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The second-order elastic constants (SOEC), third-order elastic constants (TOEC), and
fourth-order elastic constants (FOEC) of mixed alkali-halide crystals are calculated using a
phenomenological potential model which takes into account the effect of Lundqvist's
three-body forces along with other relevant interactions in ionic solids. Values of three
SOEC, six TOEC, eleven FOEC, and pressure derivatives of SOEC have been calculated
for NaC1-NaBr, KCl-KBr„and KBr-KI mixed crystals for the entire range of composi-
tions. The results are compared with available experimental values. The applicability of
knowledge of TOEC and FOEC has been discussed for predicting the conductivity and
thermal expansion coefficient of mixed crystals.

I. INTRODUCTION

For cubic ionic crystals like alkali halides there
are three second-order elastic constants (SOEC) C,J,
six third-order elastic constants (TOEC) C,J~, and
eleven fourth-order elastic constants (FOEC) CiiI,I.
Under certain conditions and assumptions' some
of these elastic constants are equal to each other,
and such equalities are known as Cauchy relations.
The experimentally measured values of various-
order elastic constants demonstrate the invalidity of
Cauchy relations. The breakdown of Cauchy rela-

tions in ionic crystals can be explained by taking
into account the effect of Lundqvist's many-body or
three-body potentials. The phenom enological
models based on three-body potentials have been

quite successful in predicting the higher-order elas-

tic constants. ' Studies on TOEC and FOEC
provide useful information on the interatomic
forces and on anharmonic properties of crystalline
solids. The high-pressure equation of state also re-

quires the knowledge of TOEC and FOEC, as the
pressure and temperature derivatives of bulk
modulus are derived from them. Since the contri-
butions from third- and fourth-order coupling
parameters to many anharmonic properties are of
the same order of magnitude, the knowledge of
FOEC is equally important as that of TOEC. In
the present paper we evaluate TOEC and FOEC for
mixed alkali-halide crystals, viz. , NaC1-NaBr,
KC1-KBr, and KBr-KI solid solutions using
Lundqvist's model. Theory and method of calcula-
tions are described in Sec. II. The results are dis-
cussed and compared with available experimental

data in Sec. III. The applicability of knowledge of
TOEC and FOEC for mixed crystals has also been
discussed.

II. THEORY AND METHOD
OF CALCULATION

The potential energy of an ionic crystal based on
Lundqvist's three-body potential can be expressed
as follows:

e ++ e(k)e(k')
2 ~ I,i, , r(l', kk")

+ g g V t r (I',kk')
J

k I', k'

where e(k) is the valence of the k-type ion. The
terms in this expression represent the Coulomb en-

ergy, the repulsive energy extended up to second
neighbors, and three-body potential energy, respec-
tively. The function f, related to the overlap in-

tegrals of the free-ion one-electron wave functions,
is assumed significant only for the nearest neigh-
bors.

Within the framework of a phenomenological
model we express the elastic constants in terms of
short-range force parameters Ai, Bi, C~, D&, A2,
82, Cz, and D2. The subscripts 1 and 2 represent
the connection with first-neighbor and second-
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neighbor interactions, respectively. The short-range
force constants, for NaC1-type solids, are defined as
follows '8:

where a] and a2 are the equilibrium values of first-
neighbor and second-neighbor distances. V] (r) and
V2(r) are the effective short-range interactions be-
tween first neighbors and second neighbors, respec-
tively, and can be approximated by exponential
forms of the Born-Mayer-type b exp( r/—p), where
b and p are known as the repulsive strength and
hardness parameters, respectively. " The use of the
Born-Mayer exponential repulsion leads to the fol-
lowing relations among short-range force constants:
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Thus with the help of Eqs. (10) and (11) we can ex-
press the TOEC and FOEC in terms of A], 8],A2,
and 82 only. Following the method of homogene-
ous deformation' Garg et al. ' have derived the
expressions for TOEC and FOEC, which in view of
Eqs. (10) and (11),can be reexpressed as follows:

C]]]—— 4
37.556'(e+12f)+ —3A]+ — — —322 —982 +13.98m a

2
—89.305m a28 f df

4a' 4 B2 gr' Br

(12)
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where

A2 6A2R2'= --,— +15A, —15B2
16 B', B,

In above equations e is the valence of ions and f is
the three-body charge transfer parameter first intro-
duced by Lundqvist. The expressions for pressure
derivatives of SOEC and TQEC can be directly ob-
tained in terms of TOEC and FOEC with the use of
definitions of effective elastic constants. ' ' We
note from (12) to (28) that various TOEC and
FOEC, and therefore also the pressure derivatives
of SOEC and TOEC, depend on eight parameters,

viz. , A „Bi, A, B, f, df /Br, d f/B}r, and
d f/dr . We determine these parameters, first for
pure crystals, using three SOEC, equilibrium condi-
tion, and Cochran's formula. ' ' In essence we use
the following relations:

2

Cii ——— —5.112m(e+12f)+A i44

+ +9.3204m a
Ay+By df
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pseudo-unit-cell thus contains one atoin of A and
one atom of (1 —x)B +xC. X-ray diffraction mea-
surements on mixed crystals do indeed indicate
unique unit-cell dimensions throughout the compo-
sition range. Following the details of this model
Varshney et al. have taken the force constants
and effective charge parameter to depend linearly
on the concentration of constituent solids forming
the mixed crystal. Thus one can write

P(ABi „C~)=(1 x)P(A—B)+xP(AC), (35)

Bi+Bz———1.165m(e+12f),
r

Pf=foexp
P+ —

i

(32)

where fo is a constant and p+ is the repulsive
hardness parameter for cation and anion interac-
tions. Equation (33) was first suggested by
Cochran' and subsequently used by others. ' '
The Born-Mayer exponential form for nearest-
neighbor cation-anion repulsion leads to the follow-
ing relation:

a
(34)

Values of p+ have been taken from Hafemeister
and Flygare. ' The parameters A i, Bi, A2, B2 and

fo, calculated for pure crystals, are listed in Table I
along with input data' ' used in calculations.

Now we proceed to calculate the elastic constants
of mixed crystals of alkali hahdes. We make use of
the basic concept of the so-called pseudo-unit-cell
model developed by Chang and Mitra. ' According
to their model a complete randomization is assumed
in which all unit cells of a mixed crystal are identi-
cal. For a mixed crystal of AB and AC, mixed in
the ratio of (1—x) and x, the pseudo-unit-cell still
contains two particles, maintains its symmetry, and
has a unique dimension consistent with the single
lattice constant of appropriate value in the case of a
mixed crystal made of two cubic crystals. A

where x is the mole fraction of AC in the AB-AC
mixed crystal and P denotes any force constant or
effective charge parameter. Since the parameters of
our present theory (Table I), A i, Bz, Az, Bz, f, and
df /Br are either force constants or related to the ef-
fective charge parameter, we can determine their
values appropriate for mixed crystals using Eq. (35).
The potential parameters for mixed crystals derived
from Eq. (35) are then used to evaluate second- and
higher-order elastic constants. The contributions to
various-order elastic constants arising from the
Coulomb interactions depend on (i) e(e+12f), the
modified magnitude of charge on the ions due to
the effect of three-body forces, and on (ii) the
equilibrium nearest-neighbor distance a. Values of
e(e+12f) are determined from the interpolation
scheme based on Eq. (35), and values of a for mixed
crystals are taken from Ref. 19.

III. RESULTS AND DISCUSSION

The results obtained in the present work for
NaCl& „Br„, KC1& „Br„, and KBri „I„mixed
crystals (for different values of mole fraction x
varying from 0 to 1) are reported in Figs. 1(a)—l(c)
and in Tables II—V. In Figs. 1(a)—1(c) we have
compared the calculated values of SOEC with the
corresponding experimental values graphically. For
extreme cases with x=0 and 1 the parameters were
fitted and therefore SOEC of pure crystals are

TABLE I. Values of input data (Refs. 19 and 20) and calculated potential parameters for pure crystals.

