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We study a new modification of the Migdal-Kadanoff (MK) approximation, in which the
bond-shifting step is generalized so that the resulting transformation preserves the free ener-
gy. This method is then utilized to study the g-state Potts model in two and three dimen-
sions. While this method is just as easy to implement as the standard MK approximation,
significant quantitative improvement is achieved by preserving the free energy even to very
low order in a series expansion. We also discuss the limitations inherent in employing a
single-parameter renormalization-group transformation.

I. INTRODUCTION

The Migdal-Kadanoff (MK) approximation' is by
far the easiest position-space renormalization-group
(RG) method available today. In fact, for most
cases it is simpler to do an MK calculation than the
corresponding mean-field treatment. While the MK
method is clearly an improvement over the latter, it
is still not as quantitatively accurate as more ela-
borate renormalization-group techniques. What one
would like, then, is a straightforward way to im-
prove the basic MK transformation, while at the
same time retaining its simplicity and ease of calcu-
lation. Many modifications have been studied in re-
cent years,? often involving schemes to exploit the
fact that the standard MK calculation is a lower
bound to the exact free energy. However, in the pro-
cess of improving on MK the resulting methods
generally lose simplicity and become almost as in-
volved as the more difficult calculations one seeks to
replace. In this paper we study a recently intro-
duced method® which retains the basic simplicity of

the MK approximation, while achieving significant-

ly better results, and we apply it to the g-state Potts
model in two and three dimensions.

This method involves modifying the basic MK
approach so that, instead of producing a lower
bound to the exact free energy of the system, the re-
sulting calculation preserves the true free energy to a
given order in a series expansion. This is achieved
by generalizing the ad hoc bond-shifting step of the
MK transformation. In practice, we find that even
by preserving the free energy to low order, signifi-
cant quantitative improvement is achieved over the
MK results. Finally, it is straightforward to im-
prove systematically the calculated free energy by
simply working to higher order.
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In the calculations presented here we consider
only a single interaction parameter. The conse-
quence of this is that, even if the free energy is, in
principle, preserved exactly through all orders, the
resulting recursion relations become singular. This
is demonstrated in Sec. II, where the general features
of our method are presented. The method is found
to be a useful approximation technique, as shown in
Sec. III, where the quantitative results are discussed.

II. METHOD

We now develop in detail the ideas outlined in the
Introduction, and we illustrate the method by apply-
ing it to the Potts model.*> First, we consider the
standard g-state Potts model, defined by

—BH,(K;{s;})=K 3, SS,-S,- , (1)
(ij)
where 5;=1,2,3,...,¢, and Bsisj is the Kronecker &
function. The reduced free energy per site associat-
ed with this Hamiltonian, on a lattice with N sites,
is
.1 —BH,(K;{s;})
fp(K)= lim jv—ln »

N—>w

Tre

{s:}

(2)

For convenience in developing a diagrammatic ex-
pansion of the free energy, it is also useful to study a
“traceless” version of the Potts model, which can be
written as

—BH,(K;{s;})=K 3 (85, —q7 "), (3)
{ij)

from which it follows that
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Tre ~PHKs 1))

.1
k= fm, i

=—320 'K +/,(K), @
J

fiK)=Ing — 32 'K + +zIn[1+¢ (X —1)] +A}im %ln

where
po =1
1+q 1eX—1)

With the model defined in this way, only closed dia-
grams contribute in the expansion. One can develop
a similar expansion for low temperature (large K), or
make use of duality in two dimensions.

