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A pressure wave propagating through a charged dielectric produces an electric signal at

the sample electrodes. This signal reveals information on the spatial charge or field distri-

bution in the sample. In the present study, the mathematical relations between the signal

response and the desired distribution are derived from first principles. For the derivation,

the pressure dependence of the relative permittivity must be known; therefore this depen-

dence was calculated for nonpolar as well as for polar dielectrics with the use of the

Clausius-Mossotti equation. The resulting response equations are applicable to pressure-

pulse, pressure-step, and arbitrary pressure-profile experiments on one- and two-sided

metallized samples in open-circuit and in short-circuit configuration. The common

features and the differences between the present analysis and existing theoretical descrip-

tions are discussed in detail.

I. INTRODUCTION

Detailed knowledge of the electric charge or field
distribution in the bulk of dielectrics is necessary
for the understanding of charge-storage and
charge-transport phenomena. The most successful
techniques for the experimental determination of
spatial charge or field distributions in dielectrics are
based on the transit of a compression wave through
the sample. This possibility was first mentioned by
Collins. ' The differences between the suggested ap-
proaches lie mainly in the methods used for the
generation of the pressure wave.

A shock tube was used to generate a pressure
step of unspecified rise time. Pressure pulses of
about 0.25-ps duration were produced by means of
a Q-switched ruby laser. ' A high-voltage spark

gap ' permitted the generation of a pressure wave

with a rise time of about 0.7 ps. The ruby-laser-

pulse method was utilized for charge- and field-

distribution measurements on electron-irradiated
dielectrics; the spatial resolution of the method was

50—150pm.
Recently, a pulsed CO2 laser was employed for

the production of pressure profiles which had a rise
time of about 10 ns and a duration of more than

300 ns. 1.5-J acoustic pulses from a ruby laser were
utilized' for electric field measurements inside po-
lymethylmethacrylate disks. The full width at half
maximum of the ruby-laser pulses used was 15 ns.
The direct experimental resolution of all these
methods is not high enough for samples thinner

than a few dozen pm.
This limitation could be overcome by using an

actively mode-locked and Q-switched Nd: YAG
(YAG denotes yttrium aluminum garnet) laser sys-
tem for the generation of about 1-ns-long pressure
pulses" and by using a quartz crystal to produce
step waves of about 1-ns rise time. ' With these
two experimental techniques field distributions in
polyvinylidenefluoride foils' and charge distribu-
tions in Teflon fluorethylenepropylene and Mylar
polyethyleneterephthalate films' could be measured
directly.

Since all methods described ' depend on the

same physical process, namely a pressure wave pro-

pagating through the sample, their theoretical

descriptions should be identical. This, however, ap-

pears not to be the case because different ap-

proaches have been used for the derivation of the
equations which govern the response of a charged

sample to a pressure wave. ' ' ' '
A clarification is attempted in the present study:

The basic equations for the pressure-pulse and the
pressure-step experiments are derived from first
principles. The pressure dependence of the relative

permittivity is investigated, and the influence of
this dependence on the signal amplitude is calculat-
ed for nonpolar and for polar dielectrics. The
response equations for pressure-step, pressure-pulse,

and arbitrary pressure-profile experiments are de-

rived from the basic equations. Finally, the connec-

tions between the present approach and existing
theories ' ' ' ' are presented explicitly.
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II. BASIC EQUATIONS

All pressure-wave methods ' for the deter-
mination of charge or field distributions in dielec-
trics depend on the temporal change of the induced
electrode charges caused by two effects: (1) The
compression of parts of the sample alters the dis-
tance between charges and induction charges, and

(2) the compressed regions of the dielectric have a
different relative permittivity. The theoretical
description is based on the following assumptions:

(1) The dielectric has the shape of a sheet (area A,
thickness s) with all lateral dimensions being much
greater than the thickness. All quantities only
change in the thickness direction, and all surfaces,
interfaces, and wave fronts are exactly perpendicu-
lar to the thickness direction. Thus, a one-

dimensional model can be employed.
(2) The x axis denotes the thickness direction of

the dielectric, x =0 being the front surface through
which the pressure wave enters the sample and x =s
its rear surface. The front electrode always contacts
the front surface of the dielectric.

