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Impurity-band tails based on semiempirical pseudopotentials in heavily doped semiconductors
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A new approximate method is presented for calculating the one-electron Green's function
and the density of states for heavily doped semiconductors. The Green's function which

was given by Bonch-Bruevich and by the present author under different approaches is used,
but the true impurity potentials are replaced by semiempirical pseudopotentials giving an

improved description of impurity-band tails. The theory is tested with the use of experi-
mental data of the density of states in p-GaAs, showing considerable good agreement. In
contrast, earlier theories turn out not to explain the experiments.

I. INTRODUCTION

Having useful expressions for a one-electron
Green s function and impurity-band tails is of fun-
damental importance in analyzing various physical
phenomena, e.g., tunneling, optical absorption,
luminescence, conductivity, and Auger recombina-
tion, especially in heavily doped semiconductors. A
number of calculations' based on perturbation and
propagator techniques have led to tails that cut off
sharply. It was shown that perturbation methods
are inadequate, especially in the tail. Kane has cal-
culated the density of states on the basis of the
Thomas-Fermi approach for the potential-energy
fluctuations, leading to Gaussian tail. This has been
argued by Halperin and Lax to be a disadvantage
for the reason that simple exponential tails are often
found. As the quantum counterpart of the semiclas-
sical theory of Kane, Halperin, and Lax have of-
fered a minimum counting method, which is
rigorous at sufficiently deep tail states. Sayakanit
and Glyde have improved the method with the aid
of the variational principle. However, these two ap-
proaches are found to give poor descriptions of ex-
perimental data of tail states. On the other hand,
Bonch-Bruevich has discussed an approach based
on the assumption that the potential varies slowly
enough: Then the fluctuations in the energies of
states mirror closely those in the potential energy.
Instead of solving directly the differential equation,
which was done by Bonch-Bruevich, the present au-
thor has done the calculation using the diagram
techniques, which are useful for the incorporation of
other scattering effects such as phonon scattering ef-
fects. An approach of Bonch-Bruevich and the
present author is frequently considered in this paper
and is called the Bonch-Bruevich —Takeshima (BT)
approach. In Ref. 7 the BT approach has been
shown to explain well the experimental data of the

conductivity in n-Ge but not that of the band-tail
states of p-GaAs.

The assumption that effectively the potential
varies slowly is useful in a heavy-doping range for
states deep in the unperturbed band. For states
around the band edge and in the band-gap region,
however, the potential variation is no longer slow,
even in an effective sense. As a result the fluctua-
tions in the energies of states no longer mirror those
in the potential energy. This paper shows that by
using some appropriate potential, i.e., the pseudopo-
tential, which is semiempirically determined, the BT
approach is again useful. The pseudopotential is
found analytically under two extreme conditions and
by interpolation under intermediate conditions. On
this basis the one-electron Green's function and the
band-tail density of states are calculated for the
band-gap region of practical interest as well as the
region above the band edge.

II. MODEL AND BASIC FORMULATION

In this section we give the one-electron Green's
function in a formal and complete form. First, we
define our model by writing down the Hamiltonian
as

H=QE(k)az az + g I'(q)az -az-,
k qcr

(2.1)

where the first term and the second term are the
Hamiltonians for the unperturbed band energy and
the particle (electron or hole) impurity interaction,
respectively. In the equation a g, a z, and E(k)
are the creation operator, the annihilation operator,
and the energy, respectively, for the particle with the
wave vector k and the spin cr. The energy is mea-
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sured from the relevant band edge so as to be posi-
tive and is given by

fiE(k)= k (2.2)

of the diagram method is known. It was shown"
that 6"(k, k ';co) tends to (6"(k, k ';co ) ) as V~ 00.