Crystal

10 'cm
rp

10" dyn/cm2

Ci2

NaC1
NaBr
KC1
KBr
KI

2.820
2.989
3.147
3.298
3.523

4.585 1.264 1.265
2.704 1.066 0.990
3.838 0.683 0.633
3.263 0.564 0.504
2.577 0.455 0.370

10.082
10.006
11.822
11.987
12.083

—1.233
—1.194
—1.409
—1.406
—1.398

0.0522 0.0678
0.0539 0.048

—0.9256 0.2588
—1.062 0.263
—1.102 0.273

1.438 X 10-'
—1.348 X 10-'
—1.083X 10
—1.58 y 10-'
—2.85 y 10-'

—1.176y10-"
0.0113
0.0091
0.0132
0.0246
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FIG. 1. (a) Plots of C» (10" dyn/cm2) vs concentration x (mole fraction) for NaC1~ „Br„,KC1& „, and KBr& „I„;
&(, calculated; 0, experimental (Ref. 19). (b) Plots of C&2 (10" dyn/cm ) vs concentration x (mole fraction) for
NaCll „Br„,KC1& „Br„,and KBr& „I„;X, calculated; experimental (Ref. 19). (c) Plots of C44 (10" dyn/cm ) vs

concentration x (mole fraction) for NaC1~ „Br„,KCl~ „Br„,and KBr& „I„;)&, calculated; 0, experimental (Ref. 19).

reproduced exactly. For mixed crystals the calcu-
lated SOEC agree with experimental values general-

ly within 1%. The most striking feature of the ex-
perimental data on SOEC in mixed alkali halides is
their smooth linear variation between values for
pure crystals. The calculated values show only
slight deviations from this linear variation, and
therefore we may conclude that the interpolation
scheme based on Eq. (35) is correct to a very good

approximation. However, Eq. (35) does not hold in
a strict sense.

The calculated values of TOEC are listed in
Table II. Experimental values of TOEC are not
available except for two pure crystals, NaCl and
KC1. These experimental values are given within
parentheses in Table II. The overall agreement be-
tween calculated and experimental values of all the
six TOEC for NaC1 and KC1 pure crystals is satis-
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FIG. 1. (Continued. )

factory. It is particularly remarkable to mention
that we have not used any TGEC in fitting the
parameters of the model. The order of agreement is
at least as good as that obtained by other workers.

In Tables III and IV we report the calculated
values of first and second pressure derivatives of
SOEC for all the mixed crystals. The experimental
values available for extreme cases, i.e., for pure crys-
tals, have also been listed for the sake of com-
parison. While the first pressure derivatives of
SOEC have been measured experimentally for all
the pure alkali halides, the second pressure deriva-

tives of SOEC have been measured only for a few
alkali halides. ' The agreement is fair between
our calculated pressure derivatives of SGEC and
their experimental values, except the calculated
pressure derivative of C44 in NaC1I „Br„has the
incorrect sign. It became known from the experi-
mental study performed by Roberts and Smith
that dC44/dP is positive for sodium halides and
negative for potassium halides. The magnitude of
this quantity is much smaller as compared to pres-
sure derivatives of other SGEC. This feature seems
to be characteristic of all the NaCl-structure alkali-
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halide crystals, as has already been reported by
Roberts and Smith . To explain the values of
dC44ldP on the basis of interionic potentials we
have to make a careful analysis of the expression
for C44. Equations (31) and (32) yield

C44 ——
~ [1.39le(e+12f)+ —,(A2 —B2)] .

4a

(36)

It is evident from Eq. (36) that C44 depends on the
second-neighbor force constants A2 and 82 and

does not contain the first-neighbor potential param-
eters A ~ and B&. On the basis of a detailed analysis
of elastic constants in alkali halides, Catlow et al.
have emphasized the necessity of including the van
der Waals interactions in the second-neighbor po-
tential. The importance of these interactions in cal-
culating higher-order elastic constants has also been
discussed by Hollinger and Barseh. In the present
work we have not considered the van der Waals in-
teractions, and the discrepancy between calculated
and experimental values may be attributed to this
fact.
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TABLE II. Calculated values of third-order elastic constants (10' dyn/cm ). Experimental values for pure crystals
are given within parentheses.

