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The rate of multiphonon capture with thermally activated temperature dependence is for-
mulated with the semiclassical approximation for phonons. It bridges the nonadiabatic
(weak-coupling) and the adiabatic (strong-coupling) limits when the interaction to induce
capture is strengthened. Except in the nonadiabatic limit it is important that once-captured
carriers can be reemitted into free states in a very short time (much shorter than an average
phonon period) after capture. In the adiabatic limit, the preexponential factor o, of the
capture cross section, being proportional to T 2 at a temperature T, reaches a maximum of
the order of 10~ !* cm? while that of the carrier-emission rate reaches a constant of the or-
der of an average phonon frequency. Moreover, in this limit o does not include defect
parameters any more and depends only on the effective mass of free carriers. These
features of the adiabatic limit explain well Henry and Lang’s observation that o, being of
the order of 10~—10~!° c¢m? is apparently a universal quantity independent of defects
within GaAs and GaP. The strength of the interaction is determined by the bandwidth of
free carriers for defects with only one bound state, and a parameter distinguishing between
the adiabatic and the nonadiabatic limits is given.

I. INTRODUCTION

Much interest has recently been aroused in
dynamic multiphonon processes taking place around
a deep-level defect in semiconductors in both basic
and applied research: Free carriers injected into
semiconductors are nonradiatively captured by de-
fects into a level located deeply in a forbidden gap,
and they recombine nonradiatively there."? There-
fore deep-level defects affect -efficiencies of
injection-mode devices such as light-emitting and
laser diodes. During the capture or recombination
processes an excess electronic energy of the order of
a forbidden-gap one is dissipated by multiphonon
emission because of a strong electron-phonon in-
teraction in a deep level.> Moreover, it has been ob-
served that many phonons emitted around a defect
upon capture or recombination greatly enhance
movement of the defect itself or production of a new
one around it.*~® Therefore, it plays a decisive role
in degradation of injection-mode devices, whose reli-
ability is one of the main current interests in op-
toelectronics.””® Moreover, a possibility was pointed
out>!? that phonons emitted upon capture of an in-
jected minority carrier induce subsequent capture of
a majority carrier by the same defect; hence, an in-
jected minority carrier recombines in a very short
time of the order of a phonon period (~0.1 psec)
after its capture. In this case a deep-level defect can
be regarded as providing a tunnel through the for-
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bidden gap for nonradiative recombination.

Semiconductors, such as GaAs, Ga;_,Al,As,
In,Ga;_,As,P,_,, GaP, and GaAs,P;_,, used for
injection-mode optical devices have a wide energy
band for free carriers whose width amounts to about
several electron volts. Therefore electron motion is
very fast compared with phonon motion therein.
Then it is reasonable to expect that the process of
nonradiative multiphonon capture of an injected
minority carrier can adequately be described as a
situation close to the adiabatic limit, rather than
close to the opposite nonadiabatic limit. Many
theories>!1~1* have already been presented so far on
the rate of multiphonon capture, with the use of
various methods. But it was recently shown!>—!
that the previous results are essentially the same as
obtained by the perturbational expansion second or-
der in an interaction between the free and the deep
electronic states. The second-order perturbational
treatment can be justified only in the nonadiabatic
(weak-coupling) limit.!® The capture rate has not
been calculated in the adiabatic (strong-coupling)
limit which seems more important in usual semicon-
ductors. The present work is devoted to giving an
expression of the capture rate which bridges the
nonadiabatic and the adiabatic limits. (The brief re-
port can be found in Ref. 19.)

Adiabaticity in the capture process manifests it-
self in that after capturing a carrier a defect reemits
it into free states in a very short time if the interac-
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tion between the free and the deep states is strong
enough. The effect of reemission was first taken
into account by Henry and Lang.* But their treat-
ment is too approximated to describe correctly the
adiabatic limit. In fact, the capture rate obtained by
them approaches zero, after reaching a maximum,
as the interaction strength is increased toward the
adiabatic limit.>?° On the other hand, the present
work will show that toward the adiabatic limit the
capture rate should show saturation, approaching a
constant which does not include the interaction
strength any more.

The capture cross section ¢ has traditionally been
used for the analysis of experimental data, and it
shows a temperature dependence of a thermally ac-
tivated type as

o=0 exp(—E,/kgT) (1.1)

at high enough temperatures 7 in the case of nonra-
diative multiphonon capture investigated here. Hen-
ry and Lang® observed an important fact? that the
preexponential factor o, being of the order of
10~°—~10—'* cm? is apparently a universal quantity
for various deep-level defects within GaAs and GaP.
They tried to reproduce the observed magnitude of
o, theoretically, but their heuristic model estimat-
ing the interaction to induce capture was open to cri-
ticism.!® The present work will show that the max-
imum value of o, obtained in the adiabatic limit,
although proportional to T2, depends only on the
effective mass of free carriers, independently of vari-
ous species of defects, and it is of the order of 107'*
cm? in GaAs and GaP. Therefore, Henry and
Lang’s observation seems obtainable simply as a re-
sult of the fact that the electron-phonon interaction
can adequately be treated adiabatically in GaAs and
GaP with a wide energy band.

Except in the adiabatic limit the capture rate de-
pends on the strength of the interaction between the
free and the deep states. Various models®!1—1421:22
have been presented for the interaction strength, de-
pending on different models for the defect potential
and the wave function of an electron trapped by it.
They give different values of the capture rate. The
present work will show that the interaction strength
can be determined by only three parameters, the
depth and the lattice-relaxation energy of the deep
state and the energy bandwidth of free carriers, so
long as the defect has only one bound state. There-
fore the result can easily be applied to the analysis
of experimental data.

