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Charge fluctuations of solitons with arbitrary fractional fermion number in 1+1 dimensions

are calculated, generalizing the result of Kivelson and Schrieffer for solitons with fermion

number 2. The soliton charge is measured by a sampling function f(x) such that f(x) = 1

over a region of width L around the soliton and then falls to zero in a distance l. It is shown

that vacuum fluctuations vanish as 1 for large l while the additional fluctuations due to the

presence of a soiiton vanish as either exp( —L/g) or exp( —25&L };g is the soiiton width and ha
is the mass gap of a ground state. This result establishes that the fractional fermion charge is a

well-defined observable.

Solitons with fractional charge are of recent interest
in both condensed matter physics' and quantum field
theory. The total charge in a given system is in-
tegral while the fractional charge is associated with a
soliton which is well separated from other solitons in
the system. The charge (or fermion number) opera-
tor should therefore be defined by

Q, = J dx f(x)iver'(x)ilr(x),

where iver(x) is the fermion field and f (x) is a sam-

pling function centered around one soliton and ex-
cludes all other solitons in the system. We choose
therefore f(x) =1 over a region ( L/2, L/2)—
around the soliton and then f(x ) falls to zero in a
distance I.4 The soliton charge is then well defined,
namely, the soliton is an eigenstate of the charge
operator, if the fluctuations of Q, around its expecta-
tion value vanish in the limit of large L and l. It is
also important that the fluctuations in the soliton
charge, which are in excess of the vacuum fluctua-
tions, decay exponentially with L. All charge mo-
ments then decay exponentially and other solitons
which are further away then L will not be influenced
by these fluctuations.

Kivelson and Schrieffer' (KS) have recently calcu-

iated the fluctuations in Q, for solitons with charge —,

(Refs. 2 and 6) and have found that the soliton
charge is well defined in the above sense. The pur-
pose of this paper is to extend the KS calculations to
other models where the soliton charge is arbitrary
and establish that it is well defined independently of
the soliton detailed shape or the value of its charge.
This extension covers solitons of considerable in-

terest such as those with charge —, (Ref. 1), with

charge depending on the couplings or with an irra-
tional spin component. 7

More specifically, we consider a continuum model
of fermions interacting with a classical complex field
having an amplitude h and phase 8. The system has
a discrete set of degenerate ground states with a com-
mon amplitude of Lo but distinct values of the phase
8. A soliton configuration corresponds to a space-
dependent field with amplitude h (x ) and phase 8(x )
which interpolates between two ground states with
phase difference h, 8. The soliton is assumed to be
exponentially localized in a length f so that h(x)

ha+0 [exp(-2~x ~/f) ] for x «+ oo while the
phase approaches different ground-state values so
that 8(x) —8(—x) 68+0(e ~ r) for x +~.
The remarkable feature of this configuration is that
the fermions acquire a charge 58/2w (Refs. 1, 3, 8,
and 9) which can take any value.

In the calculation below we use the derivative ex-
pansion method9 rather than a coupling-constant ex-
pansion. 3 This has the advantage of expanding
directly in quantities which are exponentially small
far from the soliton center. After presenting the
method we first rederive the soliton charge and then
evaluate the fluctuations of this charge.

Consider the Hamiltonian

0=
~ dx i' (x) —iri + X h, (x)r, iver(x)

8
]-i,2

(2)
where iver(x) is a fermion spinor field and r, are the
Pauli matrices. The fermions couple to classical static
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fields hi(x), 52(x) which relate to the amplitude
h(x) and phase 8(x) through

Lki = LL cos8, h, 2 =—5 sin8 .

The boundary conditions on h(x), 8(x) represent a
sohton as discussed above and complete the defini-
tion of the system.

The Hamiltonian (1) can be solved in a power ex-
pansion in derivatives of LL, (x). The time-ordered
Green's function satisfies

The case h(x) =0 for some x =xo can be con-
sidered in a limiting procedure. Since the phase is
not defined when h(xo) = 0, various limiting pro-
cedures can lead to LL8 values which differ by 2m

times integers and the corresponding charges differ
by integers. The case considered by KS has ground
states with 8 =0, 8 = m and solitons with charges + —,

(Ref. 2) which correspond to h(x) approaching zero
from two opposite sides.

The charge and current operators are

i +i—ri —X hi(x)r, , G(x, t;x', t')
Bx

p(x, t) =y'( xt)y(x, t),
j (x, t) =i]'(x, t)r3y(x, t) .