Before developing our method we review the usual
MK transformation. Figure 1 illustrates the basic
steps involved in carrying out the MK procedure for
the square and triangular® lattices. The first step is
to shift some bonds away from their original posi-
tions, and to place them in other locations on the
lattice. Thus in Fig. 1 the bonds in the interior of
each basic unit are moved onto the perimeter. It is
clear that by following this procedure we will have
K =2K for this case. In general, K =b%"1K on a
d-dimensional hypercubic lattice with lengths res-
caled by a factor b. Also, it is solely in this bond-
shifting step that the MK method is approximate.
The second step is an exact transformation in which
those degrees of freedom labeled by crosses are
traced out, leaving a lattice with lengths rescaled by

(6)

K K K'

K K K
(b) — —

FIG. 1. MK transformation is illustrated for the
square (a) and triangular (b) lattices. The sequence shows
the original lattice with interaction K, the restructured lat-
tice with interaction K, and the lattice with renormalized
interaction K'. The degrees of freedom labeled by crosses
are decimated. In this example all lengths are rescaled by
a factor of 2 (b=2).

where z is the coordination number of the lattice. In
what follows the subscripts ¢ and p are suppressed
when the results apply equally to both cases. The
high-temperature (small-K) expansion of f,(K) has
the form,

g VT [T [14v(8;,,—g ]|, (5)
IS,-}(,'j) H

[

a factor of 2 (b=2) and renormalized couplings K'.
An expression for K' with arbitrary b is easily de-
rived and can be expressed as

A +(g—DAL

K'=In Ty , (7)
where

Ar=eRt(g—1) (8)
and

A_=eR_1. 9)

Clearly, this result is equally valid for both the
square and triangular lattices, since the same de-
cimation is performed in each case, and thus the
MK procedure does not distinguish between these
two systems. Finally, the decimation also generates
a constant term K which contributes to the free en-
ergy, where

b _ab
D e s A% —AZ
Ko=q 'K'—bg~'K+In |[—— (10

The free energy is then calculated as follows:

fK)= 3 b-"G[K™], (11)
n=0
with
G[K"™]=alng +db—°K{[K™] . (12)

K™ denotes the nth iteration of K, so that K=K,
KW=K’, etc. The term a Ing takes into account the
disconnected spins that result from the bond shift-
ing, and for hypercubic lattices

a=1-b"1+d(b-1)]. (13)

The basic difference in our approach is that the
first step—the bond shifting or lattice
restructuring—is generalized so that instead of
K=b%"'K we allow K(K) to be a general function
of K. The form of this function is then determined
such that the free energy of the calculation matches
the series expansion for the exact free energy. The



second step of the transformation, the decimation, is
exact and is retained unchanged. Recall that for the
original lattice we denote the free energy by f(K);
similarly, we write f(K) for the free energy associat-
ed with the restructured lattice. Clearly, f(K) and
F(K) are not greatly different; both systems belong
to the same universality class, and thus have the
same type of singularities; only the detailed depen-
dence on the couplings has changed. Therefore, one
might expect that a simple function K(K) will
describe the mapping from one lattice to the other.
We shall now study this function in detail.

To show how this can be carried out, we ﬁrﬁt con-
sider various limits where the form taken by K(K) is
particularly straightforward. All results given below
refer to the d-dimensional hypercubic lattice, where
z =2d, unless specifically stated to apply to the tri-
angular latticg First, we consider the limit K — oo,
where f; and f; reduce to

Klim filK)=d(1—¢~ 1)K , (14)

and
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lim X&) _pa-njy___alng | o
Ko d(1—g—HK

When we do this calculation for fp and fp we find
the same expressions as above, except that the factor
(1—g ") is absent. Thus for this case

E(K) =b(d_1) _ alnq

! dK

lim
K->

(17)

In each case we see that the MK result of
K/K=b%"" is recovered in the limit, but only
asymptotically; for finite K the results will deviate
from the MK results. Finally, the square and tri-
angular lattices are distinguished in this method
since the quantity a is different for these two sys-
tems.

The limit K—0 is more interesting in that the
MK prescription is not always the asymptotic value
of K/K. To see this we expand f,(K) for small K,
with the result

. d
1 -1 —1 g2
Klr%f,(K)—lnq+ 29 (1—g—)K

lim FAR ) =dp—d~1(1_,~1\F&

E.I_I,nwft(K) db (1 q )K+alnq . (15) +%q—2(1-‘q_l)(q—2)K3+0(K4)-
From these results we find that setting f,(K)= f1(K) (18)
implies Similarly,