(3) The charge p(x) in the sample is composed
of real charges p, (x) and the gradient

pz(x)= dP(x)/dx —of the polarization P(x). The
charge density does not change during transit of the
pressure wave through the dielectric. The electric
field E(x) in the sample is related to the charge dis-

tribution p(x) by use of Poisson's equation:

p(x) =EOE dE(x)/dx.
(4) The pressure wave travels through the sample

with the velocity of sound c. Therefore, the space
coordinate in the sample and the time axis are con-
nected by the relation x =ct.

(5) The "mean" amplitude p of the pressure wave

is given either by the average pressure during the
duration ~ of the pressure pulse or by the "height"
of the pressure step. Attenuation and dispersion of
the pressure wave in the dielectric during one tran-
sit are disregarded. The latter assumption has to be
justified from the experimental evidence.

(6) The dielectric has a relative permittivity E and

a coefficient of one-sided compression
X=(1/x)(dx/dp)r, where p and T are the pressure
and the temperature, respectively. Adiabatic
compression is assumed. All quantities in the
compressed region of the sample are primed.

(7) The lateral sample dimensions do not change
during transit of the compression zone. Therefore,
the coefficient X is given by
X=—(I+@)(1—2p)/(I —p)Y, where p and Y are
Poisson's number and Young's modulus of the
dielectric, respectively. Since the sound velocity c is

identical to the velocity of longitudinal waves,
' 1/2

c= (1—p) Y
'po(1+p)(1 —2p)

A. Pressure pulse

If the duration r of the pressure pulse is much
shorter than its transit time through the sample and
if short-circuit conditions prevail during the dura-
tion ~, the induction charge densities o.

&
and o.

&+
on the front electrode (I) before and after the pulse
passes the charge layer of thickness Ax at the loca-
tion x can be determined' [see Figs. 1(a) and 1(b)]:

(s —x)/E+g
(S Cr)/E+(Cr —) /E +g

Xp(x)b,x,
(s —x cr )/E+—(cr )'/E'+g

op+ =—+ (s cr)/E+—(cr)'/E'+g

(2)

)&p(x)M .

Here g is the thickness of the air gap (Es ——1) be-
tween rear sample surface and rear electrode (II)
which equals 0 for two-sided metallized samples,
and (cr)' and E' are the thickness and the relative
permittivity of the compressed layer, respectively.
In Fig. 1 only the coordinates x (attached to the
solid dielectric) and t are shown; therefore, the
small shift of the charge layer has been omitted.

When the pressure pulse of duration ~ passes the
charge layer of thickness M at the location x the
induction charge density o.

q changes by
ho, =o-,+ —o-, as follows:

cr /E (cr)'/E'—
ho.

g
—— , pxM.s/E+g —[cr/E —(cr) /E ]

(3)

where po is the sample density, X can be replaced
by10

X=— 2.I

poc

For short-pressure pulses or for sharp-pressure
steps (ideally delta or theta functions) it is possible
to derive the charge or field distribution directly
from the electric signal without a deconvolution
procedure. These two cases are therefore treated
first; other pressure-wave profiles can be regarded
as a superposition of either pulses or steps.
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(a)

pli

s/c

Eg =1 OII

charge is covered by Eq. (5) and linear superposition
is applicable.

From Eq. (6), the difference b o'q ——oq+ —o'q be-

comes

p(x)h, x
I

Q x
p(x)hx i

(b)

P )i

=X
S+g

II

~g =' ~II

$/e+g
Eoy =op —1

(s cr—)/e+ (cr )'/e'+ g

or in linear approximation, with the use of the fact
that the difference crim (cr—)'/e' is a small quanti-

ty,

c1./e —(c1-)'/e', cd&
s Ie+g s IE+g

=t
0 t s/c

FIG. 1. Sample geometry for the pressure-pulse signal
analysis: (a) before the pulse passes the charge layer of
thickness hx at the location x and (b) after the pulse has
passed the location x.

