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Density-functional theory is applied to study the structural and elastic properties of the
weak interplanar bonding in graphite. Using the Thomas-Fermi plus gradient approxima-
tion to the kinetic energy and taking the charge density to be a superposition of isolated C
planes permit rapid computation of the graphite total energy as a function of plane separa-
tion. Values for the lattice constant, compressibility, cohesive energy, and phonon frequen-
cies are obtained and are shown to be largely independent of the details of the in-plane C
bonding. Agreement with experiment is qualitatively good, but quantitative discrepancies
exist. It is argued that these discrepancies are not due to the charge-density approximation
or to the Thomas-Fermi approach, but rather to the marginal applicability of the local den-

sity approximation to the exchange and correlation. We find that using a van der Waals
point of view for the exchange and correlation does not quantitatively improve the theory, '

so some intermediate approach appears to be necessary.

I. INTRODUCTION

One of the unique properties of graphite is the
two entirely different types of interactions which
bind the structure. In the graphite basal plane, the
C atoms are held in a two-dimensional hexagonal
lattice by strong covalent bonds. These bonds, both
0. and m, are highly directional and account for a
binding energy on the order of S eV/C atom. On
the other hand, the C planes are held to each other
by much weaker energies (of order S&&10 eV/C
atom) which are not at all covalent or directional.
These forces are often taken to be of the "van der
Waals" type, and several previous calculations have
been based on this assumption. ' However, this
previous work was semiempirical, so that while they
have proven useful in fitting to certain experimental
results, they cannot explore the fundamental origins
of the graphite interplane interactions. In the
present work we have investigated a nonempirical
description of these interactions within the local-
density approximation (LDA). Fully ab initio
band-structure calculations have been performed for
graphite ' which have obtained excellent results for
the electronic charge density near the C—C bonds
and far away from the planes; however, these stud-
ies did not examine the total energy of the graphite
system. Thus the present work represents the first
attempt at a fully theoretical description of the weak
binding in graphite. Other weak-binding systems

have been studied within the LDA: the rare gases
physisorbed on graphite (Refs. 6 and 7), He on Ni, s

the rare gases on jellium, and various molecular
solids. ' The agreement between theory and experi-
ment has generally been asserted to be very good;
however, for the most part only ion scattering and
thermodynamic experiments are available for these
systems, and they provide only somewhat indirect
tests for the theory. Many reliable and unambigu-
ous experimental data on the structural properties of
graphite are available for direct comparison with
theory (e.g. , x-ray diffraction, low-energy electron
diffraction, " neutron scattering, ' and hydrostatic
pressure' ' ). We find that the LDA provides a
good qualitative description of the weak interplane
binding for graphite. However, quantitative
discrepancies do exist between theory and experi-
ment. We argue in Sec. IV that this is indicative of
an incipient breakdown of the LDA in the low-
electron-density regime. This follows the presenta-
tion of our total-energy formalism in Sec. II, and the
description of the results of our calculation for gra-
phite in Sec. III.

II. CALCULATION

The lamellar structure of graphite allows us to
make a very good estimate of its charge density for
different values of the c-axis lattice constant without
performing a band-structure calculation for each
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Tz —g f; J——g,'( r )V g; ( r )d r, (2)

the kinetic energy of noninteracting electrons. In
(2), f; are the occupation numbers, 0 denotes the
crystal volume, and 1(t;(r ) are the one-electron eigen-
states. Here and throughout the paper energies are
in rydbergs and lengths in Bohr radii. Since in this
present work we wish to use a theory based directly
on the charge density

p(r)= g f;1(';(r)P;(r)

configuration. In particular, the charge density
should be quite accurately given by the superposi-
tion of the charge densities of isolated graphite
layers. This suggests a greatly simplified approach
for obtaining the total energy as a function of c-axis
lattice separation. The density-functional theory'
guarantees that a unique and exact relationship ex-
ists between the charge density of any solid and its
ground-state total energy. While the exact function-
al Ez [p] is not known, adequate approximations to
it have been developed and tested for various solid-
state systems. ' ' Our charge-density construction
plus the density-functional approach permit the ra-
pid computation of the total energy and the result-

ing structural and elastic properties of graphite.
In general, the energy functional can be written as

Er[p] =T[p]+V[p]

where T is the many-body kinetic energy and V the
many-body potential energy. Approximations to Eq
are generally made by estimating T and V separate-
ly. One commonly used expression for T is