(8)

=8(x —x')8(t t')—. (4)

Define the Fourier transform

G (x t;x', t') = Xexp[ —im(t —t') +ip (x —x') ]

x G(x, t;~,p)

and then the Green's function is solved by the
derivative expansion9

G(x, t;co,p) = X —GD(x, t;ao,p) tr3 +i8 . 8
Qx Qt

where

x Go(x, t;a),p)

Gp(x, t;cu, p)
~+pr, + $,&i(x)ri

[cu' —E~'(x) + i8]

and E~(x) =+ [p'+ 5 (x) ]' '. For static hi(x) the
0/0t in Eq. (6) can be omitted.

The expansion in Eq. (6) is in powers of (8„6,)/h2
(after co and p intergrations9) and clearly diverges if
h(x) =0 at some x. Thus the special case LL2—= 0 and
hi(x) + 50 when x ~ + oo, which has been studied
by KS, is formally excluded. In the following, how-
ever, we make explicit use of the derivative expan-
sion only at a distance x = +L/2 from the soliton
center. Since L/2 ))g, h(x) is exponentially close
to Llo, the derivatives are arbitrarily small for L/g
sufficiently large, and the derivative expansion is well
defined. Thus our conclusions are valid even if
rL(x) is too small (and the derivative expansion
diverges) near the soliton center. The derivative ex-
pansion is then not valid locally, but still can be used
for global properties such as the soliton charge or its
charge fluctuations.

Their expectation values, to first order in deriva-
tives, are (j(x,t)) =0 and

(p(x, t ) ) = 8„8(x)/2n

where a constant term has been omitted, correspond-
ing to normal ordering of Eq. (8). Using the defini-
tion (1) the soliton charge is given bye 8 ~

(Q, ) =58/2++0(e zit) (9)

To prove Eq. (9) note that an adiabatic switchon of
the soliton field from one vacuum together with the
conservation law Q,p(x, t) = —B„j(x, t) implies that
(p(x, t) ) = d F (x), where F (x) is a local function
of 8 (x), 8(x) and their derivatives. Actually
E(x) = 8(x )/2e +derivative terms. Integrating in

Eq. (1) by parts gives (Q,) = JF(x)[8 f (x)]dx.
Now i,f(x) is localized atx =L/2, where
8 (x), 8(x) are exponentially close to a ground state
and the derivative expansion is valid. Thus Eq. (9) is
obtained, and the exponentially small correctioris
come from higher orders in the derivative expansion
at x = + L /2.

We proceed now to our main objective —the eval-
uation of (Q, ). These fluctuations should vanish in
the limit of L, l ~ 00 if the limit exists. For f(x) —= 1

we have [Q„H]= 0, and since there are no degen-
erate states of different charge the soliton is an
eigenstate of Q, . Furthermore, for finite L and l,

i [Q„H]=ff'(x) p(x, t)dx, the integrand being
nonzero at ~x ~

& L/2. It is therefore reasonable to
expect that the soliton contribution to the fluctua-
tions is exponentially small. Similar reasoning holds
in discrete models. '

The required calculation of the fluctuations is con-
siderably simplified if the conservation law is exploit-
ed. Consider the charge fluctuations

[8Q]2~ (Q, ) —(Q, )2=
J Jl dx dx'f (x)f(x') (p(x, t)p(x', t') ), ,i 0+ (10)

and the current-current correlation

(j(xt)j(x', t')) = X exp[ —i (cs —co')(t —t')+i(p —p')(x —x')] Tr[r3G(x;cu, p)riG(x';co'p')] . (ll)
I I

ipse rp



27 COMMENTS 2567

For r = t' —t & 0 the poles in cu involve only positive energies at E~(x) i—8 while those of cu' involve
—E,(x')+i 8 T.herefore replace cu —m' in Eq. (11) by (cu —co' —iS) so that the correlation (11) vanishes in the

limit ~ ~-~. For example, for a uniform vacuum one can check that the density-density correlation vanishes
as ~r~

'
T. he conservation law

—8,'(p(x t)p(x', t') }-8,8 (j(x t)j(x', t') } (12)

can now be integrated to yield

exp[ i (—co s)'—)v]+i (p —p') (x —x') ][Sg]' „,dx dx'f'(x) f'(x') X, . 2 Tr[r3G (x;rap)r3G(x';co', p') ]
I I

44pi+ op (13)
Equation (13) is independent of the derivative expansion. Its advantage is that it contains derivatives of f(x)

rather than f(x) itself as in Eq. (10). Since f'(x) is exponentially small (or even strictly zero~) except for
L/2 & (x ( & i +L/2, the Green's functions in Eq. (13) are needed only where h(x), 8(x) are exponentially
close to a ground state. The derivative expansion is then valid and Eq. (13) can be evaluated by using the
zeroth-order Green*s functions [Eq. (7)] with corrections of order exp( —L/f). This is a significant reduction in
the amount of required calculations.