In a first-order approximation the term
[cr/e —(cr)'/e'] in the denominator can be omit-
ted, since it is very small compared to s Ie+g:

cr /c —(cr )'/e'
ao-, = pxM.s/e+g

(4)

The thicknesses of the compression layer without
and with adiabatic compression are cr and
(cr)'=cr(1+Xp), respectively:

1le (1+Xp)le'—
ao.,= crp x bx

s/e+g
cr5,

p(x)M,s/c+g

Comparison of Eqs. (5) and (7) shows that the
charge distribution p(x) can be assumed to include

the induction charge o& on the front electrode (I).

B. Pressure step

For a step-function-like pressure wave and open-
circuit conditions during the pressure-step experi-
ment, the potential differences V and V+ between
the two sample electrodes before and after the step
has passed a layer Lb& at the location x can be deter-
mined [see Figs. 2(a) and 2(b)]:

t

V =—f E'(g)dg' E(x)bx-
—f E(g)dg Esg, —

(g)
V+ ———f E'(g)dg' E'(x')M'—

S—f E(g)dg Esg . —
where 5, =1/e —(I+Xp)IE' denotes the relative
change of the "dielectric thickness" of the sample.

The induction charge-density change Ao.
&

result-

ing from the entering of the pressure pulse into the
sample can be determined in a similar manner:

Under short-circuit conditions, the induction charge
densities o~ and o.~+ before and after the pressure
pulse has entered the bulk of the dielectric are given
by14

(a)

pic

i E(x)hx

s/c

Kg =1

Eg

(6)

(s —r)/e+g
o'y o',

s/e+g
(s r)le+g-

(s «) le+(«)'l~'+—g

In Eq. (6), o =fp(x)dx is the total charge per unit

area in the sample volume and r is the centroid of
this eventually distributed charge. The assumption
that the total sample charge p(x) is located at its
centroid location can be made without loss of gen-
erality, since the influence of the distribution of this

Q x
E'(x')b x,

'

(b)

=X
S+9

II

Eg=1

Eg

s/c

FIG. 2. Geometry of the sample during a pressure-
step experiment: (a) before the step passes the location x
and (b) after the step has passed the location x.
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Es is the electric field in the air gap between the
rear surface and the rear electrode (II) and the in-

tegration is carried out from electrode I to just be-
fore the layer M (x' —) and from just after this
layer (x + ) to the other sample surface. The thick-
ness g of this gap (which vanishes for two-sided
metallized samples) stays constant during the first
transit of the pressure step. Only the coordinates x
(attached to the solid dielectric) and t are used in

Fig. 2; thus the small thickness reduction of the
sample caused by the compression has been omitted.

The voltage change b, V = V+ —V caused by the
pressure step passing the layer Lx is given by

hV =E(x)M E'—(x')M' . (9)

Using M'=dec(1+Xp) and Gauss's law for the
dielectric displacements before and after transit of
the pressure step at the location x
[eE(x)=e'E'(x')], one obtains

b, V=[1/e —(1+Xp)le']eE (x)M

=e5,E(x)doc .

2. Directly pressure-dependent relative permittivity

Whereas the assumption e=e' leads to a lower
limit for the pressure dependence of the signal (no
dielectric contribution at all), a simple relation can
be found by assuming that the relative permittivity
e is proportional to the number of particles 1V per
volume v: e~N~1/u. This leads to the relation
ev =e'U' between the relative permittivities of the
compressed and the noncompressed sample regions,
respectively. With U'=(1+Xp)u, one obtains

(13)

which is, in first-order approximation, the same as
the suggested relation e'=(1 —Xp)e [in Ref. 9 the
compressibility is defined as X= —(1/U)(bu/bp)].
From relation (13) 5, becomes

5, =[1—(1+Xp) ]/e,
or, omitting the quadratic term in Pp,

5,=—2Xp/e .