The adiabatic and the nonadiabatic limits are ex-
plained in Sec. II, and it will be shown that the cap-
ture rate in the adiabatic limit can be determined ir-
respective of the strength of the interaction to in-

duce capture so long as it is strong enough. The in-
teraction strength is obtained in Sec. III. The cap-
ture rate bridging the two limits is calculated in Sec.
IV with the use of the diagram expansion of the
density matrix with the semiclassical treatment of
the electron-phonon interaction. It will be shown
that reemission of carriers just after capture can be
described by the Landau-Zener formula®»?* which
was originally proposed for the atomic collision of
the second kind incorporating an electron transfer
between colliding atoms. Discussion is left to Sec.
V.

II. ADIABATIC AND NONADIABATIC
LIMITS

For simplifying terminologies, we consider the
case that electrons in a conduction band are cap-
tured by a defect. The electron-phonon interaction
in the host lattice is neglected in comparison with
that in the localized deep state. Then the Hamil-
tonian of the host lattice can be written as Hp+H;,
where Hy describes free electrons and H; phonons.
We write H; in a usual form,

Hp =Y #w,(b]b;+7), 2.1)
j

where b; represents the annihilation operator for a
phonon of the jth normal mode with energy 7iw;.
The presence of a deep-level defect gives rise to a de-
fect potential V4(r) for an electron with a coordinate
r when the surrounding lattice is not distorted, and
the potential is increased by —g,(r)Q when it is dis-
torted, where Q defined by

Q=3 V;(b;+b)) (2.2)
j

represents a configuration coordinate describing the
distortion. Here coefficient V; is regarded as a real
number without losing generality. Then the total
Hamiltonian is given by

H=H(Q)+H_ , (2.3)
with
H(Q)=Hp+Vy(r)—gq(r)Q . (2.4)

When the defect captures an electron, the surround-
ing lattice relaxes because of —gu(r)Q in (2.4)
representing the electron-phonon interaction in the
deep state. Let us describe the configuration of the
relaxed lattice by Q =Qy. The electronic part H(Q)
of the total Hamiltonian is diagonalized at Q =Qy,
as

H(Q)= ZEfa}af—Aa;ad , (2.5)
f

where ay represents the operator annihilating an
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electron at the fth free state with energy E; (>0)
and ay at the deep state whose energy is lower by A
than the lowest edge of the free states at the relaxed
lattice configuration. It was assumed in (2.5) that
the defect provides only one bound state. Note that
A represents the threshold energy for optical excita-
tion of an electron trapped in the deep state to the
free states under the semiclassical Franck-Condon
principle. Note, moreover, that wave functions |f)
and |d) of the free and the deep states, respectively,
do not include the phonon coordinate Q as a param-
eter. The situation is quite different from the usual
Born-Oppenheimer adiabatic-coupling scheme. The
procedure adopted here has been called the static-
coupling scheme,?>?¢ and it is more transparent for
the present purpose, as discussed in Sec. V.

The electronic part H(Q) of the total Hamiltoni-
an can be rewritten as H(Q;)+g4(r)(Q;—Q) with
H(Q,) given by (2.5), where g;(r)(Q; —Q) gives rise
to an interaction between the free and the deep
states. Note here that g,(r) is large only in the
neighborhood of the defect in the whole crystal with
volume V. Then (f |g4(r)|f’) is of the order of
vV~ while (f|gs(r)|d) and (d igd(r)[d) are,
respectively, of the order of ¥~!/2 and V°. We
neglect {f | g4(r)| f') consistently with the approxi-
mation that we neglected phonon effects on the free
states. We can set {(d | g4(r) |d) to be unity without
losing generality [readjusting V; to (d |g4(r)|d)V;
in (2.2)]. In this case Q gets a dimension of energy.
Then the phonon Hamiltonian associated with the
deep state is given by —A+Q,;—Q +H;, which is
rewritten as

V; V; 1
T J J
.| b7 — —L R —|—-S—A ,
? i||% fiw; b fiw; +2 +Q
with
S=3 V}/to; . (2.6)
J

Here S represents the lattice-relaxation energy at the
relaxed deep state with a configuration determined
by b;+b] =2V, /fiw;, at which (2.2) gives Qy=2S.
On the other hand, the phonon Hamiltonian associ-
ated with the fth free state is given by E;+H;.
When E;+H; and H; —Q —A+Q, are written
along a coordinate Q in the multidimensional con-
figuration coordinate space, they give adiabatic po-
tentials written, respectively, as

VAQ)=E;++0Q2%/S @.7)
and

Vi(Q)=1(Q —257/S —E, (2.8)
with

E;=A—S, (2.9)

where E; represents the thermal depth of the re-
laxed deep state, which is smaller by S than the opti-
cal depth A because of the lattice relaxation. The
energy of the deep state at the unrelaxed lattice con-
figuration Q=0 is given by V4(0)=V,, as

V;=S —E;=25—A. (2.10)

Coordinate Q in (2.7) and (2.8) has often been called
the interaction-mode coordinate’’ in solid state
physics or the reaction coordinate’® in chemistry.
Figure 1 shows V;(Q) and V,(Q) for valrious f’s as
a function of Q, where case (I) for S < 5 A and case
(Imn for S > %A are distinguished with respect to rel-
ative positions of V;(Q) and V;(Q). Case (II) for
strong electron-phonon coupling seems realized by a
defz'gct giving rise to the persistent photoconductivi-
ty.