Vloc[ ] J ( ) HL( )d (7a)

~,.(p(r))= ——a—HL
4

m

' 1/3

[p( P) ]
I/3

Vp r
(5)0 (p}

T'" has been derived using many different ap-
proaches: linear-response theory, ' density-matrix
theory, ' and a perturbation theory involving iterat-
ed commutators. All agree on the functional form
of Eq. (5), but the value of y obtained from these

1 1

theories is different, ranging from y= —
„

to —,. The
theories give different y's because they each include
an average of the higher-order correction terms in a

1

different way. The factor y= 36 appears to be best

justified on theoretical grounds; moreover, numeri-

cal studies' ' indicate that y= —„gives the best re-

sults for a wide range of real systems. Therefore, we
1

have used y= 36 in the present work.

The potential-energy functional V[p] in Eq. (1) is
generally approximated by first separating it into an
(electrostatic) Coulomb energy and exchange and
correlation energies 6:

V[pl = Vc[p]+ V, [pl

Vc [p] is the classical electrostatic energy (see
below). The exchange and correlation energies

V„,[p] are usually approximated by a functional
which is local in p(r). We have used the functional
proposed by Hedin and Lundqvist,

rather than on the eigenfunctions g;(r), we will not
use Eq. (2). An approximation based on (2) which
depends only locally on p(r) is the Thomas-Fermi
approximation

4/335/3
T» J[p——(r)]'/3dr .o

T» is equal to Ts for jellium in which P(r) is con-
stant, and T~F has been used with some success even
in systems where p(r) is rapidly varying. Im-
provements to Eq. (3) have generally followed two
lines: introduction of nonlocality into TzF, ' and
addition of correction terms to T~F depending on
powers of the gradient of the charge density,

T=T»+ T"'[
I ~p

I

']+T'"[
I
~p I

'l+

T' ' and higher terms will not concern us here since
they have been shown to be small for a wide variety
of systems. ' T'" has the form

—C (1+x )ln 1+—+——x ——3 1 x 2 1

x 2 3

(7b)

where the parameters a= —,, C =0.045,
' 1/3

x =— [p(r)]
4m

and A =21.0 have been found to reproduce accu-
rately the many-body exchange and correlation ener-
gies for the interacting electron gas. As in the case
of the kinetic energy, improvements to the function-
al in Eq. (7) have been suggested, both of a fully
nonlocal type ' and of the gradient type:

V-[p]= V'. [p]+ V.'."[
I ~p I ]+

While many authors have studied V„",', the most
comprehensive and recent work has been by
Langreth and Mehl, who propose that the form
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V(1)[
I
q I ] c f I ~p I (2 2 ~ &~ & ~

)dxc 1 O 4/3

with C~ ——4.28)&10 and C2 ——0.262 gives an im-

proved value for the exchange and correlation ener-

gy of atomic systems.
The other term in the potential energy Vc[p] is

given by the Coulomb energy of the electron charge

p( r ) in the field of the ion cores:

Here R denotes the real-space lattice vectors, Qo the unit-cell volume, VI»(r) the ionic (pseudo-) potential of
the ith ion in the unit cell, Z; its charge, and r; its position. We will discuss the evaluation of Eq. (10) in some
detail later. To summarize all of the above, we will take the approximate expression for the total-energy func-
tional per unit cel1 in the solid to be

Er[p]= f p dr+ —
„
f„dr+f g V,„(r—r; R)—p(r)dr+ g—

0 P iR (JR Iri —rj —RI

As mentioned earlier, tile use of Eq. (11) is possi-

ble for graphite because a very simple prescription
suffices to estimate the electronic charge density ac-

curately. We propose that p(r) for graphite planes

separated by lattice constant c can be adequately ap-
proximated by the superposition of the charge densi-

ties of isolated graphite layers, and that the C-ion
cores move rigidly with the layers. This approxima-
tion is correct to leading order in perturbation
theory, and has been confirmed directly, although to
a limited extent, by band-structure calculations. '

Note that we shall not be concerned at all with vari-
ations of the in-plane structure of graphite, for
which any such superposition scheme would certain-

ly be inaccurate; only interplanar structural proper-
ties will be studied here.