C. Pressure dependence of the relative permittivity

As shown, the pressure dependence of the signal
for the pressure pulse as well as for the pressure

step is given by the relative change of the "dielectric
thickness" of the sample

5, =1/e —(1+Xp)/e',

where (1+Xp) accounts for the change in sample
thickness caused by the adiabatic compression, and
e' is the relative permittivity of the compressed
sample region. In order to calculate 5, the pressure
dependence of the relative permittivity must be
known.

The simple relation (13) is not realistic either, be-

cause it implies a pressure dependence of the vacu-
um part of the relative permittivity.

3. Pressure-dependent susceptibility e—I
(Clausius Mossotti equ-ation

without dipole interaction)

If only the material-related part of the relative

permittivity e, namely the susceptibility e —1, is
considered to be pressure-dependent, then Eq. (13)
can be used for e —1 instead of e,

(15)

1. Pressure-independent relative permittivity

It has been suggested ' to assume for the sake of
simplicity that the relative permittivity is pressure-
independent,

This assumption is, however, not justified since the
contribution of the pressure dependence of e to the
signal is of the same order as the geometric contri-
bution (sm below). The assumption results in the
following expression for 5, :

(12)

Equation (15) can also be derived from the
Clausius-Mossotti equation for nonpolar materials
without dipole interaction,

e —1= Na,4m

3
(16)

or (e —1)u =(e' —1)u' and directly to Eq. (15).
Rewriting relation (15) and neglecting higher-

where X again is the number of particles per
volume v and a is the polarizability of a particle.
Since the particle polarizability u and the total
number of particles are constant under different
pressures, relation (16) leads to

(e —1)/N =(e' —1)/N'
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order terms in Xp yields

e'=(I —Xp)e+Xp . (17)

and

5 = —[4/3+a/3 —2/(3e)]Xp/e . (21)

and finally

5,=—(2—I/e)Xp/e' . (18)

4. ¹npolar dielectrics
(Clausius i(fossot-ti equation

with dipole interaction)

Including dipole interaction, the Clausius-
Mossotti equation is given by'5

e—I 4m

6'+2 3

which, in analogy to the derivation of Eq. (17),
leads to

I

=(1+Xp)
@+2 e'+2

and finally to

3&+(&+2)Xp
3+(e+2)Xp

(20)

Using Eq. (20) for the relative permittivity e' of the
compressed region of a nonpolar dielectric and
neglecting higher-order terms in Xp, one obtains

3+(e+5)Xp
3@+(e+2)Xp

4)
CL

4l X
I

3-

This is Eq. (4) of Ref. 7 (there the relative permit-
tivity is called E) which was derived under the as-

sumption that the bulk polarizability Na is inverse-

ly proportional to the volume u. Using Eq. (17) and
first-order approximation, 5, becomes

6, = Xp,
1/e —2

e+Xp

This relation is appropriate for dielectrics without
permanent dipoles and has been used very recently
in Ref. 10. Figure 3 shows how the signal ampli-
tude would depend on the relative permittivity e ac-
cording to Eqs. (12), (14), (18), and (21), respective-
ly.

oo
—1 4

Na
6'~+2 3

(22)

can be used to calculate approximately the pressure
dependence of 5, in analogy to the derivation of
Eqs. (17) and (20):

6'~ —1
=(1+Xp)+2 e'„+2 (23)

Furthermore, the contribution of the permanent
dipoles to the relative permittivity e of the material,
e —e„, can be assumed to remain constant during
the transit of these very short pulses through a sam-
ple layer,

5. Very short pressure pulses in polar dielectrics
(Clausius Mosso-tti equation

for the induced polarization)

In polar materials, only the induced polarization
obeys the Clausius-Mossotti equation. For high-
frequency alternating fields the permanent dipoles
can no longer follow the field changes so that only
the relative permittivity e„characteristic for the in-
duced polarization must be used. For the very short
pressure pulses of less than about 1-ns duration
which are generated in the laser-induced pressure-
pulse (LIPP) method"' it can be assumed that
only the induced polarization contributes to the
pressure dependence of the signal if the relative per-
mittivity of the sample does not change within the
frequency range of the main part of the pulse spec-
trum (above 100 MHz). Therefore, the Clausius-
Mossotti equation for the induced polarization'