Transitions between the free and the deep states
are induced by

tra=(Q—Q)f |8a(r)|d) . 2.11)

Then the electronic part of the total Hamiltonian is
written as

H(Q)=H\(Q)+H', (2.12)
with

Ho(Q)= 3 Esaja;+(Vy—Qaja, (2.13)
and ’

H'= g( traajag+talay) . (2.14)

In the process of capture of an electron by a de-
fect, electrons are initially populated with the
thermal-equilibrium distribution in the adiabatic po-
tentials V,(Q) for various f’s shown in Fig. 1.
They eventually make a transition to the states of
the adiabatic potential ¥;(Q) and are captured by
the defect. At low temperatures where k5T is much
smaller than an average phonon energy 7@, an elec-
tron tunnels a potential barrier from the bottom of
V(Q) to V4(Q) horizontally in Fig. 1. It is impor-
tant in this case to note that nuclear tunneling as
well as electron tunneling occurs between different
Q’s, and that the capture rate should be independent
of temperature.’® At high temperatures for
kgT >>#i, on the other hand, nuclear tunneling
does not occur, and transitions take place at the
crossing point between V,(Q) and ¥,4(Q) conserving
0.° We get from (2.7)—(2.9) that V;(Q) for E;=0
crosses with V;(Q) at Q=Vy and Vy(V4)—V;(0)
equals -(A—2S)?/S. Then the capture rate should
show a temperature dependence of ‘a thermally ac-
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FIG. 1. Adiabatic potential for the bottom of the free
states, above which there exists a continuum of them
shown by thin solid lines, and that for the deep state iso-
lated from the continuum. They are shown as a function
of the configuration coordinate Q describing capture of a
free electron into the deep state. Energy E 4 represents the
thermal-activation energy of capture, and S, E;, and A
represent, respectively, the lattice-relaxation energy and
the thermal and the optical depths of the deep state. The
left-hand side shows case (I) for 28 < A, while the right-
hand side shows case (II) for 25 > A.

tivated type dominated by exp(—E, /kgT) with
E,=+(A—28)/S . (2.15)

The present work treats only this high-temperature
semiclassical case which is sufficient in order to
analyze various phenomena taking place in
injection-mode devices under operation, although
the result can easily be extended to the temperature
region of kp T > #i as discussed in Sec. V.

An electron occupying the fth free state makes a
transition to the deep state at Q =V;—Ey, where
Ve(Q)=V,4(Q), and the electron is captured by the
defect when the surrounding lattice relaxes from
Q=V;—Ef to Q =0, (=25) along V;(Q). Howev-
er, it is apparent from Fig. 1 that Q =V, —Ey is lo-
cated on the higher-energy side along V,(Q) than
Q =V,, where V;(Q) crosses with the lowest curve
of V¢(Q) for E;=0. Therefore, in the course of re-
laxation of Q from V;—E; to Q; along V;(Q), the
deep state is embedded in the continuum of free
states in the initial time region of V;—E;<Q < Vj.
It is in this time region that the electron once cap-
tured in the deep state can be reemitted into free
states. The nonadiabatic limit corresponds to a case
where the reemission probability of a once-captured
carrier is very small and hence the capture rate can
be calculated with the use of the golden rule with
the perturbation theory second order in 54 of (2.11).
All of the previous theories,!'~!# except Ref. 3, are
justified only in this nonadiabatic limit,’*~!7 as not-
ed also in Sec. I. On the other hand, in the adiabatic

limit the reemission probability is so large that only
electrons with very small E; can be captured by a
defect without suffering reemission although #4, to
induce capture, is very large. In this limit we can
also interpret the result in such a way that the adia-
batic potential of the deep state does not exist within
the continuum of the free states because of a strong
mixing 7, between the two types of states. This in-
terpretation is in agreement with that based on the
Born-Oppenheimer adiabatic approximation in
which above the free-electron edge there exists no
bound state of H (Q) of (2.4) at any fixed value of Q.
This limit cannot be treated with the usual perturba-
tion theory. The capture rate is much different be-
tween the two limits.

In the adiabatic limit the capture rate can be ob-
tained without detailed calculation, as shown below.
Let us first note that the capture rate R, is related
by the principle of detailed balancing to the emission
rate R,, with which the defect emits an electron to
the conduction band.> This gives

Re=(gf/g,1)(nT/n)Rcexp(—Ed/kBT) , (2.16)
with
1
np=—— > exp(—E;/kgT)
T ng? p f/KB
3/2

e, T
i : 2.17)

2 H?

where g, represents the number of equivalent valleys
in the conduction band, g; the number of degenera-
cy of the deep level, ny the effective density of states
available at a temperature T in a single valley of the
conduction band with an effective mass m¥, and n
the density of conduction electrons. The capture
cross section is defined by

R, =nvro, (2.18)
with
vr=3kgT/m*)'/?, (2.19)

where vy represents the thermal velocity of an elec-
tron. Emission of an electron from the deep state to
the free states at high temperatures occurs when the
phonon system fluctuates thermally along Vy;(Q)
from the relaxed configuration at Q =Q; to the
crossing point at Q =V, between V;(Q) and V,(Q)
for Ef=0. In the adiabatic limit the emission surely
occurs so long as Q exceeds V,; because of a strong
trs- Then we see that the emission rate in the adia-
batic limit should be given by a usual formula, fami-
liar in atomic diffusion®' and chemical reaction,?® as

R, =(CT)/27T)CXP[—(Ed+EA)/kBT] ’ (2.20)
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where @ /27 represents the attempt frequency and
E;+E, equals the energy difference between
Q=Q,; and Q =V, along V,(Q) as seen in Fig. 1.
Here @ is given by an average angular frequency of
phonons contributing to Q of (2.2). Therefore, in
the adiabatic limit the capture cross section should
be given by

o=o.exp(—E, /kpT) , (2.21)
with
a,,=(gd/gf)((7)/277)/(nTvT) . (2.22)

It will be shown in Sec. IV that this limit is realized
when

y>1, (2.23)
with
y=4VBSkpT /(3tizA>?) , (2.24)

where B represents the halfwidth of the conduction
band. Note that y approaches « as #—0 as it
would be.