The charge density of an isolated graphite layer is
calculated using a supercell by the mixed-basis
band-structure technique using nonlocal norm-

conserving pseudopotentials. ' This method has
been demonstrated to give excellent results for the
in-plane charge density in comparison to x-ray ex-

periments. This calculation also properly gives an
exponentially decaying charge density far from the
graphite planes which agrees with a linearized
augmented-plane-wave (LAP W) calculation to
within 10%. We point out that by using this ap-
proach, the C—C in-plane bond charge is obtained

by a fully quantum-mechanical energy functional
rather than by the approximate Er [p] in Eq. (11).
Only the small changes in the energy resulting from
changing the out-of-plane lattice constant c will be
described by Er [p]. It should be true that use of the
pseudopotential technique will actually improve the

p(r):— g e' '~p(Gp, G, ),00- (12)

direct interpolation to the continuous variable q be-
comes possible. [Here 6 =(G&,6, ) and 6,=2mn/c,
n =integer. ] The charge density of any stack of gra-
phite planes with overall periodicity at lattice con-
stant c and with planes placed in the unit cell at po-
sitions r&, r2, . . . , is simply

I

applicability of our approximate Er[p]. Since the
core kinetic energy is accurately contained by the
ionic pseudopotential, the Thomas-Fermi kinetic
functional, which is designed for a smoothly varying
charge density, need only be applied to the carbon
valence charge. Of course, by using this procedure,
p(r) is not the function which minimizes Er[p];
thus Er [p] is not a variational quantity and, for ex-
ample, the virial theorem is not exactly satisfied.
This does not appear to cause any problems in prac-
tice.

For actual calculations, it is most convenient to
initially represent the isolated plane-charge density
in the Fourier-transform domain: p»,„,(G&,q). Here

G& are the fixed in-plane reciprocal-lattice vectors,
while q is a continuous out-of-plane wave vector. In
the supercell approach, we actually obtain

p»,„,(G&,G, ) on a discrete set of 6, 's. Since the su-
percell lattice constant has been taken to be 55%
larger than the actual graphite plane-plane separa-
tion, these 6,'s are closely spaced. When the
Fourier transform is defined with the prefactor
I/Qo
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po„(G,G,') = g e 'ppi,„,(G,q =6,') . (l3)

Sufficient convergence has been obtained so long as
all Fourier components are kept for 6 & 10 a.u. : in
the present work this corresponds to about 3000 6's,
not taking symmetry into account. All of the kinet-
ic, exchange, and correlation parts of the functional
of Eq. (11) are then evaluated at the same time.
First, P6, (G) of Eq. (13) is Fourier transformed to
p&„(r ) according to (12); likewise, i Gpo, (G) is
transformed to give Vp( r ). (A fast-Fourier-
transform algorithm is used throughout. ) Then the
indicated integrals are evaluated numerically by the
trapezoidal rule on a uniformly spaced grid of about
4&&10 points throughout the unit cell. Overall, nu-
merical convergence is at least as good as 2 mRy.

The evaluation of the Coulomb part of Eq. (10)
requires greater care. Because of the long range of
the Coulomb interaction, the terms as written in (10)
are separately divergent, although when taken to-
gether they are, of course, finite. That is, all the
Coulomb terms may be given in a formally conver-
gent way if they are all written together,

(Ptot Ptot

no

p;,„(r)is related through Eq. (15) to the ionic pseu-
dopotential V~,„(r).This procedure is not strictly
correct because the ionic pseudopotential used in our
band-structure calculation is nonlocal. However, the
only part of this potential which is physically im-
portant for interplane binding is V;,„(r)for large r.
In this regime the nonlocality is virtually zero, so we
find that the results of Eqs. (14) and (15) are insensi-
tive to whether V;,„(r)is taken as the s carbon pseu-
dopotential, the p potential, or some reasonable aver-

age of the two.
Having thus established the definition of the total

charge p„,( r ), we proceed to the actual evaluation of
(14). The general strategy is to separate p„,(r)
into several parts, each of which is individually neu-
tral and for which the Coulomb energy is easily cal-
culable. We reseparate p„,into core and valence
parts, maintaining neutrality by adding and sub-
tracting a constant:

p...(r ) =-pi(r )+p2(r )

=(po„(r)—po„)+ g p',,„(r—r; —R)+p6„
iR

(16)