E —E
QO OO (24)

Elimination of e'„ in Eq. (23) by means of relation
(24) leads to

0 I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11

relative permittivity E

FIG. 3. Relative-permittivity dependence of the e&-

pression —e5, /gp for four different pressure dependen-
cies of the relative permittivity e: I e'=e [Eq. (11)], II
e'=(1 —Xp)e [Eq. (13)],III e'=(1 —Xp)e+Xp [Eq. (17)],
IV e'=[3e~(e+2)Xp]/[3+(e+2)Xp] [Eq. (20)].

(e +2)(e„—1)

3/(Xp)+e„+2

or, in first-order approximation,

e'=e — (e„+2)(e„—1) .Xp
(25)
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CL

4J

4)
I

5.
CL

4l

4J
I

use of the relation dx =c dt lead to

V(t)=[1—(e/e')(1+Xp)] I E(g)+ .

(28)
X

The field integral E(g)dg determines the poten-
tial 4(x =ct) at the location x =ct in the sample

V(t) = [1 (e I—e ')(1+Xp)]4(x)

FIG. 4. Expression —e5, /gp as a function of the rela-
tive permittivities e at zero frequency and e„at the fre-
quency of the pressure-pulse experiment [Eq. (26)].

If higher-order terms in Xp are again omitted, one
obtains for very short pressure pulses in polar
dielectrics,

(e„+2)(e„—1)
5~ = — 1+ Xp/E .

3E
(26)

For nonpolar materials, e„=e, and Eqs. (26) and
(21) become identical. The dependence of the signal
amplitude on the relative permittivities e at zero
frequency, and e„at the frequency corresponding
to the duration ~ of the pressure pulse, is shown in
Fig. 4.

III. SHORT-CIRCUIT AND OPEN-CIRCUIT
RESPONSE

A. Pressure-step experiments

l. Open-circuit voltage

=e5,cE(x), (27)

which is identical to Eq. (4) of Ref. 3 [V(d) —V(0),
u, zf, —X, and bp are used in this reference in place

of V(t), c, x, X, and p, respectively]. This equation
was obtained by differentiation of the potential
difference across a two-sided metallized dielectric
during propagation of a step-function compression-
al wave.

Usually not the time derivative of the voltage, but
the open-circuit voltage itself is determined experi-
mentally. Integration of Eq. (27) with V(0) =0 and

Dividing Eq. (10) by ht, changing the differences
6 into differentials d, and replacing dx/dt by c
yields, for a pressure step of amplitude p, a relation
between the temporal change of the voltage and the
electric field in the sample,

dV(t)
dt

=[1—(@le')(1+Xp)]cE(x)

=E5,4(x) . (29)

Equation (29) corresponds to Eq. (1) of Ref. 2, to
Eq. (6) of Ref. 3, and to Eq. (1) of Ref. 4, if X, p,
and 4(x =ct) are replaced by —X, bp, and V(zf)
or V(zf, 0), respectively. For the simplifying as-
sumption (11),Eq. (29) reduces to V(t) = XpC—&(ct)
which is Eq. (2) of Ref. 5 with A and a replaced by
—Pp and c, respectively. In Ref. 5, displacement
waves are used for the derivation of response equa-
tions which contain only the geometric contribution
to the signal, but not the influence of the changing
relative permittivity.

2. Charge response

In Eq. (28) the open-circuit voltage V(t) can be
replaced by Q(t)IC, (t) where Q(t) is the charge in-
duced on the electrodes under short-circuit condi-
tions, and C, (t) is the time-dependent capacitance
between the two electrodes (all stray capacitances in
the experimental setup have to be included for exact
evaluations). This transition from open-circuit to
short-circuit conditions is possible, since the open-
circuit voltage exactly corresponds to a lack of com-
pensation charges on the electrodes which would be
provided under short-circuit conditions.