Chemical reaction,® atomic diffusion,®! and
small-polaron hopping in the adiabatic limit!® have
been analyzed by a rate with the same form as
(2.20). In this case a convenient guiding principle in
the analysis has been given by an expectation that
the preexponential factor of the rate should be of the
order of 10'2—10"® 1/sec. The capture cross section
given by (2.21) and (2.22) in the adiabatic limit plays
such a role in the present problem since the preex-
ponential factor o, of (2.22) does not include any
more the interaction strength between the deep and
the free states. For gz~gs~1 and #i5~100 cm™},
we get that o, is about 0.7X 10~ (m /m*) cm? at
about 500 K (chosen as a sufficiently high tempera-
ture), where m represents the true electron mass.
This agrees well with the observation® of Henry and
Lang that the preexponential factor o, of the cap-
ture cross section obtained by high-temperature ex-
trapolation seems to be a universal quantity of the
order of 10~*—10~!* c¢m? for various deep levels
within a single host. Therefore we see that the cap-
ture process in usual semiconductors with a wide
bandwidth is close to the adiabatic limit. In fact
this can be justified from the criterion of (2.23) for
the adiabatic limit: In usual semiconductors B is of
the order of several electron volts, S of several tenth
electron volts, and A of one electron volt,>3? and
hence y of (2.24) is considerably larger than unity
therein.

Reemission of carriers just after capture was first
taken into account by Henry and Lang.} In their
treatment, however, the preexponential factor o, of
the capture cross section approaches zero, after

reaching a maximum, as the coupling strength be-
tween the deep and the free states is increased.>?°
Therefore the adiabatic limit cannot be described by
their theory.

In the nonadiabatic limit the preexponential fac-
tor o, of the capture cross section should be much
smaller than o, of (2.22). We would like to em-
phasize that the perturbation theory second order in
the coupling strength can be used only when
0, <<L0,.

III. INTERACTION STRENGTH

The spectral function of interaction between the
deep and the free states is defined by

EE)=73 |t |*8(E —Ey) . 3.1)
f

It is rewritten with the use of (2.11)—(2.14) into a
simple form in this section. First it is convenient to
rewrite (3.1) into

§(E)=(d |H'S(E —Hy(Q)H'|d) . (3.2)

From (2.12) we get for a complex variable z,

S U S
z—H(Q) z—HyQ) z—H(Q)" z—HyQ)
and
1 .1 ,
z—H(Q)H - z—Ho(Q)H
1 .1 ,
t o c—Ho

Let us take the diagonal element with respect to
|d) of these equations. With E;(Q)=V,—Q we
get from the first one

& ‘)

[z —-Ed(Q)]<dlz—_—I;(—Q) ’d)-—l ,

1

_.____H’
z—H(Q)

from the second one

1

(¢ =g k)

1

~(e @4 | -7

" ld> ,

and from an equation which is obtained multiplying
the both sides of the second one by H’ from the left
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1 .
HH Z—HyQ d>
_{d|H'[z—H(Q)]"'H'|d)

144d |[z—H(Q)]"'H'|d)

1 -1
_ . (3.3)
z—H(Q) ld>

—z —Ed(Q)—<d'

In describing capture at high enough temperatures
it is sufficient to treat the electronic part H(Q) of
the total Hamiltonian of (2.3) in a region of Q ~V,
where H(Q) has no bound state or only a shallow
one. This means that we treat a region of Q where
V4(r) is nearly canceled by g;(r)Q in H(Q) of (2.4).
Next, considering that V,(r)—gu(r)Q is a localized
potential, we neglect all the matrix elements of it ex-
cept

(d | Vy(r)—gs(rQ |d)=AQ) . (3.4

Then we get from (2.4) with the Koster-Slater
method*

(2

1
z—H(Q) ‘d>

(a

Substituting (3.5) into (3.3) we get

‘)

—2 —E,,(Q)+A(Q)—<d!

-1

1 d>“-A(Q>] . (3.5)

Z—HF

’ l ’

1
Z—HF

d>“.

(3.6)

It is very important to note that the imaginary part
of this equation does not include Q although the real
part includes it.

State |d ) is, although localized, not exactly equal
to the completely localized Wannier state, and hence
(d |8(E —Hp)|d) does not equal exactly the
density-of-state function of the Hamiltonian Hy of
the host crystal. But it is a reasonable approxima-
tion to assume

(d |8(E —Hpg)|d)

2 12
B ey [E(2B —E)] for 0<E <2B (3.7)

0 otherwise ,

analogously to the hemielliptic approximation®* of

the density-of-state function, where 2B represents
the total width of the conduction band. Then we get

1 2

d 'd) - . (3.8)
< z—Hp z—B +[z(z —2B)]'?

where the square root is defined to have a positive

imaginary part for z with a positive imaginary part.

Substituting (3.8) into (3.6), we get £(E) of (3.2) as

[E(2B —E)]'/*/2m for 0<E <2B

EE)= )
0 otherwise .

(3.9

Note that (3.9) does not include Q any more al-
though the original definition (3.1) seems to include
Q through #; of (2.11). It also does not include Qy,
and hence it does not depend on at which Q we de-
fined |d), |f), and t; so long as |d) is localized
well.

Since kpT <<2B at usual temperatures, we can
use an approximate form of (3.9) as

V'BE /(V2m) for E >0
0 otherwise .

E(E)= (3.99

We can estimate an average interaction strength J by
T?= [ &E)exp(—E /kyT)dE /(g Vny)
=7VB (#/m*>*?/(gV)

with the wuse of ny of (2.17). Since
7 (gV/N)~*3/(2m*) is a quantity of the order
of 2B with N representing the total number of unit
cells in the crystal, we see that J has a magnitude of
the order of B/V'N .

IV. FROM NONADIABATIC TO
ADIABATIC LIMITS

The capture rate which bridges the nonadiabatic
and the adiabatic limits is obtained here. We use a
unit of #i=1 for theoretical convenience in this sec-
tion except for a case that otherwise is explicitly
mentioned. In thermal equilibrium phonons can be
described by a density matrix

_ exp(—Hj /kgT) _
PL= Trlexp(—H /kgT)] ’

4.1)

determined by the phonon Hamiltonian H; of (2.1),
where Tr means taking a trace over phonon states.
We introduce an average amplitude D of thermal
fluctuations of the interaction-mode coordinate Q of
(2.2) by D2=Tr(Q?%p, ), which gives

D?=2SkpT , 4.2)

with the use of S of (2.6) at high temperatures. We
introduce further that @D of thermal fluctuations of
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the velocity v =i[H;,Q] by @ D>=Tr(w?p; ), which
gives also at high temperatures

1/2
2 VJ'2wJ' / 2 Vj?/ @j
J j

Note that @ represents an average angular frequency
of phonons.