Mixed
crystal

NaCli „Br„

KBr( „I„

Values
of x

0.00

0.10
0.17
0.24
0.36
0.46
0.55
0.70
0.83
1.00

0.00

0.06
0.13
0.38
0.54
0.61
0.71
0.85
1.00

0.00
0.10
0.15
0.22
0.40
0.48
0.60
0.80
0.90
1.00

—6.850
(—8.8)
—6.729
—6.640
—6.517
—6.392
—6.286
—6.187
—6.027
—5.887
—5.725

—5.74
( —7.01)
—5.69
—5.63
—5.42
—5.29
—5.24
—5.16
—5.07
—4.96

—4.96
—4.84
—4.79
—4.71
—4.52
—4.45
—4.34
—4.13
—4.08
—3.97

C112

—0.439
{—0.571)
—0.433
—0.429
—0.424
—0.419
—0.415
—0.410
—0.403
—0.396
—0.390

—0.237
(—0.244)
—0.234
—0.230
—0.219
—0.212
—0.209
—0.205
—0.197
-0.194

—0.194
—0.189
—0.188
—0.186
—0.181
—0.180
—0.177
—0.170
—0.169
—0.166

—0.439
(—0.611)
—0.427
—0.419
—0.409
—0.398
—0.388
—0.379
—0.364
—0.352
—0.338

—0.203
(—0.245)
—0.199
—0.195
—0.181
—0.173
—0.169
—0.164
—0.158
—0.151

—0.151
—0.146
—0.143
—0.140
—0.132
—0.128
—0.123
—0.114
—0.112
—0.108

C

0.247
(0.284)
0.243
0.239
0.235
0.231
0.227
0.223
0.217
0.213
0.207

0.167
{0.133)
0.165
0.163
0.156
0.155
0.149
0.147
0.144
0.140

0.140
0.137
0.136
0.134
0.128
0.126
0.123
0.117
0.116
0.112

0.248
(0.258)
0.241
0.237
0.232
0.227
0.222
0.218
0.211
0.205
0.198

0.161
(0.127)
0.157
0.156
0.149
0.145
0.143
0.140
0.137
0.133

0.133
0.130
0.128
0.125
0.119
0.117
0.114
0.107
0.106
0.102

C456

0.248
(0.271)
0.24
0.236
0.231
0.225
0.220
0.215
0.207
0.201
0.193

0.158
(0.118)
0.155
0.154
0.146
0.142
0.140
0.137
0.134
0.130

0.130
0.126
0.124
0.122
0.115
0.113
0.109
0.102
0.101
0.097

In Table V we report the calculated values of 11
FOEC. There is no experimental data on these
quantities available for comparison. The FOEC are
useful quantities for studying the high-pressure
equation of state, temperature and pressure deriva-
tives of bulk modulus, and many other thermoelas-
tic and anharmonic properties of solids. The
knowledge of FOEC can be applied to determine
the conductivity or diffusivity and thermal expan-
sivity of mixed alkali halides. . Recently Varot-
sos ' ' has derived the following relations:

P 1+xX, 1+ d dE

1+xi,

dk —1
dp

A= —1
V2

V)

dK
dP

(38)
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TABLE III. Calculated values of first pressure derivatives of second-order elastic con-
stants. Experimental values (Ref. 27) for extreme cases are given within parentheses;
S=(2 )(C)) —C)2) and E =(

3 )(C))+2C)2).
1 1

Mixed
crystal

Values
of x

as M
aI

NaC1~ „Br„

KC1~ „Br„

KBr) „I„

0.00

0.10
0.17
0.24
0.36
0.46
0.55
0.70
0.83
1.00

0.00

0.06
0.13
0.38
0.56
0.61
0.71
0.85
1.00

0.00

0.10
0.15
0.22
0.40
0.48
0.60
0.80
0.90
1.00

—0.289
(0.37)

—0.290
—0.301
—0.306
—0.312
—0.316
—0.323
—0.333
—0.340
—0.349

(0.46)

—0.651
(—0.39)
—0.655
—0.661
—0.681
—0.693
—0.699
—0.706
—0.718
—0.729

(—0.33)

—0.729
(—0.33)
—0.735
—0.738
—0.742
—0.751
—0.758
—0.764
—0.774
—0.777
—0.782

(—0.24)