At the time t the step wave has reached the loca-
tion x =ct in the dielectric, and the sample part be-
tween x =0 and x =ct is compressed, thus having
the thickness x'= (1+Xp)x and the relative. permit-
tivity e'. Therefore, the capacitance C~ of the
compressed part of the sample is given by

6'06' A 60&2

x (e/e )x

where A is the sample area. The capacitance C2 of
the noncom pressed sample part is C2
=co@A /(s —x). The capacitance Cs =eQ /g of the
rear gap stays constant during the first transit of
the pressure step. If all stray capacitances are negli-
gible the capacitance C, (t) between the elec-
trodes can be calculated, using the formula
1/C, =1/C~+1/C2+1/Cs for a series of capaci-
tors:
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Cps
C, (t)= (e/e')x '+ (s —x)+eg

(30)

The charge Q(t) which builds up on the short-
circuited electrodes during transit of the pressure
step can thus be expressed by

eoeA [ 1 —(e/e')( 1+Xp)]
Q(t)= (e/e')x'+ (s —x)+eg

&& f E(g)dg. (31)

On the other hand, the charge Q(t) is given by the
intergral fI(r}dr of the current I(t) between the
electrodes; the field integral fE(g)dg is the poten-

tial 4(x) at the location x in the dielectric. For a
two-sided metallized sample (g =0), the integral of
the short-circuit current is thus given by

Q(t)= f I(r)dr

co@

(e/e')x'+(s —x)

charge density

f p„(g)dg,

and (3) the polarization P(x) =—f p~(g)dg:

I(t)= ce5—, ~r+ f, p(g)dg P(x—)
S

where s —e5,x +eg has been replaced by s (no air
gap and e5,x &&s) and p„by p. The relative per-
mittivity e' of the compressed sample part can be
written as sum of e and an expression in Xp, and
first-order approximation can be employed as fol-
lows:

e5,= 1 —(e/e')(1+Xp)

=e'/e —1 —Xp .

Insertion of this expression and separation of the
polarization term yield

I(t) = c ———1 —Xp o r+ f p(g)dg

X [1—(e/e')(I+Xp)]@(x), (32)

T

——1 P (x)+XpP (x)

which is identical to Eq. (3) of Ref. 2 if the correct
Q(t)/A is used instead of Q(t) only, to Eq. (8) of
Ref. 3, and to Eq. (2) of Ref. 4 [S,J(t), 1, —X, hp,
V(zf 0) zf and d —If ale utlhzed 1n these

refere-

ncess in place of A, I(t), eo, X, p, 4(x =ct), s —x,
and x' =(1+Xp)x, respectively].

Here, (e'/e 1)P(—x) is the dipole contribution
caused by the change of the relative permittivity,
and XpP(x) is the dipole contribution resulting
from the compression. For piezoelectric materials,
the latter can be expressed by Xpe (x) where e (x) is
the piezoelectric strain constant. Using the electro-
striction constant

3. Short-circuit current 1 Ae t
E —E

EXp
Differentiation of Eq. (31}with use of the rela-

tion dx =c dt and Poisson's equation results in an
expression for the short-circuit current
I(t) =dQ(t)/dt of pressure-step experiments:

(
Ac [1 (e/6'}( I+Xp)] "=—"

(g)dg(e/e )x +(s —x)+eg

p(g)dg,
s/e —5,x +g

where the charge distribution p(x) has to include
the compensation charges at x =0 and at x =s be-
cause the field in the sample is mused not only by
the volume charge distribution but also by the elec-
trode charges.