Since Y, raras +a;ad =1, the total Hamiltonian
H of (2.3) with its electronic part H(Q) given by
(2.12)—(2.14) can be rewritten as

172

D= (4.3)

H= sza}af—}-Hda;ad +H (4.4)
f
with
Hy=H, +E;, Hy=H,—Q+V, . (4.5)

Note that between phonon Hamiltonians Hy and H,
the value of phonon variables b; and b;r obtained at
the lowest-energy lattice configuration is shifted by
Vi/w;. We first assume that the interaction term
H’' in (4.4) was switched on at time ¢=0 before
which electrons with density n were in thermal
equilibrium within the free states. Then the proba-
bility with which we find an electron in the deep
state at time ¢ > 0 is given by

N(t)=ngy/(ggnr) 3, Np(tlexp(—Es/kpT) ,
f

(4.6)
with

NAO=Tr({d | e~ | fYp, (f | |d)),
4.7)

where g4, gr, and np are the same as used in the
detailed-balance relation (2.16). The capture rate R,
can be obtained from

N(t)=R.t for 2m/® <<t (<<R;"), 4.8)

where 277 /& represents an average phonon period.

A quantity with the same structure as Ny(¢) of
(4.7) was calculated in Ref. 18, although the initial
state of transition of an electron was regarded as a
single localized one therein while it constitutes a free
continuous band in the present problem. In Ref. 18
all the higher-order terms in the perturbational ex-
pansion with respect to the interaction to induce a
transition were summed up under the condition of
D >>@ where phonons can be treated semiclassical-
ly. Note that N,(t) gives a contribution of an elec-
tron occupying initially the fth free state at time
t=0, and hence it is an infinitesimal quantity of the
order of 1/N. Similarly to Ref. 18, N((#) is given by
a sum of a series of terms, the first one of which
gives the probability of an event in which after

capturing the electron from the fth free state the de-
fect holds the electron without reemission until time
t. The second one of the series gives the probability
of an event in which, after three successive captures
and reemissions, first capturing the electron from
the fth free state, then reemitting it into free states,
and finally recapturing any one of the free electrons,
the defect holds the electron without further reemis-
sion until time ¢, and so on. Note in the second term
that three successive captures and reemissions take
place in a very short time of the order of a phonon
period, since the last reemission and recapture take
place, without thermal activation, with the aid of
violent lattice vibrations triggered by the first cap-
ture of an electron, as explicitly shown in Ref. 18.
However, the probability of the last recapture is pro-
portional to the density n of free electrons in the
conduction band. Therefore, so long as we confine
ourselves to the calculation of the capture rate R,
proportional to the carrier density #n at low enough
n, it is sufficient to take into account only the first
term for N(¢) mentioned above.

Thus Ng(t) of (4.7) is given by the probability
with which the defect captures an electron from the
fth free state but does not reemit it into free states
during vibrational relaxation just after capture.
Then from Ref. 18 we can represent Ny(¢) by a sum
of diagrams as shown in Fig. 2, where a solid line
represents the propagation of an electron at a free
state while a dashed one that at the deep state, a dot
between them represents the interaction t7; between
the two types of states working at times #,t,...
and t7,t3, ..., and pairs of dots encircled by an el-
lipse are connected within a time interval of the or-
der of 27 /D much shorter than the average phonon
period 27/@. Two solid lines starting at the right-
most circle at time zero are assigned to the fth free
state. They are changed in character at every dot
and finally end at the leftmost circle at time ¢ with a

3 4

FIG. 2. Diagram contributing to Ns(t). A solid line
represents propagation of an electron at a free state, while
a dashed one that at the deep state. The two solid lines
starting at the rightmost circle at time zero are assigned
to the fth free state. Interaction between the free and the
deep states works at every dot at times f,f,,... and
t1,t3,.... Two dots circled by an ellipse move, keeping
a short-time interval.
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character of the deep state. A horizontal pair
represents a virtual interaction (second order in #;’s)
mediated by a state between the two dots of the pair,
while the vertical pair represents a real transition of
an electron, from a free state to the deep one in Fig.
2. All diagrams to be summed up for N,(t) have
only one vertical pair. However, horizontal pairs lo-
cated on the right-hand side of the vertical pair
represent a higher-order interaction between the free
states mediated by the deep state, and they are
neglected consistently with the approximation that
we neglected phonon effects on the free states in Sec.
II. On the other hand, those located on the left-
hand side of the vertical pair represent the virtual
mixing of the deep state with the free states, and it
will be shown below that they contribute to the de-
crease of the deep-state occupation by reemission
just after capture.

The diagram shown in Fig. 2 is defined by the
Wigner representation®® of phonon operators, which
ass1gns a real number Q; to the coordinate operator
b; +b of the jth phonon f and that P; to the
momentum operator (b;—b;)/i. A time evolutlon
of the coordinate operator (2 2) of the interaction
mode is defined by exp(iH; 7)Q exp(—iH; 7), and it
has a Wigner representation