Vtot(r )ptot(r )dr ~

00
(14) po„=— pc, ( r )d r =pc, (G=O)

Qo "0 (17)

p„,(r ')

We would like to define p„,(r) as the sum of a
valence part and an ionic core part,

(15)

ptot(r )=pop(r )+ y p',,„(r—r; —R),

where the sum is over the atoms in the solid and
I

Here V„,(r) is the Hartree potential corresponding
to p„,(r ), which in rydberg units is

is the average valence charge density. Because of
the bilinearity of Vc[p] in p, it can be written in
terms of p, and p2 as

Vc[P]= Vci + Vc +2 Vc, (18a)

VP= I I drdr'. (18b)
p;(r)p, (r ')

r —r'
Since p& is a smoothly varying function of r, its
plane-wave expansion is rapidly convergent. There-
fore V~' can be immediately evaluated by the 6-
space formula~

where the prime on the sum indicates the exclusion of the

4ir, Pl(G)P2(G)
Vc =

Qo 62

6 =0 term. V~ is similarly calculated:

g' pi(G) V2(G) = —g' po„(G) g V';,„(G)e20p-
G 2QO G r,.

, I
pi(G)

I

' 4~, pa, «)
I

'
V~' ——„drdr'=

n n
l l

Q g2 Q g2 (19)

The sum over r; indicates a sum over the atoms in the unit cell. Although V;,„(G)is poorly converged in G
space, p6„(G)provides adequate convergence for Eq. (20). Vc, on the other hand, cannot be evaluated with
6-space techniques because of inadequate convergence. To evaluate V~ we add and subtract point charges
from the atom centers for reasons that we will show momentarily:
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(21a)

(21b)

(21c)

p&(r) =p3(r)+p4(r),

p3(r)= gpIo„(r—r; —R) —gZ;5(r —r; —R),
iR iR

p4(r)= g Z;5(r —r; —R)+PG, .
iR

Here Z~ ——fnp, ',„(r)dr. As in Eq. (18), VP= Vc + Vc +2'. Now p3 consists of point charges embedded

in small neutralizing charge clouds which do not extend beyond the ionic radius. Since these units of charge
are spherically symmetric and nonoverlapping, Vc is independent of the lattice constant. Therefore we do not
calculate it. Vc is easily evaluated directly in real space. Since pG„———(1/Qo) g,. Z;,

Vc = —, f„p4(r ) V3 ( r )d r =
Zi

i

2Qp
V;,„r—rJ —R-

O . RJ J

Z
l

20p
'g f V;,„(r—r)—

J

2Z dr.
r rJ

(22)

The integral is density independent and spherically symmetric, so it is evaluated once numerically as a one-
dimensional integral. Vc only depends on the latticeconstant through theunit-cell volume Qo. Finally, Vc is
the energy of a lattice of point charges embedded in a constant neutralizing charge density. The standard
Ewald sum expression for this energy is

2

i
Z l 6 f 62y4.~Zie e

V44 4s yg
Qp G

Z;Z;erfc(g'
~

R r;+r/
~

)—
QZ, Z, .

0

(23)

00

Here erfc(x) =(2/v m. ) e dy. The Ewald parameter g is chosen so that both the 6 sum and the R sum
X

are rapidly convergent.
To summarize, the final expression used in evaluating the total electrostatic energy is

G 2

Vc[p]= g 2 + g'pGr(G) g V,',„(G)e
p G

G2 p W ~6

Zi
l

no

2Z.
' g f Vf,„(r—rj) — dr

G2

G'z4v—
Z;Z~ erfc(r1'~

~

R—r;+ r/
~

)Z;+g; R JR—r;+rj
/

gZ;Z, .
I 0

(24)

We have been able to evaluate Eq. (24) with an overall numerical accuracy of about 2 mRy/unit cell.

III. RESULTS

We have performed the calculations indicated
above for a graphite lattice with staggered (A-B)

stacking with a unit cell of four atoms. The results
for the total energy and its components as a function
of the out-of-plane lattice constant c are shown in
Fig. 1. We show the total Coulomb energy Vz, the
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FIG. 1. Calculation of density-functional energies for
approximate charge density constructed from superposi-
tion of isolated graphite planes. Upper panel: the
Thomas-Fermi kinetic energy TzF, the gradient correction
to the kinetic energy T"', the exchange and correlation
energies V„„the gradient correction to the exchange and
correlation energies V„",', and the electrostatic energy Vz
as a function of graphite-layer separation c. Lower panel:
total density-functional energy E& vs c. Energy units are
eV/C atom; note the different scales for the upper and
lower panels. The energy zeros are arbitrary.