In Eq. (33), the charge-density integral f p(g)d(
can be divided into three parts, namely (1}
the compensation-charge density or on the front
electrode (I) at x =0, (2) the integral of the real-

+ yP(x)+e(x) (33')

This equation can be transcribed into Eq. (2) of Ref.
12 by replacing s, c, Xp, x, and g with 1, v„—v/v„
x„and x, respectively. The analysis used in Ref. 12
is based on a general description of piezoelectricity
in polymers. ' This description takes into account
real charges, polarization, elcctrostriction, and
piezoelectricity. The transformation of Eq. (33)
into Eq. (33') shows that eventual piezoelectric con-
tributions are contained in the formulas of the
present study and need not be taken into account
separately.

where S =gp is the strain in the compressed region
of the dielectric, one obtains

r

I(t)= cXp —(y+—1) o,+f p(g)dg
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The electric field E (x =ct) can be substituted for

(Poisson's equation) in Eq. (33) because the field
E(0}in the front electrode is zero,

6'OEAc5~I(t)= E(x),
s/e —5,x +g

which reduces to Eq. (2) of Ref. S, if Eqs. (12) and

(30), their sound velocity a, and their relative
compression A o ———gp are employed.

For polar materials the relative permittivity e' in
the compressed region behind the pressure step may
not be constant, since some of the permanent di-

poles may have relaxation times shorter than the
transit time of the step. This eventual time- and
depth-dependent change of the relative permittivity
e' leads to signal contributions from sample parts
that are not actually passed by the step wave.
Cornet results from such signals can only be ob-
tained by means of a deconvolution process.

6'pEA
C =

S +6g
(38)

Combination of Eqs. (37) and (38) and use of 80, C,
and a, instead of —n.7p, Cz, and c, respectively,
yields, under the simplification of relation (11), Eq.
(5) of Ref. 5. Combination of Eqs. (18) and (37) re-
sults for g =0 (no rear gap) in Eq. (1) of Ref. 11
and in Eq. (3) of Ref. 13.

2. Open-circuit voltage

calculated as follows:

I(t}= c rp(x) .
A,

s/e+g
In this case, the capacitance C& between the two
electrodes is constant because the thickness
(I+Xp)cr and the relative permittivity e' of the
traveling compression layer do not change. Disre-
garding the very small change of the "dielectric
thickness" of the sample caused by the pressure
pulse, the capacitance C& is given by

4. Pressure-step experiments on nonpolar dielectrics

&o&~ 4 e 2 pE(x)
s +eg 3 3 36 poc

(36)

respectively; in Eq. (36), the time-dependent term
[4/3+@/3 —2/(3e)]Xpx/e in the denominator has
been omitted because it is very small compared to
s/e+g.

B. Pressure-pulse experiments

1. Short-circuit current

When a pressure pulse propagates through the
sample, the temporal change of the induction
surface-charge density [Eq. (5)] produces a current
density i =do&/dt and thus a current I=2 doildt
flowing to the front electrode (I) with the active
area A. Using dx =c dt, Eq. (5) and the transition
from differences 6 to differentials d, the short-
circuit current in a pressure-pulse experiment can be

For nonpolar materials, combination of Eqs. (21),
(1), (29), and (34) yields the open-circuit voltage

I

V(r}= —+—— (35}
3 3 3e' poc

and the short-circuit current

=cre5,E (x), (39)

whereby Eqs. (5) and (38), Poisson's equation, and
the assumptions V(0)=0 and E(0)=0 have been
used.

Combination of Eqs. (11) and (39) with use of Bo
and a for —Xpc~ and c, respectively, results in Eq.
(5) of Ref. 5. Equations (18) and (39) can be com-
bined with Eq. (7) of Ref. 6, Eq. (16) of Ref. 7 (the
relative permittivity is named K in these references),
and Eq. (1) of Ref. 13. The equations of Refs. 6
and 7 were derived from the open-circuit voltage
change across the capacitance which is formed by
the two-sided metallized dielectric.