(=3 V;(Qjcosw;T+ Pjsinw;T) , (4.9)
J

where Q(0)= 3, V;Q; corresponds to the Wigner
representation of the interaction-mode coordinate
(2.2) itself. Another time evolution of it defined
by exp(iH;7) exp[iH (u—7)]Q expl[ —iHyz(u—1)]
xXexp(—iH;7) with Hy defined by (4.5) has a
Wigner representation

|

V,~2
Qu, =0 u+23, —w—[l—coswj(y—r)] ,
J

J
(4.10)

which evolves obeying the Hamiltonian H; from r
to u after it evolved obeying the Hamiltonian Hj
from zero to 7. When the diagrams have no hor-
izontal pairs on the right-hand side of the vertical
pair, Ref. 18 shows that

| t1a | 2exp{ —i[Q (1) +E;—V4]7) 4.11)

is assigned to the vertical pair with 'r=%(t,+t'1)
and 7=t —t, where ¢, and t] are now times of the
two dots of the vertical pair. Assigned to a horizon-
tal pair located on the left-hand side of the vertical
pair is
— 2 |tra | exp{ Fi[Q (1,1 +E; — V4 ]}

d (4.12)
where for a pair of dots at times ¢,, and 1,
(>t,,) for n=1,2,... locating on the upper dashed
line we talke the upper sign (—) in the exponent with
p=pa=75(tyyy1+t2,) and B=[E,=ty, 11—ty
while for a pair of dots at times ¢, and t),
(>t),) forn=1,2,. locating on the lower dashed
lme we take the lower 31gn (+) with p=pu,
= 2(t2n+l+t2n) and f=f, =13y 41 —t3,. A prod-
uct of all these quantities obtained in a diagram is
integrated in 7 from — 0 t0 o0, in & from 0 to oo,
and in 7 and p form O to ¢ under the condition of
T<Ui<Ha< ' '+ and T<pi<ps< -, and we
sum up contributions of all possible diagrams with
various numbers of horizontal pairs. The result is
written as

t
AQP ) =2m [ dr|tp |?8(Q(1)+E;— V)G (1,7) (4.13)
with
t
G(tr)=exp |—21 3, [ dp|tpg | 3(Q(,m) +Ep—Vy) (4.14)
I3 T
Note that (4.13) is determined by fixing a set of {Q;,P;} through (4.9) for Q(7) and (4.10) for Q (u,7). The dis-
tribution of {Q;,P;} is given by the Wigner distribution function
2
@; ;(P} +0})
. P:l)= -y =L =" 4.15
Pu({Q),P;}) l;I drkgT exp ? T , (4.15)

which corresponds to the Wigner representation of the density matrix p; of (4.1) obtained at high temperatures

for kg T >>o. Introducing an average defined by

«N=|I1J" dag; [~ ap,
j

we get Ny(t

pw{Qj’Pj} T

)=(A4({Q;,P;}))). Then from (4.6) we get

(4.16)
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N(t)=

27 [, ar((E0Va— QNG s, rrexp

where £(E) of (3.1) was used to rewrite the sum of
N f(t ).

In the nonadiabatic limit the perturbation theory
second order in s, is applicable, which is equivalent
to an approximation that G (¢,7) defined by (4.14) is
regarded as unity in (4.17). Now we use that
«f(Q (7)) for any function f(x) does not depend
on time 7 from ergodicity, although it can also be
ascertained by explicit calculation with (4.9) and
(4.16). Then using (3.9°) for £(E) and calculating the
average in (4.17) with (4.15) and (4.16) we get from
(4.8) the capture rate R, in the nonadiabatic limit by

ngg VBSkpT
R, = &z —ﬁ—ﬁ——exp( —E,/kgT),
in a usual case of A>>(2SkyT)!/2, where A and E,
are connected with V; by (2.10) and (2.15), and #
was recovered for later convenience. The capture
cross section o of (2.18) is given in this nonadiabatic
limit by

(4.18)

o=0pexp(—E,/kyT) , 4.19)
with
00, =84 /8 & /2mw)(3mwy/2)/(nvr) , (4.20)

where y is defined by (2.24). This limit is justified
when

r<<1, 4.21)

as will be shown later. Therefore o,, should be
much smaller than o, of (2.22) which is the satura-
tion value obtained in the adiabatic limit for y >> 1.
In order to proceed beyond the nonadiabatic limit
we must take into account that G(t,7) is smaller
than unity in (4.17). Let us first consider a time
when Q(7)+Es—V, vanishes in the § function in
(4.13). At that time a transition of an electron from
the fth free state to the deep state can take place. It
is convenient here to interpret Q(7) as describing a
time evolution of the interaction-mode coordinate
on the adiabatic potential V(Q) of (2.7) associated
with the fth free state, and Q(7)+E;—V; as
representing the difference V(Q(7))—V4(Q(7)) at
Q =Q (7). Then two types are possible in the transi-
tion, which are illustrated, respectively, in the upper
and lower halves of Fig. 3 both for cases (I) and (IT)
shown, respectively, in the left and right halves.
Figure 3 enlarges the crossing region between adia-
batic potentials for various free states and that of
V4(Q) for the deep state. In the course of a time
evolution of Q(7) on V,(Q) for the fth free state

Vd—Q(’T)
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(4.17)

)

|
Ve(Q (7)) crosses with V;(Q (7)) first at time #,(Ey)
upward and again at ¢,(E;) downward after reach-
ing a turning point. In the upper half of Fig. 3 a
transition takes place at ¢;(E;) while in the lower
half at #,(Ef). After the transition at 7=¢,(Ef) or
t,(Ey) the interaction-mode coordinate evolves with
time p (>7) obeying Q(u,7) of (4.10) with
Q(1,7)=Q(7), where Q(u,7) describes a time evolu-
tion of the interaction-mode coordinate on V,(Q).
It is Q (u,7) that determines G (¢,7) of (4.14). In fact
7 in (4.14) is fixed at a time satisfying
Q(7)+E;—V;=0 by the & function in (4.13). Not-
ing dQ(u,7)/du=dQ (7)/dr at u=r we get a trace
of the interaction-mode coordinate shown in Fig. 3,
which switches from Q(7) to Q(u,t;(Ef)) or
Q(u,t,(Ey)) at the crossing times t;(Ey) or t,(Ey),
respectively. As shown in Fig. 3 we denote by
t1(Ef) or t5(Ey) a time p at which Q(u,t,(Ef)) or
O(u,t,(Ef)), respectively, crosses Vy, after which
Va(Q(u,7)) becomes lower than V(Q(u,7)) for
E,=0.