In order to obtain the retarded Green's function
6"(k,k ';co) we must solve the equation

with m ~ being the effective mass. I ( q ) is the
Fourier component of I (r ), which is a sum of the
screened impurity potentials U(r —R„) due to ran-
domly distributed impurities located at R„,i.e.,

G "(k,k ';co)=60 (k, co)

N;

I (r)= g U(r„),
n=l

(2.3)
+ g I'(k —q)6 (q, k', co)

where N+ is the total number of impurities and
r„=r —R„. Considering a single species of ionized
impurities, we give

(2.6)

Here 60(k, co) is the free-electron retarded Green's
function

U(r„)= exp( A,r„)—,Z8

d'or„
(2.4) 60 (k, co) =

co+i5 E(k—)
(2.7)

(6 (k, k ';co) )

~ fdRidR2 dR~6.. .(k, k', co)
J

=6"(k, co)b, ( k —k ') . (2.5)

Here h(x) is defined as b,(x)=1 if x=0 and
6(x)=0, otherwise with x as a scalar or a vector.
The last step comes from the fact that the space uni-
formity, which is lost under random distribution of
impurities giving k+k, is restored under the aver-
age distribution giving momentum conserva-
tion k =k '. G (k, co) is the retarded Green's func-
tion in the average impurity field, for which the rule

where Z is a positive or negative integer determined
from both the sign of the particle charge and the
valency of the impurity with respect to the host lat-
tice, e the electronic charge, eo the dielectric con-
stant of the host lattice, and iL the Thomas-Fermi
inverse screening length. For brevity we thus start
only with the essential part of the Hamiltonian as-
suming the screening a priori. Discussions starting
with the Hamiltonian including the unscreened
electron-impurity, electron-phonon, and electron-
electron interactions lead to the screened interac-
tions, as has been given earlier. '

Now we consider the retarded Green's function,
which is derived from Eq. (2.1}. In the presence of
randomly distributed impurities the function is ex-
pressed in terms of two wave vectors k and k ', one
energy parameter co, and the position vectors of ran-
domly distributed impurities R&, R2, . . . , Rz. as

J

6"(k, k ';co). Now we take an ensemble aver-
age ' ' of 6"(k,k';co) over the impurity sites,
which is defined as

where 5~0+. Noting the relation

I'( r ) = g I ( q )exp(i q r ), (2.8)

we obtain

g I'(k —q)6"(q, k';co)

,
(iVk.V„) 1(r)6"(k,k', )

~

m=0
(2.9)

6 (k, k';co)=
co+i5 E(k) I—(i Vk)—

(2.10)

The equation is rewritten as

6"(k,k ';co)

=—fdr exp[i(k k') r]—
V

X
co+i 5 E(k+i V, ) I'( r—)—(2.11)

This is the central equation from which the pseudo-
potential (ps) is found in the next section.

Let us assume that Eq. (2.11) can be rewritten as

6 (k, k';co)

=—fdr exp[i(k —k'} r]
V

1
X

co+i5 —E(k) —I iw(r)
(2.12)

where Vk =axak and V„=azar. The symbolic
solution to Eq. (2.6) reads
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where I'i"( r ) is given by the pseudopotential
Ui"(r„) as

I'i (r)= g Ui (r„) .
n=1

(2.13)

According to the BT approach where V„=O is as-
sumed in Eq. (2.11),6 (k, co) is directly found using
Eqs. (2.12} and (2.13}. It is to be noted that the
analysis is useful under the condition that the ima-
ginary part of the pseudopotential is zero or nega-
tive. The reason can be found from the derivation
process in Ref. 7. Now we assume U+(r} to be
spherically symmetric. We must also consider the
screened interaction between electrons at the posi-
tions 1 and r2

III. SEMIEMPIRICAL PSEUDOPOTENTIAL

In this section we find the pseudopotential start-
ing with Eq. (2.11). Defining the operators

A =60 (k, co)1 (r), (3.1)

8 =60 (k,co)O~,

Oq ——E(k+iV, }—E(k), (3.3}

T= 1

1 —A —B '

(3.2)

(3A}

ing effects into the theory, we must only replace'
eo E—( k ) in Eq. (2.20) by co —E(k ) —X"(k, co),
where Xa(k, co) is the self-energy arising from the
scattering effects.

