and j, and

probability that, over all the possible separation r&

between two spherical grains of diameters D; and Dg,
there is a tunneling distance S&. The factor 4mr J'drij
gives the volume in which the center of the second
grain can sit, and g (rs) is the probability that there is
a grain at distance r& away from the grain i. The use
of 8 (r„—(D, +Dj)"/2 —S&) in relating the r j to S/J

neglects the possible intrusions of other grains into
the path of tunneling between grains i and j. Such a
simplification is justified since, in the estimate of the
critical-path conductance, one always calculates the
lower bound of 6&, which this approximation gives.
Carrying out the rij and the S& integrations and ap-
proximating (D, +Dj)/2 by the average'diameter D p,

we get

bc=N

Em

dE p (EI) Ji dEjp (Ej) ($, +3$,Dp+3$, Dp )
m m

~Em

dE;p (EI)

(4)

For the case of point impurities (D p
= 0) and con-

stant p(E), Eq. (4) can easily be written in the form
as obtained by Shante:

Ijc=EmS f ~ (5)

where f is a constant. From Eq. (5) the ln6,
——T '~4 relation of 3D variable range hopping is
directly recovered. This result should be contrasted
with the theory of Simanek, ' where the assumption
of a constant p(E) and equal probability for all tun-
neling distances S& leads to ln6, ——T ' '.

In order to carry out the calculation for random
systems with conducting grains (or regions), we have
to consider the role of charging energy and its rela-
tion to p(E). Since the charging energy E, is just
the capacitance energy required to put/remove a
charge on/from a neutral conducting grain, it defines
the minimum energy a charge carrier can have on
any given grain. For a typical grain, the existence
of the charging energy therefore implies that the
density of states for the grain has the form p, (E)
= 8(E —E,)/X, where Z is the average electronic
level separation inside conducting grains, and O(E)
is the step function. Generally, Z might be energy
dependent, which will modify p(E) but will not ef-
fect our conclusions. To obtain p(E) for an assem-
bly of grains, we have to integrate p, (E) with the

!

distribution of E„P(E,). If we assume a log-normal
distribution for the size of the grains, "then P(E, )
will also be a log-normal distribution

(In(E,/Ep) j'
exp-

&'2rr lnp, 2(l n)p' E,

where p, is the parameter controlling the width of the
distribution, and Ep= e2//EDp is the most p—robable
value of E,. Given P (E,) we get, for the density of
states of the grains pG(E),

laE

pG(E) == ' O(E —E,)P(E,) dE,do

tpE

P (E,) dE, (7)40

It should be noted that for E =0, pG(E) =0. How-
ever, in a composite material there could be states
other than those in the conducting grains. For exam-
ple, there may be impurities which would contribute
a finite density of states at E = 0 so that at the Fermi
level these states, instead of those inside the grains,
would give the main contribution to conduction.
There is some experimental evidence'4 that p(E)
indeed has a nonzero value at E =0. Assuming that
there is a constant density of state po due to these
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states, we get p(E) as

p(E)=pG(E)+po .

Qualitatively, p(E) has the behavior of increasing from po at E -0 to about po+ I/2Z at!E!=Eo. For !E!& Eo,
p(E) slowly approaches the asymptotic value of po+ (1/Z). Using this form of p(E) and changing variables to
e =E/E„, s =S,/S~, we get

b, =sx

3

pl

, de, p (!e/! k TY/Eo)

/

/a1 sYEp
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FIG. 1. In(Go/G, ) plotted as a function of 1/JT. Nu-

merically calculated values are denoted by ~ (p, 1.6) andj (p, =3). Dashed straight lines are for aid to visualization.

Here Y=ln(Go/G, ), x=NDosrr/6 is the volume
fraction of the conducting grain,

s = [1—
~ (!e/! +!ej!+ !e/

—e~!) ]e (s )

YJ [(1r/6x)t ' 1]—
(w/6x) t/'-0. 5

g = e'X/e, a being the dielectric constant of the insu-

lator, and the absolute value of e& and eJ is taken be-
cause we are assuming symmetry in the distribution
of positively and negatively charged grains. By using

b, = 1.5, 9
q = 3.8 eV,"Z = 1 meV, po —0.1/Z,

Eo = 20 meV (- 150-A. grains), ' we plot in Fig. 1

the calculated Yas a function of Tand xfor two
values of p, . For p, 1.6, which corresponds to a dis-
tribution where the maximum grain size is about a

I

factor (1.6)' 2.56 times the minimum grain size, it

is seen that —lnG, behaves as T ' over a significant
temperature range. It should be especially remarked
that for x =0.5, the a —, temperature dependence

1

holds from T = 2 to 400 K, which reproduces the ex-
perimental results of Chui et al. ' over the same tem-
perature range with about the same slope (better fit
can be obtained by fine tuning the value of x). The
experimental grain size distribution in this case is
measured to vary, from minimum to maximum, by
roughly a factor of 3,' which is in accord with our
theoretical value of —2.6. For p, =3, which corre-
sponds to a broad distribution of grain sizes, the
a = —, behavior is valid over even larger temperature

ranges. To explain such T ' temperature depen-
dence, we note that the T 0 and T ~ limiting
behaviors of —lnG, can easily be deduced from Eqs.
(4) and (9) as a-

4
and a & —, (but less than 1),

respectively. ' The e= —, dependence then results

from interpolation between these limiting behaviors
over the intermediate temperature range. In contrast
to the theory of Efros et al. , which produces the
a = i behavior by postulating that p (E ) cc E as a

consequence of the electron-electron interaction, the
results of the present theory are insensitive to the ex-
act form of p(E). In addition, our theory does not
give just the e —behavior. By varying the value of

Eo, it is found that decreasing the grain size (increas-
ing Eo) has the effect of extending the a
behavior to higher temperatures, thereby making

1 1e =
4 perhaps a better overall fit than e =

2
for sam-

ples with small grain sizes. On the other hand, in-
creasing the grain size (decreasing Eo) has the effect
of extending the a ~

2
behavior to lower tempera-

tures. Such size dependent results have been recent-
ly reported for conductivities in doped polyace-
tylenes. 4 Yet if p, is large (such as p, = 3), the result-

ing overall behavior would still appear as 0. = 2, with

only minor change in the slope. This is consistent
with the results of the annealing experiments by
Abeles et al. 2 As a further comparison between
theory and experiment, we plot in Fig. 2 the slope of
the straight-line portion for the —lnG, vs T '/' curve
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FIG. 2. Plot of C, where C = kT(lnGe/G, )s, as a func-

tion of x. The solid line is calculated for p, 3 and the
parameters given in the text. Experimental data are for
NiSiOg (Ref. 2).

as a function of x. The experimentally measured
results for granular metals are shown on the same
graph. It is seen that the agreement is good.

The derivation we presented here follows the argu-
ments given in Refs. 1 and 2. However, we have re-
laxed the correlation assumption between charging
energies and the tunneling distances used in the pre-
vious work. '~

To summarize, we have developed a general
theoretical model in which the temperature depen-
dence of hopping conduction in various random sys-
tems can be considered in a unified framework.
Comparison with experiments yields very good agree-
ments. The electric field dependence of the model,
and other theoretical considerations, wi11 be published
elsewhere.
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