3. Pressure-pulse experiments on polar dielectrics

For very short laser-induced pressure pulses
(LIPP's), ' the short-circuit current I(t) and the
open-circuit voltage V(t) can be calculated from

Under open-circuit conditions, the change 60.
~ of

the induction-charge density given by Eq. (S) is not
possible since no charges can Aow. Instead, a volt-

age change hV=(A/Cz )b,o& between the two elec-
trodes is caused by the lack of compensation
charges. In this case, transition to differentials and
integration lead to

V(t) =er(5, /eo) I p(g)dg
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I(t)= A

s +Eg
(e„+2)(e —1)'+

3

prp(x}
po

Eqs. (1), (26), (37), and (39) even for polar dielectrics
as follows:

More accurate formulas for the current and volt-

age responses to arbitrary pressure-wave profiles
can be obtained by using Eqs. (1), (21), (37), and

(39),

A 4 e 2 II{t}= +s+Eg 3 3 3E po

and
t

Xf p(g=cr')p(t —r')dr', (44)

(e„+2)(e„—1) prE(&)V(t}= 1+
36' pic

(41)

4 eV(t)= —+——
3 3

2 1

3E' pic

For nonpolar materials, these equations also hold
true, since use of e=e„ transforms Eq. (26) into
(21).

E =cv' p t —z' (45)

C. Arbitrary pressure profiles p (t —~')

If the pressure wave used for the probing of the
charge or field distribution is neither a step nor a
pulse, the response can be calculated by means of a
convolution integral over the product of the un-

known distribution and the pressure profile
p(t r') of dura—tion r. For this purpose the pres-
sure dependence of the relative permittivity e has to
be known.

In Ref. 9 the assumption (11) is used for simplici-

ty; thus, following Eqs. (12) and (39), the open-
circuit voltage response to a pressure wave of arbi-
trary profile is given by

V(t) = —cX f E(g =cr')p (t r')dr', —

(42)

which is identical to Eq. (2) of Ref. 9 if cdr' is re-—
placed by dz. Similarly, combination of Eqs. (18)
and (39) yields Eq. (8) of Ref. 6 and Eq. (17) of Ref.
7.

Combining Eqs. (12) and (37), integrating the re-

sult, and assuming a constant sample thickness s
during propagation of the pressure wave, the charge
Q(t) flowing in the external circuit can be deter-
mined as follows:

CpsQ(t)= — cX
s

X f E(g=cr')p(t —r')dr',

which corresponds to Eq. (4) of Ref. 9, if the nota-
tion is changed accordingly.

Equation (45) corresponds to Eq. (5) of Ref. 10 if
the necessary changes of the notation are made.

The actual charge or field distribution can only
be determined by a numerical deconvolution pro-
cedure for which the exact shape of the pressure
profile p(t r') must —be known. Despite the fact
that the deconvolution yields a unique solution in
principle, the accuracy of the deconvolution result
is limited by the experimental and numerical errors.
This problem is analogous to the reported'7 infiu-
ence of measurement errors on the evaluation of
heat-pulse" ' experiments. For laser-generated
pressure waves the reproducibility is rather poor,
and therefore the deconvolution procedure should
be avoided which is possible even for thin dielectrics
if very short and energetic LIPP's are used. ' In ad-
dition, the response to pressure profiles can become
very complicated because of partial refiections at
the sample surfaces.

IV. CONCLUSION

The current or voltage response of a charged
dielectric during the transit of a pressure wave was
analyzed starting from a simple geometrical model
and including the pressure dependence of the rela-
tive permittivity. This pressure dependence was
calculated for nonpolar and for polar materials us-

ing the Clausius-Mossotti equations for the total
polarization and for the induced polarization,
respectively. From the results the dependence of
the signal amplitude on the relative permittivities at
zero frequency and at the frequency of the experi-
ment was derived. It could be shown that all exist-
ing theories ' ' ' ' can be derived from the given
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simple formulation of the problem if the different
assumptions on the pressure dependence of the rela-
tive permittivity are taken into account.

The detailed analysis revealed that all methods
using pressure steps or pressure profiles involve the
possibility of complex signal contributions from
sample parts not actually passed by the leading edge
of the pressure wave. These contributions are
caused either by slow (compared to the temporal
resolution of the experiment) changes of the relative
permittivity or by partial refiections at the sample
surfaces. To avoid these difficulties as well as the
problems of a deconvolution procedure, very short

pressure pulses should be used for the determination
of spatial charge distributions in dielectrics.
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