I_l_imof,(f(v)zlnq+b“<d_” %q‘l(l—q‘l)fz+%q_z(l—q‘l)(q—2)f3 +0(K*) . (19)
Thus, equating f; and S yields

}imo%:_b(d—l)ﬂ{l_‘_%q—l(q__2)[1_b(d—l)/2]K}+o(K2) , (20)

and in this limit we obtain the square root of the usual MK value. We can see that this resulted from the fact
that f,(K) starts off with order K2 rather than linearly in K.
For the standard Potts model the limit K —0 is the same as in the MK procedure, simply because now the

lowest-order term is linear, namely, dg ~'K. Thus

lim f, (K)=Ing +dg 'K + 24~ (1—g =K+ 0 (K?)

and

(21)

kljm()ﬁ([?):lnq +b-‘d—”ldq*‘lh%q-‘(l—q*‘)f(z +0(K?), (22)
from which it follows that
Il(irr%%=b‘d‘”[l+%(l—q“)(l—b‘d‘“)K]-}-O(KZ) . (23)

In this case the MK result is approached for both
high and low temperatures, though again there is in
general a deviation for finite K.

Now that various limits have been explored we
consider preserving the free energy for arbitrary K.

r
By performing the exact decimation we can write
f(K) in terms of f(K') as

f(K)=alng+db~Ky(K)+b~9f(K'). (24)

Setting f(K)=/f(K) then defines an implicit rela-



244 DAVID ANDELMAN AND JAMES S. WALKER 27

tionship for K'(K). Solving for the fixed points,
K'(K*)=K*, yields

K§(K*)=d b [(1—b~%)f(K*)—alng] . (25)

Clearly, K* =0, are both stable fixed points, as
expected. There is also one critical fixed point for
finite K*. Similarly, we can determine the thermal
exponent by taking the derivative with respect to K
of Eq. (24), with the result

a9f
b}’T: K’ — _bi . (26)
0K |g _ge daKZ) +i
0K 0K

K=K*

These are the basic results of this method, where in
practice f(K) and 9f /9K are determined by a series
expansion.

It is also useful to consider the limit b — 1, that is,
the limit of an infinitesimal rescaling, since these re-
sults are generally better than for finite . In this
limit the fixed point is defined by the condition

OK'(K*,b)

ab bl

In terms of preserving the free energy this condition
is

P = oK o (K*,b) 27
- ob b=1
For the thermal exponent we find
of 3 | 9K
[0K 0K | 3b |5 28)
e of '
oK K =K*

These equations are simple to solve and the results
are given in the next section.

Before turning to the quantitative results, we first
point out the implications of preserving the free en-
ergy exactly. Consider again the condition for the
fixed point Eq. (25). In general, one cannot expect
f(K.) and K4 (K, ) to satisfy such a simple relation-
ship, and as a result one will find that K*4K,. In
the same light, consider again the implicit expres-
sion for the recursion relation K'(K),

f(K)=alng +db~9K{(K)+b % (K') .  (29)

If K =K., but K'(K,)#K_, then the left-hand side
of this equation is singular while the right-hand side
is not. In order for the equality to be enforced as
K—K,, it is necessary for K'(K) and K(K) to be
singular. Thus working with only a single interac-

tion parameter forces the recursion relations to be
nonanalytic.

III. RESULTS

The results in this section are primarily for two
dimensions except where d appears explicitly. For
the actual calculation we must develop an approxi-
mate form for the free energy which is to be used in
Egs. (25) and (26). We choose to approximate the
free energy using series-expansion methods. Thus
for high temperature (high 7) we use Eq. (5), up to
order v®. Therefore, the quantity we preserve is

fiK)=Ing —2¢ 'K +2In[1+g~(e¥—1)]
+q—3(1_q—l)v4+2q—5(1_q-1)v6
(30)

for high temperature and the corresponding low-
temperature (low-7) expansion to the same order for
low temperature. One can easily work to higher or-
der, but based on previous work’ we expect little
change in the results. Thus in order to keep the cal-
culation simple, we do not include higher-order
terms.