Thomas-Fermi term in the kinetic energy T~F, the
gradient correction to the Thomas-Fermi term T"',
the Hedin-Lundqvist local approximation to the ex-
change and correlation energies V„„andthe gra-
dient correction to the exchange and correlation en-

ergies V„",'. The zero of energy for all of these quan-
tities has been arbitrarily shifted. As the figure
shows, the kinetic energy provides a large repulsive
barrier to the collapse of the system; this is a univer-
sal feature of solid-state systems. Note that because
the charge-density gradients are reduced as the lat-
tice constant decreases, the gradient correction to
the -kinetic energy makes this barrier somewhat
smaller. As expected, the exchange and correlation
forces between graphite planes are attractive, leading
to the upward slope of V„,(c). The gradient correc-
tion to this energy, V„",', is found to be negligible.
Perhaps the most surprising feature of Fig. 1 is the
magnitude of the attractive electrostatic energy V~.
Despite the fact that this energy represents the
Coulomb energy between individually neutral planes
at a fairly long distance, its magnitude is not insig-
nificant compared with the other energies in the
problem. This is at variance with the typical point
of view of the graphite-graphite plane interactions,

and we will devote more discussion to it later.

Figure 1 also gives the resulting total energy Ez
as a function of the c-axis lattice constant. As the
figure shows, the variations of Ez. are small com-
pared with the variations of its components. Our re-
sults give a positive binding energy for AB graphite,
with a stable minimum at cp ——2.80 A, about 15%
smaller than the experimental value cp ——3.35 A. At
this minimum point, the compressibility is given by

k, = Ap 32Ez.

cp Bc

where Ap is the unit-cell area in the graphite basal
plane. Our theory gives k, =0.97X10 ' cm /dyn,
about a factor of 3 smaller than experiment. (For
a detailed comparison of theory and experiment see
Table I.) While the agreement with experiment in
this work is certainly not as good as in energy
density-functional theories for metals, or for sim-
ple semiconductors, it is the sort of agreement
which has been found in Kohn-Sham studies of
the intermolecular properties of other molecular
solids. Thus, while the present results are not in
perfect quantitative agreement with experiment,
they are qualitatively correct: They place the C-C
plane separation at a distance much larger than dis-
tances typical for strong covalent bonding (for C—C,
1.42 A), with a larger compressibility than is typical
for strongly bonded materials. We will say more
about this point later.

Further comparison between theory and experi-
ment are shown in the table. To facilitate this com-
parison, we have fitted both our theoretical results
and the experimental results for the equation of
state, ' ' elastic constants, ' ' and heat of wetting'
by a Morse curve,

Ez(c)=b, (e ' ' 1)—(25)

The values of b; are given in the table. The fit to
the theoretical points is essentially perfect, and the
fit to the composite of experiments is quite good;
hence it seems that Eq. (25) is an appropriate fitting
form. The difference in the theoretical and experi-
mental b s reflects the above-mentioned discrepancy
in the equilibrium elastic properties. The total C-C
plane cohesive energy is given by the parameter bi.
The theoretical value, Ez(choo) Ez(c =co), is-
found to be 8 mRy/C atom. The experimental
value, extracted in an indirect way from calorimetric
surface wetting measurements, ' is about 5 times
smaller. Note that our theory does predict that the
carbon interplane bonding is much weaker than the
intraplane binding energies, which are of the order
of 103 mRy/C atom. The other parameter of the
Morse function, b2, gives the decay length of the to-
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TABLE I. Morse-potential parameters and structural and elastic constants for graphite for the density-functional

theory using three different charge-density approximations and for experiment.

Morse parameters

b& (meV/unit cell)

b, (A-')
b3 (A)

Superposition
of graphite

planes

439
0.837
5.58

Theory
Superposition
of C atoms

762
0.558
5.99

Homogeneous
exponential
sheet model

427
0.656
5.65

Experiment

91'
0.971b

6.69b

Structural parameters
Plane binding energy

E& (meV/C atom)

Compressibility

k, (cm /dyn)
Optic shear frequency

a)~ (cm-')
2g

'Reference 1.
bReferences 13 and 14.
'Reference 12.
"Reference 40.