3.755
(4.79)
3.767
3.780
3.781
3.789
3.806
3.814
3.823
3.843
3.856

(4.83)

4.376
(5.61)
4.385
4.395
4.427
4.448
4.458
4.470
4.488
4.502
(5.68)

4.502
(5.68)
4.505
4.507
4.510
4.513
4.519
4.531
4.540
4.541
4.546

(6.03)

4.216
(5.27)
4.217
4.245
4.251
4.271
4.290
4.302
4.325
4.343
4.370
(5.29)

4.374
(5.34)
4.379
4.382
4.403
4.407
4.418
4.421
4.430
4.436

(5,38)

4.436
(5.38)
4.437
4.446
4 447
4.465
4.471
4.494
4.505
4.S08
4.538
(5.47)

where x~ is the value of mole fraction x for which
the conductvity or diffusivity of the mixed crystal
is maximum. P and P are thermal expansion coef-
ficients of mixed and pure crystals, respectively. E
is the bulk modulus. V~ and V2 are volumes at
x=0 and 1, respectively. In order to calculate x
and p we have to know the quantities such as
dK/dP, d K/dP, and (d/dT)(dK/dP). These are
related to TOEC and FOEC. ' ' Using our calcu-

lated TOEC, FOEC, and Eqs. 37—40 we obtain
x~=0.5, and P/P =1.03 (for x=0.25) for the
KC1& „Br„crystal. The quantities thus estimated
are in good agreement with experimental data.
It should be emphasized here that calculated TOEC
and FOEC are only approximate estimates of these
constants. For performing accurate and reliable
studies on mixed crystals it is desirable to measure
experimentally their TOEC and FOEC.
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TABLE IV. Calculated values of second pressure derivatives of second-order elastic con-
stants (10 "cm /dyn ). Experimental values (Ref. 25) for KI are given within parentheses.

Mixed

crystal

Values

of x
8 Cii
BP

8 C)2

BP

8 C44

BP

NaC1) „Br„

KC1& „Br„

KBri —xIx

0.00
0.10
0.17
0.24
0.36
0.46
0.55
0.70
0.83
1.00

0.00
0.06
0.13
0.38
0.56
0.61
0.71
0.85
1.00

0.00
0.10
0.15
0.22
0.40
0.48
0.60
0.80
0.90
1.00

—4.07
—4.18
—4.29
—4.37
—4.42
—4.61
—4.67
—4.85
—4.97
—5.13

—6.07
—6.13
—6.49
—6.52
—6.63
—6.77
—6.85
—7.05
—7.14

—7.14
—7.29
—7.52
—7.56
—7.86
—7.97
—8.35
—8.90
—8.92
—9.34

(—12.7+1.5)

—0.863
—0.843
—0.895
—0.968
—0.969
—0.975
—0.989
—1.036
—1.056
—1.111

—0.512
—0.509
—0.508
—0.505
—0.502
—0.500
—0.499
—0.492
—0.489

—0.489
—0.525
—0.541
—0.546
—0,581
—0.612
—0.643
—0.640
—0.653
—0.711

( —1.621.2)

—0.867
—0.855
—0.878
—0.928
—0.951
—0.932
—0.938
—0.951
—0.963
—1.008

—0.458
—0.463
—0.455
—0.428
—0.426
—0.409
—0.412
—0.401
—0.388

—0.388
—0.434
—0.436
—0.452
—0.459
—0.462
—0.464
—0.472
—0.474
—0.505

(—1.08+0.04)

Finally, it should be mentioned that our present
calculations differ from the two-body potential
models in two respects. First, the use of the three-
body potential parameter f and its derivative df /dr
provides complete fitting of the three SOEC (Cii,
Ciz, and C44, ). On the other hand, the values of
SOEC calculated from the two-body potentials
show large deviations from the experimental values.
The second point is concerned with the Cauchy re-
lations that are satisifed only when we use two-body
potentials. If we put f and its derivatives equal to
zero in Eqs. 12—31, we obtain the following well-
known Cauchy equations:

~123 C144 C456 ~

~1112=C1166

C1122 C1266

C1123 C1144 C1244 C1456 C4466 '

(43)

(44)

(45)