fIn the nonadiabatic limit both types of transitions
shown in the upper and the lower halves of Fig. 3
contribute equally to the capture rate since the in-

kpT

[1]]
1]

11

tz{Ep té(ep\ tiEp ty(Ep

FIG. 3. Two types in capture of a free electron into the
deep state, shown, respectively, in the upper and the lower
halves for cases (I) and (II) which are shown, respectively,
on the left- and the right-hand sides. At time ¢,(Es) or
t,(Ey) an electron makes a transition from the fth free
state with energy E; to the deep state, while at time
t1(Ey) or t;(Ef) the electron gets out of the continuum of
the free states and is finally captured.



teraction between the deep and the free states is so
small that reemission of once-captured carriers can
be neglected. Apart from the nonadiabatic limit,
however, contributions of the cases shown in the
upper half for case (I) and in the lower half for case
(IT) decrease steeply: In these cases Q (u,7) reaches a
turning point, where its velocity vanishes, between a
time interval of u from #;(Ey) to tj(Ef) or from
t,(Ey) to t3(Ef), and hence we can conclude from
the Landau-Zener formula®*?* that reemission of
once-captured carriers takes place violently around

|

exp | —2m Y, |trq|2/(dQ(7)/dT)
G(t,71)= '
(Ef,<Ef)
0 otherwise ,

for ¢ sufficiently larger than t{(E;) and t(Ey).
Note that (4.22) is just a product of individual
Landau-Zener probabilities with which an electron
trapped in the deep state does not make a transition
to a free state with energy smaller than E;. It is
convenient here to introduce a function defined by

exp[ —27&(E) /#v] for v >0

P(Ev)=, otherwise , (4.23)
with
E
{E)= [ EE"GE", (4.24)

where £(E) is defined by (3.1). We will explicitly
write 7 hereafter as in (4.23). Then considering the
8 function in (4.13) we can rewrite G (¢,7) of (4.22)
into P(V;—Q(7),dQ(7)/d7), which is independent
of ¢, so long as ¢ is much larger than an average pho-
non period.

Now we calculate N (¢) of (4.17). Since Q(7) of
(4.9) and dQ(7)/dt are perpendicular to each other
in the multidimensional space spanned by {Q;,P;}’s,
averaging ( )) in (4.17) can be performed mdepen-
dently for Q(7) and dQ(7)/dr. Moreover, both
US(E —V3+Q () and «8(v —dQ(7)/dT))) do
not depend on 7 because of ergodicity, and they are
respectively given from (4.16) by

(E)= -—l—ex _(E__VL)Z. (4.25)
= sk, ) 2P | T T aSk, T .
and
1 v?
(V)= ——————exp | - ———
4 D47 SkpT)/? P 4%°SkpT
4.26)

The widths of these distribution functions equal,
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this turning point. Therefore we take into account
hereafter only the cases shown in the lower half for
case (I) and in the upper half for case (II) in Fig. 3.
They are characterized by the fact that the velocity
dQ(u,7)/du=dQ(7r)/dr at the crossing time
u=7=t,(Ef) or t,(Ey) is positive both for cases (I)
and (II). Furthermore we approximate the velocity
dQ(u,7)/dp during the time interval of y from
t1(Ey) to t1(Ef) or t(Ef) to t3(Ef) by its initial
velocity dQ(7)/dr. Then G(t,7) of (4.14) can be
rewritten as

for dQ(7)/d7T>0

;
respectively, D? of (4.2) and (@D)* determined by
(4.3), as it would be. Thus we get from (4.17) and
(4.8) the capture rate R, as

g';idT 27 f dE g(E)e PEE(E)(P(E,v)), ,
(4.27)
with
(P(Ew)),= [ dv fWIP(E), 428

and B=1/kgT. Using (2.10) and (2.15) we can
rewrite the exponentlal factor in g(Ee P in-
to exp[—B(E,+3 TEA/S+$E*/S)], in  which
7 ﬁE 2/ in the exponent can be neglected in a usual
case of A2>>SkpT. Then R, of (4.27) can be ap-
proximated by

n 5
R = &4 n—exp( E,/kgT), (4.29)
grn 2w
with
1 273/
= dE E(E){P(E,v)
K ﬁw(SkT)mf SENPED,
EA
XEXP |\ = Sk, T

(4.30)

The meaning of 7 becomes transparent when R, is
transformed to the emission rate R, by the detailed-
balance relation (2.16) as

R, n—exp[ (Eq+E4)/kpT] . (4.31)

These equations are common for cases (I) and (II).
In the adiabatic limit the interaction £(E) between
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the deep and the free states is so strong that we can
approximate exp(— 3 BE A/S) in (4.30) by unity
compared with exp[ —27{(E)/#v] in P(E,v) defined
by (4.23). In this limit it is convenient to change the
integration variable in (4.30) from E to {(E) with
the use of &(E)dE =d[{(E)] obtained from (4.24).
Then we get n=1, or the emission rate R, given by
(2.20), in the adiabatic limit. Thus the result in-
ferred from a qualitative discussion in Sec. II was

ascertained here by an explicit calculation. The at-
]

temped frequency @/27 in (2.20) was now deter-
mined to be given by (4.3). It is very important to
note that the procedure described above to get (2.20)
does not depend on an explicit form of the interac-
tion function £(E) defined by (3.1).