In Fig. 2, K/K is plotted as function of K/2 for
different values of g. The traceless free energy f; is

o 0.4 08 1.2 16
K/2

FIG. 2. K(K)/K as a function of K/2 for b=2 and
g=0.1, 0.25, 1.01, 2, 4, and 10 on the square lattice (solid
line), and on the triangular lattice, for g=2 (dotted line).
The results are obtained using the traceless free energy
f+(K) preserved to order v°. The arrows indicate the exact
K., and the circles show the fixed points obtained from
our method. All lines asymptote to the MK result, b !
(dashed line) for K — 0, and to b ~172 for K —0.
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used and it can be seen that the MK result 59! is
an upper bound for K/K. The MK value is
recovered only in_the limit K— o0, as shown in Eq.
(16). For all g, K/K—b'"¥=172 as K0, and the
slope at K=0 is positive (negative) for g<2 (¢g>2)
as derived in Eq. (20). The deviation from the MK
value is greatest for large q. For q << 1, the MK re-
sult is recovered for almost the entire range of K,
and thus this method demonstrates why the stand-
ard MK method gives good results for small gq.

In order to minimize the error in the approximate
free energy for all temperatures, we use high- and
low-T expansions for temperatures which are above
or below the self-dual temperature, respectively. For
a given q the fixed point, indicated in Fig. 2 by an
open circle, occurs on one of the two branches, and
the exponent is calculated there. For almost all
cases the fixed point is found to lie below the self-
dual temperature, and thus the low-T expansion is
used.

For general values of g, there are two points of
singularity for K /K, and these are more evident for
large g. Recall that we obtain the relation K(K) by
equatmg F(K) with f(K). Since the two free ener-
gies each have a singular point, this will introduce
two singularities into K (K) and hence into the recur-
sion relation K'(K). One of these, denoted by an ar-
row, is the exact critical point for the original lat-
tice, and the other occurs at the critical point of the
restructured lattice. As we add more terms into the
free-energy expansion, the singularities will be some-
what less apparent for g <4, since the transition is
second order and 9f /9K is continuous for all K.
But for g > 4, since the transition is first order and
df /9K is discontinuous at the transition, the singu-
larities will still be evident, reflecting the first-order
nature of the transition.

K /K is also obtained for f,(K) defined in Eq. (2).
The corresponding results are shown in Fig. 3, for
different values of g. The MK results 5% ! is exact-
ly recovered only for g=1, in which case the free en-
ergy is trivial and nonsmgular7 For ¢>1 (g<1),
K/K <b? ' (K/K>b%"") and the equality is ob-
tained only in the limits K—0, « independent of ¢,
in agreement with Egs. (17) and (23). The same gen-
eral features of the singularities can be seen here, as
in the previous case.

K /K for the Ising model (g=2) on a triangular
lattice is plotted with a dotted line in Figs. 2 and 3.
There is a clear difference between K(K) for this
case and the Ising model on a square lattice; hence
the fixed points of the two models are different,
though the exponents are roughly the same (see
Table I). Notice that for the triangular lattice K /K
converges more quickly to the MK value, which re-
flects the fact that, in the restructured lattice, there

0.4 08 1.2 1.6
K72

FIG. 3. K(K)/K as a function of K/2 for b=2 and
g=0.5, 2, and 10 on the square lattice (solid line), and on
the triangular lattice, for g=2 (dotted line). The results
are obtained using the Potts free energy f,(K) preserved
to order v®. The arrows indicate the exact K,. All the
lines asymptote to the MK result b¢~! (dashed line) for
K—0, .

are no decoupled spins left (for 5=2). Thus one can
conclude that the standard MK approximation is
more appropriate for the triangular lattice than for
the square lattice.