110

0.97X 10

40.8

191

1.18 y, 10-"

107

1.6X10-"

23'

2.7X 10-"

42+ 1'

tal energy towards zero. Theory and experiment
agree fairly well on this parameter; this implies that,
for example, the trend of experimental equation-of-
state data' ' is well reproduced theoretically.

We have also investigated the stability of other
plane-stacking sequences for lattice constant c =co.
We find AB stacking to be more stable than AA

stacking by 3A mRy/C atom. In fact, we find AB
stacking to be the most stable among all the two-
layer repeat stackings in agreement with experiment.
Also, by studying the appropriate rigid-phonon dis-
placement, we are able to predict the frequency of
the low-lying E2~ optic shear mode in graphite.
This is a mode in which alternate graphite planes
move in opposite directions in the x-y plane. Our
calculation gives co@ ——40.8 cm . While this is in

2g

perfect agreement with experiment, ' such agree-
ment is admittedly fortuitous in view of the other
inaccuracies of the calculation. Still, our theory re-
veals an interesting feature of this shear mode; it is
found to be strongly anharmonic. This anharmoni-
city should be manifested as an observable increase
of this frequency under hydrostatic pressure. This
possibility has not been studied experimentally.

In order to discover how sensitive the above re-
sults are to small modifications in our theory, we
have evaluated the energy-functional equation (11)
for a different p( r ), one formed simply by the super-
position of neutral pseudoatom densities:

pG„(r)=gp„,(r —r; —R) . (26)
iR

Here p„,(r ) is the outer-shell charge density of the
neutral isolated C atom obtained from the norm-
conserving pseudopotential technique. ' The density
in Eq. (26) is very similar to that obtained from the
superlattice band-structure density far away from
the atomic planes, but they are naturally very dif-
ferent near the C bonds. " Thus this calculation will
show us how sensitive the interlayer binding is to
changes in the near-plane charge density.

Figure 2 shows the results of the density-
functional calculation on pG, (r) in Eq. (26). The
behavior of the various components of the total en-

ergy in Fig. 2 is both qualitatively and quantitatively
similar to the corresponding ones in Fig. 1. The re-
sulting total-energy curve is also quite similar to
that obtained with the band-structure density.
While the numerical predictions for the binding en-

ergy, compressibility, and shear frequency are dif-
ferent in this approximation (see the table for this
comparison), the qualitative feature of weak binding
is unchanged, and the predicted lattice constant is
only changed by 5%. We conclude that even rather
substantial errors in the in-plane features of the
charge density leave the important interplane results
of the energy-functional calculation largely unaffect-
ed.

This conclusion has encouraged us to study an
even more drastic approximation to the graphite
charge density, one in which the in-plane structure
is removed altogether. That is, we replace the car-
bon ions by 5-function sheets,
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FIG. 2. Same as Fig. 1, calculated for approximate.
p(r) constructed from superposition of neutral C atoms.
V'„", is not obtained.

Zi —~(z —R-z —r; z)/a
~

pa, (r)= e
2aiR

(28)

Figure 3 shows that Eq. (28) provides a good match
far from the graphite planes to both the superlattice
band structure pG, ( r ) [Eqs. (12) and (13)] and the
superposition of atoms pa„(r ) [Eq. (26)] if
the exponential decay constant a =1.23 A. The
simplicity of this model permits analytic solutions
to be obtained for several of the components of the
energy functional, which consequently aids in under-
standing the nature and origin of these components.
For example, the electrostatic energy is given in this
model by

2n.a g Z; c

Qp
coth(P)—

sinh (P)
(29)

where P=c/2a. This function actually agrees with
the Vc calculated with the more accurate pa„(r)
quite well. That is, the change in Coulomb energy
upon changing the lattice constant c has almost
nothing to do with the in-plane structure of the
charge. This shows that the Coulomb energy should
be thought of as arising from the direct overlap of

CZ;
p;o„(r) = —g 5(z —zp),

iR Qp

and the graphite valence charge by a sum of ex-
ponential charge densities with no in-plane varia-
tion,