Next let us use (3.9') for £(E) obtained in Sec.
III, in order to get 7 in a general case. Then we can
show that n of (4.30) is a function of only one
parameter ¥ defined by (2.24). In fact the E integra-
tion in (4.30) gives

sinh?20 sinh36 cosh460—2cosh26 | 7 _1 | tanh@
=tanh360 1 tanh30— n _ — +4tan R
K 3tanh@cosh?39 | 4sinh>@ V3 cosh?360 2 V73 ]
(4.32)
with 0 determined by V. DISCUSSION
sinh30=(3v3/2)y . (4.33) When the capture cross section is expressed in a
o form (1.1) at high temperatures for k3T >>#®, the
In the limiting case 7 tends to preexponential factor of the capture rate R, is given
N by R,,=nvro, from (2.18) and that of the emis-
n=(3m/4)y fory <1, *.34) sion rate R, by R, (gf/gd)nTvTa from (2.16).
and Note here vy o« T1/2 and nyVr o« T2 In many exper-
VA—273 imental papers it has often been assumed that o,
N~1—(57/9V'3)y for y>>1. 4.35) was independent of temperature. Accordingly the

The y dependence of 7 is shown in Fig. 4. The cap-
ture rate obtained from (4.34) and (4.29) in the nona-
diabatic limit for ¥ <<1 is just the half of that given
by (4.18), because we neglected in the calculation of
7 such trajectories of the interaction-mode coordi-
nate as shown in the upper half of Fig. 3 for case (I)
and in the lower half for case (II). But contributions
of the neglected trajectories become negligible soon
when v is increased as y> %, as discussed before.
Therefore we can use (4.29) and (4.31) with 7 of
(4.32) for a wide range of y.

0.5

0 1 3 5

FIG. 4. Parameter 7 shown as a function of the adia-
baticity parameter y, with which the preexponential fac-
tor of the carrier-emission rate is given by 7 times the at-
tempt frequency @ /2.

Arrhenius plot of R, /T'/? or R, /T? has often been
used under the assumption of R, <TY? or
R, T2 , respectively, in order to get a correction
to the actlvatlon energy obtained by a simple R, or
R, vs 1/T plot. From the present work, however,
this assumption of constancy of o, cannot be justi-
fied. From (2.18) and (4.29) we get

8 &
genpvr 2w

It was mentioned in Sec. II that the capture process
in usual semiconductors can adequately be described
by situations close to the adiabatic limit. Then we
can regard 7 in (5.1) as close to unity, almost in-
dependent of temperature. This gives o, « T2 and
R, «T~%2 and it is R, being about the attempt
frequency @/2m that can be regarded as almost in-
dependent of temperature.

At temperatures where kpT is comparable to #im,
distribution functions g(E) and f(v (4.25) and
(4.26) must be adjusted so as to have a w1dth deter-
mined by an effective temperature'®

T'=(#id/2kp )coth( 5 7@ /ky T) (5.2)

instead of the real temperature 7. In this case we
can calculate the capture rate R, from (4.27) using
the corrected distribution functions g(E) and f(v)
The emission rate R, can be obtained from R, using

(5.1

Ty =



the detailed-balance relation (2.16). In this case,
however, even if R, was expressed in a form of
(4.29) with exp(—E,/kgT) replaced by
exp(—E, /kgT'), we cannot express 7 as a function
of only one parameter since exp(—BE) in (4.27) can-
not be replaced by exp(—E /kgT").

The present formula (4.27) for the capture rate is
composed of two important factors &£(E) and
(P(E,v)),. The former describes the process of ini-
tial capture of a free electron to the deep state, while
the latter describes the rate with which the electron
is not reemitted to free states just after capture. It is
sufficient to treat the initial capture process with the
perturbation theory second order in the interaction
trg of (2.11), since tg; is an infinitesimal quantity
proportional to N~ '/2, Within the second-order
perturbation the static-coupling scheme as adopted
here is the most convenient.'*~'7 On the contrary,
we can say that it is not easy to get an answer
correct within second order in t7 in the usual
Born-Oppenheimer adiabatic-coupling scheme since
the nonadiabaticity operator appearing therein has
no direct connection with tfd.36 In this scheme elec-
tronic wave functions diagonalizing H(Q) in (2.3)
must first be obtained, and t;’s are completely in-
corporated in them since H(Q) is given by (2.12).
Several theories®!"!>!* presented so far calculate
the capture rate in the Born-Oppenheimer
adiabatic-coupling scheme treating the nonadibatici-
ty operator with the non-Condon approximation. If
the procedure is performed properly, of course, we
can reach a correct answer.”~!7 In some>'* of
these, however, electronic wave functions diagonal-
izing H(Q) are not obtained properly enough, and
hence obtained capture rates seem unjustifiable even
within second order in #;.

Within second order in ¢y, it is not important that
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initial states in the capture process constitute a free-
electron continuum, since it is sufficient only to
average finally an elemental rate of transition from
an individual free state to the deep state over various
free states. It is for this reason that all the theories
presented so far employ the nonradiative transition
rate between two localized electronic states,
nevertheless, to calculate the rate of capture of free
electrons into the localized deep state. When we
consider the capture process beyond the second-
order perturbation in 54, however, it becomes much
different from the nonradiative transition process
between two localized states. The present work is
the first to give the capture rate which is applicable
beyond the second-order perturbation in t7; and
valid in the adiabatic (strong-coupling) limit.

When a defect has a charge before capturing a
free carrier, it provides many shallow bound elec-
tronic states above a lowest deep state. At high tem-
peratures transitions of electrons between these shal-
low bound states and the free states are so rapid that
the thermal-equilibrium distribution of electrons be-
tween them can be regarded as always maintained.
This case can also be treated by the present formula-
tion with a small correction. In practice, however, it
seems reasonable to describe the capture process in
the adiabatic limit since the interaction #7; between
a shallow state and the deep state is larger than that
between a free state and the deep state and even the
capture process without shallow bound states can be
considered to be close to the adiabatic limit. In the
adiabatic limit the capture process can be described
without knowing the interaction ¢7;: The emission
rate R, is given by (2.20) and the capture rate R, by
(2.16) determined by R,, where it is necessary only
to redefine ny appearing in (2.16) in such a way that
it includes also the shallow bound states in (2.17).
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