We have determined the fixed points and the ex-
ponents for both versions of the Potts model. The
results for the traceless case, which are somewhat
better, are shown in Fig. 4, where we compare our
calculation using a rescaling factor =2 with the
MK method and the exact results.*® Our method
clearly gives a much better approximation than MK.
Also, in the limit of large ¢ we obtain the correct
asymptotic value for the critical point, because in
this limit the free energy is f(K)=dK, so that the
fixed-point equation is

Ko(K*)=(b?—1)K*
d-'[b%—1—d(b—1)]lng, (1)

leading to a fixed point K* =(1/d)lng. Note that
this result is in agreement with the exact critical
point* in two dimensions, and also with mean field’
for any d and g >>1. These results are also indepen-
dent of the rescaling factor 5. Similarly, for the tri-
angular lattice we get the correct critical pomt
K*——lnq The MK method which is not b in-
dependent, gives K* —-—lnq for the square and tri-
angular lattices for b=2.

The results we obtain are especially good for
small ¢. This is in accord with other calculations,’
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TABLE I. Results for square, triangular, and simple cubic (sc) lattices for various values of
g. Shown are the exact values (or best estimates) for the critical points K, and the thermal ex-
ponents yr. These are compared with our method (N=6) and the MK method for 5=2. For
g=3,4 on the sc lattice, we do not list the exponents since the transition is believed to be first

order (fo).
K. /2 yr

Exact Calc. (N=6) MK Exact Calc. (N=6) MK
Square ¢=2  0.441° 0.503 0.305 1.000° 0.922 0.747
Triangular g=2  0.275° 0.336 0.305 1.000° 0.926 0.747
Simple cubic g¢g=1 0.142¢ 0.169 0.041 1.214 1.477 0.813
g=2 0.217° 0.237 0.065 1.56f 1.569 0.939

qg=3 0277 0.287 0.082 fo

g=4 0.324" 0.326 0.096 fo

2Reference 12.
YReference 13.
“Reference 14.
dReference 15.
“Reference 16.
fReference 17.
8Reference 18.
hReference 19.

07

(b)

FIG. 4. K_./2 (a) and the thermal exponent yr (b) as a
function of g for the square lattice. The three curves
show the exact, the standard MK, and our method with
b=2. In our calculation, the free energy is preserved to
order v$ (N=6).

where the RG flows remain within a one-
dimensional parameter space, indicating that for
small g a single parameter is sufficient. On the oth-
er hand, for ¢> 4 the transition is known to be first
order.'® However, we do not expect to see this
changeover from second- to first-order behavior, be-
cause the only way to obtain this, with the use of the
RG method, is to enlarge the parameter space.'!’
Again, we use our method with only a single in-
teraction parameter.

Even though a low-order expansion is used, our
approximate free energy differs significantly from
the exact free energy only near the critical point® K.
When K* deviates from K, the error in the free en-
ergy is negligible, and adding more terms has small
effect. As a function of ¢ we find that K* crosses
K, at ¢ =go~0.1; therefore, only near g, will the
low order of the expansion manifest itself. This is
the reason for the discontinuity in the calculated ex-
ponent yr, shown in Fig. 4(b). Adding more terms
to the expansion will eventually reduce this gap to
zero.

The use of an infinitesimal rescaling factor (b— 1)
produces only a small change in the critical points;
however, there is a significant improvement in the
exponent as can be seen in Fig. 5. The discontinuity
occurs now at ¢ =¢(~0.25, and as in the =2 case,
adding more terms to the expansion will reduce the
discontinuity. Since the MK procedure commutes
with duality in two dimensions, it gives the exact K,
for b—1. However, in the usual MK procedure,
one finds essentially no change in the exponents
compared with b=2.
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exact

FIG. 5. yr as a function of g for the square lattice.
The solid lines show the exact result, as well as the b —1
limit of our method and the MK method. For compar-
ison, the dashed line shows our result for b=2, only for
g>1.5.

We summarize the results for square, triangular,
and simple cubic (sc) lattices in Table I for different
values of ¢g. For the sc lattice we get good agree-
ment with previous calculations for the critical
points, and also with the Ising exponent (g=2). For
g=1 the exponent is not as good, but recall that we
use only two terms in the series expansion, whereas
the quoted values are obtained with much longer ex-
pansions.

Finally, though useful as an approximation tech-
nique, clearly the limitation of this method is that
we employ only a single interaction parameter. It
will be of interest to explore this method for larger
parameter spaces, opening the way for the study of
many other models of interest as well.
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