U, (ri —r2) =
eo I

ri —&z
I

Xexp( —A
I
ri —Fz I

) (2.14)

Eq. (2.11) is rewritten as

6"(k k 'co)= —6"(k ei)
V

It is convenient to define
&& fdrexp[i(k —k') AT� . (3.5)

and

E'O

h '(x)= U"'(r)
[Z [e2A,

(2.15)
1

1-A (3.6)

The special case of 8=0 offers a basis for the BT
approach, i.e.,

6p

Z A,

where x =Ar. Then 6"(k,co) is given as

GR(k, ~)= '
2

GR(Q),
/Z feiA,

6"(0)=—. f dgexp[igQ+yg(g)],

g(g}= f dxx [exp[ —i(hi (x)]

+igh (x)—1],

(2.16}

(2.17)

(2.18)

(2.19)

Now we discuss the case of 8&0. Equation (3.4} is
rewritten as

T= 1+B +B B + '''1 1 1 1

1 —A

(3.7)

We consider two extreme cases, ~A
~

&&1 and

~A
~

&&1. When ~A
~

&&1, we obtain

T=1+A+BA+B A+ . .
1

1 —B

z [co—E(k)],
iZ ie'A,

Z 1—exp( —x),h (x)=

(2.20)

(2.21)

(2.22)

where n; =X;/V is the impurity concentration. We
will call the present analysis the pseudopotential (ps)
approach hereafter. It is to be noted that the BT ap-
proach is the special case of the ps approach under
hi"(x)=h(x). Assuming sufficiently large crystal
volume, G"(k, co) is considered hereafter to offer the
basis describing the physical phenomena in practical
cases. If we want to incorporate some other scatter-

1T=
1 —A A(BA ')— (3.9)

(3.8)

which is correct up to the first order in A for regions
where I ( r ) is continuous. In the equation,
[(1—8) 'A] means that (1—8) ' operates on A

only. Convergence of the series in the first step
of Eq. (3.8), as well as the condition

~

A
~

&& 1, is sa-
tisfied if

~
cok

~

is sufficiently large, where we define

e)p =co E(k)—
When

~
A

~
&&1, on the other hand, we must con-

sider an additive restriction ~BA '
~

&&1, noting
that (BA ')" (n=1,2, . . . ) is independent of cok.
Then we obtain
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which is correct up to the first order in both A
and BA '. In the equation, (BA ') means that B
operates on A ' only. Equations (3.8) and (3.9)
show that the BT approach is useful if we replace A
in Eq. (3.6) with A ' given as follows:

for cok &0 and

Z k 1
h ~'(x) =

Izl ~k+1 x

s 1

1 —8 (3.10)
X [exp( —x)—exp( —lqpx)] (3.16)

under IA I
«land

A ~'=A +A(BA ') (3.11)

U"'(r) = U(r) .
co+i 5 E( k+—i V„)

Use of the Fourier expansion

(3.12)

under both IA I
»1 and IBA '

I
&&1. Evidently,

I'~'(r ) is obtained from

I ~'(r)=[G"(k,co}) 'A~'.

First we consider the case
I
A

I
«1. From Eqs.

(2.13), (3.1), and (3.10) we obtain

for cok &0, where cok =coke(A' A, /2m*) and

qp ——
I

cok
I

' . As stated in the preceding section,
Eq. (3.16) is not appropriate for the pseudopotential
since the imaginary part of U~'(r ) given from Eqs.
(2.15) and (3.16) can be positive. Since the range
IA I

«1 is not important in actual calculations of
G (0) and since Eq. (3.16) effectively agrees with
Eq. (3.15) for Icok

I
»1, we use Eq. (3.15) for

a)k )0 as well as for ak & 0.
The condition IA I

«1 is expressed, by using
Eq. (3.5) and the first step of Eq. (3.8), as

fdr exp[i(k —k ') r] 1

U(r)= fdq exp(iq r)Ze 1

2' E'p g +A,

gives

Z8 N

2' E'p g +A,

Xexp(iq r) .