(46)
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C12 C44 ~
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TABLE V. Calculated values of fourth-order elastic constants (10"dyn/cm ).
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Mixed
crystal

Values
of x C1111 C1112 C1166 C1122 C1266 C4444 C1123 C1144 C1244 C&4s6

NaC1) „Br„ 0.00
0.10
0.17
0.26
0.36
0.46
0.55
0.70
0.83
1.00

924.3 16.3 16.3
905.2 16.233 15.9
898.1 16.231 15.6
887.5 16.216 15.2
870.9 16.195 14.8
857.4 16.194 14.5
846.0 16.169 14.2
827.3 16.12 13.6
816.1 16.07 13.2
792.3 16.04 12.7

20.42
20.25
20.17
19.98
19.93
19.81
19.69
19.50
19.37
19.17

20.1 20.5
19.9 20.0
19.5 19.7
18.6 19.3
18.5 18.8
18.0 18.6
17.6 18.3
16.9 17.7
16.5 17.1
15.6 16.6

—5.78
—5.69
—5.64
—5.56
—5.49
—5.43
—5.36
—5.26
—5.17
—5.07

—5.78
—5.65
—5.57
—5.46
—5.36
—5.26
—5.16
—5.01
—4.89
—4.75

—5.78
—5.63
—5.54
—5.42
—5.29
—5.17
—5.06
—4.89
—4.74
—4.S8

—5.785
—5.62
—5.51
—5.37
—5.23
—5.08
—4.96
—4.77
—4.61
—4.44

—5.77
—5.52
—S.40
—5.23
—5.02
—4.82
—4.64
—4.37
—4.15
—3.89

Kcl~ „Br„

KBr) „I„

0.00 782.4 11.04
0.06 776.3 10.95
0.13 761.4 10.83
0.38 742.6 10.44
0.54 727.3 10.22
0.61 720.5 10.12
0.71 711.3 9.97
0.85 699.6 9.79
1.00 686.9 9.62
0.00 686.9 9.62
0.10 669.2 9.33
0.15 663.4 9.29
0.22 653.9 9.27
0.40 629.7 9.17
0.48 620.2 9.17
0.60 605.7 9.11
0.80 576.9 8.81
0.90 572.9 8.80
1.00 556.6 8.79

8.37
8.23
8.06
7.59
7.16
7.12
6.82
6.55
6.29
6.29
5.82
5.69
5.54
5.15
4.98
4.75
4.37
4.25
4.05

13.61
13.54
13.35
12.87
12.58
12.46
12.28
12.06
11.84
11.84
11.29
11.22
11.14
10.93
10.48
10.70
10.41
10.40
10.23

11.29 10.99 —4.05
11.13 10.82 —4.01
10.93 10.61 —3.97
10.26 9.91 —3.82
9.86 9.49 —3.73
9.69 9.32 —3.69
9.45 9.06 —3.64
9.14 8.75 —3.57
8.84 8.42 —3.50
8.84 8.42 —3.5
8.29 7.89 —3.42
8.15 7.74 —3.39
7.96 7.54 —3.34
7.51 7.05 —3.24
7.30 6.84 —3.20
7.03 6.55 —3.14
6.55 6.04 —3.00
6.42 5.88 —2.99
6.17 5.63 —2.91

—3.84
—3.80
—3.75
—3.59
—3.50
—3.46
—3.40
—3.33
—3.25
—3.26
—3.15
—3.11
—3.06
—2.93
—2.88
—2.78
—2.66
—2.63
—2.53

—3.72
—3.68
—3.63
—3.45
—3.36
—3.31
—3.25
—3.17
—3.08
—3.08
—2.99
—2.96
—2.90
—2.76
—2.71
—2.62
—2.46
—2.43
—2.34

—3.62
—3.58
—3.52
—3.35
—3.24
—3.19
—3.13
—3.05
—2.96
—2.96

2.87
—2.82
—2.76
—2.61
—2.54
—2.54
—2.29
—2.25
—2.17

—4.19
—4.16
—4.12
—3.99
—3.91
—3.87
—3.82
—3.76
—3.69
—3.69
—3.61
—3.58
—3.54
—3.45
—3.42
—3.36
—3.24
—3.23
—3.16
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