FIG. 3. Three different charge-density approximations
shown in a cut perpendicular to the graphite planes pass-
ing through the C—C bonds. Graphite stacking is AB.
Contour values are in e/A; regions where the charge den-

sity is greater than 0.16 e/A are shaded. Left panel: su-

perposition of isolated plane charge densities. Middle
panel: superposition of neutral C atoms. Right panel:
homogeneous exponential sheet model [Eqs. (27) and (28)].
In this model the C ions are modeled by 5-function sheets
shown as dotted-dashed lines.

charges on different planes, rather than from the
long-range quadrupole-quadrupole interaction be-
tween C—C bonds on neighboring planes. In fact,
we have found by direct calculation that this
quadrupole-quadrupole contribution is small. %e
have also evaluated analytically the gradient contri-
bution to the kinetic energy within this isotropic
plane model; it is given by

2$Z;
z (&)

36a
tan '[sinh(P)]

sinh(P)
(30)

Again, we find this to be in good quantitative agree-
ment with the calculation of Fig. 1, showing that the
in-plane charge corrugations are irrelevant to the
interplanar gradient energy. Figure 4 shows Vt- and
T'" as a function of lattice constant c, along with
the other energy-functional components and total
energy as in Eq. (11), all according to the charge
density of Eqs. (27) and (28). The numerical agree-
ment of these with all the corresponding curves in
Figs. 1 and 2 is striking. A parallel set of values for
the various equilibrium properties appears in the
table; these numbers are again in good agreement
with those from the more complex calculations (ex-
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FIG. 4. Same as Fig. 1 calculated for homogeneous ex-
ponential sheet model. V„",' is not obtained.

cept, of course, the layer shear frequency, which is
nonzero only because of the in-plane graphite struc-
ture).

IV. DISCUSSIGN

As the preceding section has shown, the results of
the density-functional calculation provide a reason-
able qualitative description of the interplane binding
of graphite. The quantitative accuracy of this
description, however, is poorer than in many other
solid-state systems to which density-functional
theory has been applied. ' ' ' ' ' We now
attempt to uncover the source of this quantitative
discrepancy, and we predict that no currently stud-
ied theory within the density-functional framework
is capable of providing completely accurate predic-
tions for the interplane properties of graphite.

The most obvious source of error in the present
calculation is inaccuracy in the creation of the gra-
phite charge density. We have already discarded
this problem to a certain extent by showing that the
superposition of atoms results are only slightly dif-
ferent from those of the superposition of planes.
What remains is to show that small variations in the
exponentially decaying charge density far from the
graphite planes will not cause larger changes in the
results of the theory. As mentioned earlier, the ex-
ponential decay constant in the pseudopotential
band-structure calculation used here differs by about
10% from that found in a surface LAP% calcula-
tion for graphite. Therefore we have studied the
effect of varying the exponential decay length of the

—t0
DJ

0
2

a (A)

FIG. 5. Equilibrium lattice constant co and the total
energy at equilibrium Ez as a function of variations of the
decay constant a in the homogeneous electron sheet
model. The inset depicts the charge density along the z
axis in this model.

out-of-plane charge using our simplest charge-
density model containing only 5-function sheets
with exponential electronic charge densities [Eqs.
(27) and (28) and Fig. 3]. Figure 5 shows the varia-
tion of the equilibrium z-axis lattice parameter c and
the total energy ET with ihe decay constant a. c has
an extremum for a near 1.23 A, the theoretical de-
cay constant; therefore, the binding properties vary
very little with a, and small errors in it should have
little effect on the density-functional predictions. In
addition to this, Fig. 5 brings out a number of other
interesting properties. First, it shows that the equili-
brium lattice constant c is reduced substantially both
for larger and smaller a. That is, a layered material
with either a more or less diffuse charge density
than graphite will have closer plane binding,
whereas carbon provides a charge-density decay
which results in the largest possible lattice constant.
Another feature of Fig. 5 is that the approximate
density-functional total energy is variationally mini-
mized near a =1.23 A. Thus both the approximate
semiclassical ET and the quantum-mechanical ET
possess minima near the same value of a, suggesting
that we have made an accurate approximation of the
Kohn-Sham functional.