(3.13)

(3.14)

fdr exp[i(k k') —r] A

Taking k=k', we find that IA
I
«1 corresponds

to the condition

(3.17)

Next we consider the case of IA
I
»1 and

I
BA '

I « 1. Let us write

For facility of later numerical analyses, we replace
E(k —q) in Gp(k —q, co) by E(k)+E(q), which
offers a good approximation as far as k is sufficient-
ly small. In practical calculations the range

I
A

I
« 1 is not important so that we may be satis-

fied with such crude evaluation. The integration of
Eq. (3.14) can be easily performed. Using the defini-
tion (2.15) we obtain

Z k 1
h ~'(x) =

zI k+1 x

A~'=Gp (k,co)[I (r)+I "(r)],
with

We obtain

V, I'(r)
I "(r)=— 22m'

2k V„I'(r)

1(r)

(3.18)

(3.19)

(3.20)

X [exp( —x) —exp( —qpx)] (3.15} Defining x„=A, ( r —R„),we can write

~ (1+x„)exp( —2x„) + g» (1+x„)(1+x„)exp( —x„—x„)
n &n n~n' +n+n'

(3.21)

Let x~ be the smallest of x„'s (n = 1,2, . . . , N~) and let rp be the radius of the average spherical volume per one
impurity, i.e.,
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4m.

3
rpn; = 1 . (3.22)

Then we may consider xi &xp and x„&xp for n+l, where xp A——rp F.ar outside the sphere of radius rp, there
may be a large number of x„s with nearly equal magnitudes but various directions. These vectors x„ in a sum
cancel out each other. As an approximation we assume that complete cancellation occurs for x„'s with n&l.
Thus we neglect the second term in the second set of large parentheses in Eq. (3.21). The same consideration
applies also to the last term in the large parentheses of Eq. (3.20). We obtain

r

Ze~~ 1 i 2Ze~ k'x
I "(r)=— 2 g 4 (1+x„)exp( —2x„)—1+

&
(1+xi)exp( —xi)

2m pl(r) @pl (r)
(3.23)

Froin the equation we can find, U»'(r„) under the
condition that U»'(r„) should vanish in the limit of
r„~00. However, this is only a formal result as far
as I'(r } contained in the expression of U»'(r ) is not
given. An approximate expression for I'(r) can be
given under xp &1 or xp «1. Under xp&1, I'(r) is
nearly given by the impurity potential for n =1 only,
while under xp ((1, I (r) may be evaluated assum-

ing uniform distribution of impurities. Here we
consider the case of xp & 1 since this is found to be
of practical interest. Then we can give

I (r)= exp( —xi) .Ze I,
Epxl

Writing h»'(x„) as

h»'(x„) =h(x„)+h "(x„),

(3.24}

where h(x„) given by Eq. (2.21) comes from I (r) in
Eq. (3.18), we obtain

r i 2 2
2k

h "(xi ) = ——,as A, z (1+xi ) —1 i z—
XI XI

1 ask,
h "(x)=-

2IZ
I

x [1+(x/xp)]

X 2(1+x ) —exp
Xp

2x
&(exp

X +Xp
(3.28)

where h (x) is defined by Eq. (2.21). In Eq. (3.27),
h(x) comes from I'(r) in Eq. (3.18), i.e., the true
impurity potential. h "(x) is an additive term
representing the situation in which the fluctuations
in the energies of states do not mirror those in the
potential energy. In fact, h (x) vanishes in the limit
of as~0 or m ~no, i.e., in the classical limit,
under the condition that A, is a given constant. It is
to be noted that h "(x) is always negative irrespective
of the sign of Z, giving the attractive potential.

Now we discuss the conditions giving IA I
»1

and
I
BA '

I
«1. Assuming uniform distribution

of impurities for convenience, the condition for
IA I

»1 leads to

and
(3.25)

'2
1h'(x„)= —ask, , (1+x„)exp(2x, —2x„)

X~

(3.26)

I~kI «Ir(r)l = n; fdRU(r —R), (3.29)

giving

(3.30)

The condition for
I
BA '

I
(&1 is rewritten as

I
ABA '