We stress that the convergence of the derivative expansion is needed only at ~x ~
& L/2, where (8„5,)/h2

= 0 (exp( —L/()) is small and the expansion indeed converges. As claimed above, our derivation is valid even if
the derivative expansion diverges in a region near the soliton center.

Consider first the fluctuations [Sgo]' in the ground state:

E E —~~, +~02
[Sgp]'=

~
dx dx'f'(x) f'(x') Xexp[i(p —p')(x —x')]

2E~E,(Ep+E )2
(14)

where E~ = (p'+ 602)' '. Equation (14) was also derived by KS. For f(x) with a single length scale, e.g., f(x)
=exp( —x2/L2), KS show that [Sgo]2 is bounded by a term of order L '. This can be generalized to an arbitrary
f(x) by using Eq. (14) and ~520-pp'~ ~E~E,

[Sgo]' & —,
' a, [f'(x) ]'d (15)

For our f(x) with two length scales this shows that the vacuum fluctuations depend on the length I rather than
L, and vanish as i '. The length i is the range over which f(x) falls from 1 to 0 or the boundary sharpness of
f(x). Sharp boundaries increase the vacuum fluctuations, as also known in discrete models. '0

The fluctuations in the presence of the soliton can now be written in the form

X. . .6,( )xh, (x') —hp'
[Sg]'= [Sgo]'+ dx dx'f'(x) f'(x') Xexp[i(p —p')(x —x')] ' +0(e ~it), (16)4" 2EE (E+E )2

X
exp[i(p p')L]—
2E~E (E~+E )2

Using the form

R(L) =—2 X exp[ i(cu —co')g—+i(p p')L][(co —co' ——iS)2(co2 E~+iS)(co'2 —E, +iS)] '—
I I II

(18)
OIipisu ip

and the Feynman representation
t1

(o)' —E~'+iS) '(ru' —E', +iS) '=
~

da[a(co' —E~')+(1 —a)(cu' —E', )+i 8] '

where E~(x) was replaced by E~ with exponentially small corrections. When x =x'=+L/2 the sum in (16) is
also exponentially small so that only terms with x =—x' = + L/2 remain to be considered. These terms involve
the function

we obtain

R(L)= ~ E,4e'ho " 0 [a(l —a) ]' ' [a(1—a) ]' ',
where Ei is a Bessel function of imaginary argument.
Its asymptotic expansion for large L yields the leading

term in R (L ) as (4m 502) 'exp( —250L ). Thus we
find our final result

[Sg l'= [Sgo]'+0(e-'",e ' ) .

The excess fluctuations due to the presence of a soli-
ton decay exponentially, as required for the soliton
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charge to be a well-defined observable. The ex-
ponential decay involves both length scales in the
problem, the soliton width g, and the coherence
length 60'.

Note that with a single length scale, as in f (x)
= exp( —x'/L'), f'(x) behaves like x/L' in the soli-
ton vicinity (~x ~ & ( && L ) and the excess fluctua-
tions then decay as a power of L. When f(x) has
two length scales such that f'(x) =0 or is exponen-
tially small for ~x [ & L/2, " then the excess fluctua-
tions decay exponentially and are independent of I.
KS define L/2 to be at the center of the tail, i.e., at

the extrema of f'(x). In that case if / )L, f'(0) is
not exponentially small, and they need the condition
I « L. We defined L/2 to be where the tail starts
so that for any I, f'(x) is zero (or exponentially
small) for (x( &L/2.

In conclusion, we have shown that the fluctuations
in the vacuum charge vanish as I ' for I && hp' and
the excess fluctuations from the presence of a soltion
decay exponentially for L ))he', g. These con-
clusions are in agreement with those of KS and gen-
eralize them to solitons with arbitrary shape or
charge.
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