In fact, we have a more direct way of demonstrat-
ing that the use of the Thomas-Fermi plus gradient
approximation for the kinetic energy gives results
essentially identical to the one-particle kinetic-
energy approximation as used in the supercell band
structure. We are able to directly evaluate both T~
and TTF+T'" [Eqs. (2) and (4)] for the graphite
planes at the supercell separation. We find Tz and
TTF+ T'" to agree if the prefactor of the T"' term,
y [see Eq. (5)], is taken to be 6 (—„).This is larger
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than y= —„which we use in our density-functional

calculations because it takes into account the correc-
tion to the Thomas-Fermi kinetic energy both near
the C planes and in the interstitial volume. Near the
C planes the charge density is rapidly varying, so

1

the T"' prefactor is predicted to be near 9 (—„).'
Far from the atomic planes the charge density is
smoothly varying, so y= —„.' ' ' Thus @=6(—„)
is quite a reasonable spatial average of these two
limiting cases. Still, y= —

„

is most appropriate in

our calculations since the region near mid-gap is
most important for interplane binding, as the distri-
bution of b,T"' (r ) along the z axis (Fig. 6) shows.
[b,T"' (r ) corresponds to the integrand of Eq. (5),
with the contribution from infinitely separated
planes subtracted out.] So, on the whole, the factor
y= —„seemswell justified, and there is every reason
to believe that this kinetic-energy approximation
should not cause substantial errors in the predictions
of the ground-state properties of graphite. We par-
ticularly point out that the elimination of T"' (i.e.,
y=0) has been a common procedure in other
work. ' ' Although this procedure has given good
results for other molecular solids, ' the present cal-
culation indicates that this procedure would be
theoretically unjustified. For graphite, using y=0
results in binding which is much weaker than exper-
iment. (A similar problem was encountered by Free-
man in a study of Ar on graphite. )

In fact, a separate total-energy calculation on
another molecular solid, Se, performed previously
with a state-of-the-art density-functional band-

(meV
)

structure theory, gives results for intermolecular
binding which disagree with experiment to a similar
extent as this work; for example, the intermolecu-
lar Se lattice constant is underestimated by 10% in
the theory. Therefore we conclude that the local-
density approximation itself shows evidence of
breaking down quantitatively (but not qualitatively)
for graphite and similar materials with very weak
charge overlaps. This conclusion does not conflict
with earlier results that the LDA gives an accurate
description of physisorption of, for example, Xe on
jellium. In that case, the physisorption distance
was 5 a.u. (cf. 7 au. for the graphite lattice constant),
and the charge overlap was about 10% compared
with 1% for graphite. Thus for overlaps somewhere
between these two cases, the LDA apparently ceases
to be quantitatively accurate.

It would seem that the local point of view to elec-
tronic correlation across the graphite planes is not
strictly correct and must be somewhat modified.
We thus have compared the local exchange and
correlation energies with the van der Waals energy.
This energy is calculated with the opposite assump-
tion about correlation by considering perturbations
about complete localization of the electronic eigen-
states from plane to plane. We have calculated the
leading term for the van der Waals interaction be-
tween two graphite planes separated by distance c to
be4'

—32p
V.dw =

128m c
[X(q~O, iu)] du,

where X(q, co) is the two-dimensional polarizibility of
a graphite plane. Because of V„dw's strong depen-

0 Co (eV)

5.25—

-1.0-
5.00

-2.0- 4.75

4.50

FIG. 6. hT"'{z), the gradient correction to the kinetic
energy, averaged in the x-y plane with the contribution
from infinitely separated planes subtracted. Calculated
for the superposition of the plane charges model with
c =2.79 A. Note that the magnitude of hT"'(z) is largest
midway between the C planes.

4.25
3.0 3.5

C, (A)

4.0 45

FIG. 7. Comparison of the LDA approximation to the
exchange and correlation energies V„,with the van der
Waals approximation V,d~ as a function of plane separa-
tion c. Note the strong similarity between the two curves.
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dence on c, contributions to this energy from
second-, third-, etc., neighbor planes are negligible.
Figure 7 compares V„dw and V„,[Eq. (7)] as a func-
tion of c. They are remarkably similar, and includ-
ing either V,dw or V„,in the complete density-
functional theory leads to predictions in quantitative
disagreement with experiment. So neither of these
two extreme points of view provides an entirely sa-
tisfactory account of interlayer cohesion. Some in-
termediate point of view between localization and
complete delocalization seems to be required. No
such density-functional theory embodying this inter-
mediate point of view is currently in use, so graphite

should provide a fruitful area of testing for future
advances in this area of theory.
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