I
«A, i.e.,

for n&1, where as ——i' ep/(m ~e ).
Equations (3.25) and (3.26} are understood to give

h~'(x) for x &&xp and x &&xp, respectively. The
last term in the large parentheses of Eq. (3.25) is
neglected, noting that the case xI-xp is important:
The term is small as far as xp is sufficiently large
and/or k is sufficiently small. Equation (3.26) is
evaluated using xi ——xp. Giving h "(x), for the case
intermediate between x (&xp and x &&xp, by inter-
polation, we can construct the pseudopotential as

From this we obtain

Qgk,
1 » P(xp), (3.32)

II'(r)I » I'(r)0»
I(r)

With the use of the discussions similar to those for
finding h '(x), the inequality is expressed as

f dx x h (x) » f dx x h "(x) . (3.31)

h»'(x) =h (x)+h "(x), (3.27) where
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00 1
p(xo)= —, f dx

(1+x /xo)

IO

rn /m() = OA5 Go = l2.79

X (1+x ) —exp
X

2x
)(exp

X +Xo
(3.33)

This function is shown in Fig. 1.
As a summary of this section the pseudopotential

has been given by Eqs. (3.15) and (3.27) for
~

Q
~

&&y and for
~

Q
~

&&y, respectively. In actual
calculations we use Eqs. (3.15) and (3.27) for

~

Q
~

& Q, and for
~

Q
~

& Q„respectively, where

0, is determined empirically.

IV. NUMERICAL ANALYSES
AND DISCUSSIONS

-I
IO

Io'
-2, 0 —I.5 —I.0 -0.5 0.5

In this section discussions are given for states
around the heavy-hole band of p-GaAs at 0 K as an
example. The material parameters eo ——12.79 and
m*/mo ——0.45 are used, where mo is the electron
mass in the free space. The attractive potential
Z = —1 is considered. A, is calculated from
A. =[4kJ;/(n. asr)]', where kz is the Fermi wave
number given by kF (3n——n;)' . and aM is the Bohr
radius defined in terms of the effective mass of the
band to which the majority carriers belong. Espe-
cially in the present case we have a~ ——az.

First numerical calculations of ImG "(Q) are
done for the case of n;=1.6X10' cm . Figure 2

I 0

FIG. 2. ImG (0) calculated from the ps approach
(—) and the BT approach (—-).

shows the result (—) obtained by taking Q, =5y for
the ps approach. For comparison the result (—-) for
the BT approach is shown. Both curves cut off
sharply at Q=y. This occurs as far as we have
h '(x) & 0 for all the range of x, which is the present
case. The reason is that ImG (Q) is nonzero only
in the range 0 &y, as has been discussed in Ref. 7.
As a result h"'(x) for Q&Q, is not necessary. At
Q= —Q, (=—1.88) the curve for the ps approach
cuts off sharply, where hi"(x) changes the expres-
sion from (3.27) to (3.15). It is to be noted that
h"'(x) for Q & —Q„ i.e., Eq. (3.15), is much smaller
in magnitude than the true impurity potential, i.e.,
h (x), especially for small x. As a result ImG "(Q)
becomes insignificant for 0 ~ —0,. From the dis-
cussions above we see that a strict expression for
h '(x) is not required in the range

~

Q
~

&Q, .
Based on the results in Fig. 2, the density of states

p(co) is calculated from

I 0
p(co) = ——f 3

ImG "(k, co)
(2m )

(4.1)

10
O. I

FIG. 1. P(xo) vs xo defined by Eq. (3.33).

IO

with the use of Eq. (2.17). I.et pi"(co) and p"b(ro)
denote the densities of states obtained from the ps
approach for the perturbed band and from the un-
perturbed parabolic band (ub) approach, respective-
ly. For an energy state sufficiently deep in the un-
perturbed band the difference between p '(co) and
p" (co) should be insignificant. Taking the require-
ment into account we have adopted 0,=5y, which
gives a practically good agreement between p"'(co)
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and p" (co). Figure 3 shows the density of states
(—) calculated with the use of the result of Fig. 2
for the ps approach. For comparison, results of the
BT approach (——). Kane's approach (——), and
Halperin-Lax and Sa-yakanit —Glyde approaches
(abbreviated as the HLSG approach) (—) are also
shown. It is to be noted that n; =1.6)&10' cm
gives g'=0.5, where f has been defined in the
HLSG approach. In contrast with Kane's approach,
which shows a Gaussian tail, the ps approach yields
an exponential tail in the range where p(co) is practi-
cally significant. Though the HLSG approach also
gives an exponential tail, the tail cuts off much more
rapidly for this approach than for the ps approach.
It has been pointed out that the HLSG approach is
useful for the states which are too deep in the band-

gap region and therefore too localized for adjacent
wave functions to overlap. According to the cri-
terion given in Ref. 4 the HLSG approach is useful
in the range of E & —0.02 eV for the present case.
However, from the discussion given in Ref. 4 we
find that E« —0.02 eV may be a safe condition.
This is the reason for the discrepancy between the
HLSG approach and the ps approach.

Figures 4 and 5 show comparisons between the
pseudopotential theory (—) and experiments' (O)
on p-GaAs with n; =5.4)(10' cm and 9.9g 10'
cm, respectively. The experimental plots of p(co)
around the heavy-hole band edge have been obtained
from the tunneling experiments at 4.2 K. The cal-
culations are done for 0 K. The screening parameter

m+/mp= 0.45 Qp = lP.79
n l 6 x lOl9

l Ohio

l
0"-

ols

Q

l
Ol7

l
0"-

l 0"
0.05 -0.05 -O. l -O. l 5 -O.P

cu (ev)
FIG. 3. Density of states p(co) calculated from the ps

approach (—), the BT approach ( ——), Kane's approach
(———), and the HLSG approach (—).

' is calculated for simplicity assuming the unper-
turbed parabolic band. The experimental data are
plotted in these figures so that an experimental value
may fit the calculated value for the unperturbed
band at a certain energy level lying deep in the band.

5

N0

0
O. l 0 -0.05 —O. l

~ (ev)
FIG. 4. Density of states p(co) obtained from the ps approach (—), the unperturbed parabolic band approach (—-), and

the tunneling experiments at 4.2 K (o ) (Ref. 12).
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5
IO

I

E
O

O

O. I 0.05 0 -0.05 -0. I

FIG. 5. Density of states p(co) obtained from the ps approach (—)„ the unperturbed parabolic band approach (--), and
the tunneling experiments at 4.2 K (0 ) (Ref. 12).

Considerably good agreements are found between
the theory and the experiments. In contrast, the
other approaches discussed in Fig. 3 cannot explain
the experiments at all.

Let us consider the criterion (3.32), assuming de-
generate statistics. We make use of an empirical re-
lation $(xo)=0.3xo . From this we find that the
criterion (3.32) is rewritten as a~n ~ &&0 066.
(aslasr

~

Z
~

)' . Therefore, the ps approach is use-
ful at heavy-doping levels. If we consider also the
condition xo&1, the ps approach based on Eq.
(3.28) is useful in the range

' 1/2

assuming uniform distribution of impurities. As a
result, Eqs. (3.28}and (3.33) should be replaced by

QB~
h "(x)=—

2(Z
~

x (1+yx}

X [2(1+x) —exp( —yx)]exp( —2x)

(4.4}

and

P(y)= —, f dx
z(1+yx)

0.066
uM IZ I

((Q~Pl ~ ( 1.5 . (4.2)
&& [2(1+x) —exp( —yx)]exp( —2x),

Examination shows that this criterion is satisfied in
the cases considered above. On the other hand, if
states around the conduction-band edge in p-GaAs
are considered, the ps approach cannot be used. In
n-GaAs, states around the heavy-hole band edge can
safely be analyzed by the present theory while those
around the conduction-band edge should be
analyzed under the condition xp(1 as well as
xo&1. Especially for xo((1 I'(r) is given, in
place of Eq. (3.24), by

Ze A,I (r)= y, (4.3)
eo

'

(4.5)

respectively. In conclusion, the pseudopotential
analyses of the impurity-band tail states will offer a
powerful tool for a comprehensive understanding of
various physical phenomena in heavily doped semi-
conductors.
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