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A new method is presented for solving the tight-binding equations for interfaces and sur-
faces. The method can be applied to a variety of interfacial situations including heterojunc-
tions and superlattices in which disruptions occur over many atomic layers away from the
interfaces. The method features an expansion of the total wave function in terms of bulk
states with complex wave vectors in regions where there is no interfacial disruption, and
transfer matrices in regions where there is interfacial disruption. It is simple to implement
and computationally more efficient than any previous method of solving the interface

tight-binding equations.

I. INTRODUCTION

The empirical tight-binding model has been used
extensively to calculate the electronic properties of
semiconductor interfaces (surfaces being considered
as a special case). Its popularity is due to ease in im-
plementation and its ability to produce realistic band
structures (with appropriate choices for the empiri-
cal parameters). Typical results from calculations
using the model include the energies, orbital charac-
teristics, and decay lengths of interface states, and
energy densities of states per layer.! Complications
in addition to the presence of an interface can be in-
cluded by suitable modifications of the tight-binding
parameters. Examples include defects,” composi-
tional grading across interfaces,’ lattice distortions,*
and electrostatic potential gradients.’

There is one major computational difficulty that
must be overcome in the implementation of the
method. In general the tight-binding method, or
any other method which employs a local orbital
basis, produces a Hamiltonian matrix whose dimen-
sion increases with the size of the repeated unit cell.
The dimension equals the number of orbitals per
atom times the number of atoms in the unit cell.
The presence of the interface destroys translational
symmetry in the perpendicular direction, and thus
the unit-cell size becomes infinite. The original
solution to this problem for interfaces was to limit
the size of the unit cell in the perpendicular direc-
tion by either creating a slab with a finite thickness
sandwiched between the vacuum (for surfaces or in-
terfaces),’ or by repeating the slab in the perpendicu-
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lar direction to create an artificial supercell (for in-
terfaces).” The resulting inaccurate boundary condi-
tions limited the usefulness of the method to physi-
cal situations in which the deviation of the electron-
ic properties of interest from bulklike occurred
within a few atomic layers away from the interface.

Subsequently, as reviewed in Ref. 1, methods were
developed which correctly incorporated the semi-
infinite nature of the problem. This was done in a
variety of ways, including the use of bulk and sur-
face Green’s functions, and/or transfer matrices. A
major recent advance was the rediscovery of a sim-
ple method for deriving the transfer matrix and its
application to the calculation of the surface Green’s
function.®

In this paper we present a new method for solving
the tight-binding equations exactly and with the
correct boundary conditions. It has three major
components: transfer matrices, an expansion in bulk
states with complex wave-vector values, and a
quickly convergent iterative method for finding en-
ergy eigenvalues. The transfer matrices relate the
electronic wave function on neighboring atomic
planes in non-bulklike regions, i.e., regions in which
there is interfacial disruption. Sufficiently far from
the interface, the tight-binding Hamiltonian is bulk-
like and, therefore, the wave function can be ex-
pressed as a linear combination of bulk states. In
addition to the familiar oscillating Bloch bulk states,
the presence of the interface requires that bulk states
which grow or decay exponentially away from the
interface be included in the expansion. These are
bulk states which have complex wave-vector values.
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The transfer matrices and complex wave-vector
bulk states are then used in the formation of a “re-
duced” tight-binding Hamiltonian matrix for the
system. Diagonalizing it produces the energy eigen-
values and the electronic wave function. As will be
shown, however, the transfer matrices and bulk-state
expansion are found assuming an initial guess for
the energy. Thus, this method must be iterated until
the assumed energy agrees with a final energy eigen-
value of the Hamiltonian matrix. Convergence
occurs rapidly, typically within five iterations for
millivolt precision.

Parts of this method have been either presented or
used for calculations on specific systems as follows.
Reference 9 describes in detail a general and con-
venient method for obtaining the bulk states with
complex wave vectors within the tight-binding for-
malism (also for k-P and pseudopotential formal-
isms). Reference 10 is a study of the GaAs-AlAs
(100) superlattice which uses an expansion of the su-
perlattice wave function in terms of bulk GaAs and
AlAs states. It also uses the iterative technique to
find the eigenvalues of a reduced Hamiltonian.
Reference 5 demonstrates the full method to be
described here for two systems: the Si(111)-(2x1)
reconstructed surface including second-layer relaxa-
tion, and the GaAs-AlAs (100) heterojunction with a
doping-induced potential gradient extending over
ten GaAs layers.

In this paper we present in detail the reduced
Hamiltonian method for solving the tight-binding
model of interfaces. The systems of interest here are
those which preserve lattice periodicity parallel to
the interface. Any interfacial disruption, such as
compositional grading, lattice relaxation, potential
gradients, or foreign overlayers, are assumed to be
uniform parallel to the interface. Perturbations
which do break the parallel periodicity, such as
point defects, are probably best handled using a
hierarchical Green’s-function approach.! In this
context also the transfer matrix® or complex wave-
vector bulk-state®!! concepts provide substantial im-
provements over conventional methods for obtaining
tight-binding Green’s functions.

The method will be described in the following
three sections. Section II discusses the derivation
and application of the transfer matrix. As derived
here, the transfer matrix is slightly simpler than that
of Ref. 8 in that a smaller fundamental layer is
used.” Section III briefly describes how the transfer
matrix is used to obtain the complex wave-vector
bulk states. Section IV describes how the transfer
matrices and the complex wave-vector bulk states
are used to form the reduced Hamiltonian. Section
V describes a refinement to the method needed when
the region of interfacial disruption is large.
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FIG. 1. Zinc-blende (111) atomic planes. 4 and C
represent anion and cation planes, respectively. First-,
second-, and third-nearest-neighbor interactions with two
of the planes are shown.

II. THE TRANSFER MATRIX

The transfer matrix relates the electronic wave
function on different planes parallel to an interface.
In fact, if the wave function is known on a small
number of adjacent planes (depending on the orien-
tation of the planes and the number of neighbor
overlaps included), the transfer matrices give the
wave function on all other planes. An explicit form
for the transfer matrix is simple to derive.

First, it is necessary to carefully define a “‘sub-
layer” (“layers” will be defined subsequently). A
sublayer consists of the smallest number of adjacent
atomic planes parallel to the interface such that each
sublayer interacts (has nonzero tight-binding over-
laps) with the same number of other sublayers on
each side. Consider, for example, (111) oriented
planes in zinc-blende material. Let A represent
anion atomic planes and C represent cation atomic
planes in Fig. 1. It illustrates the interactions be-
tween planes including first-, second-, and third-
nearest-neighbor overlaps. Redundant overlaps,
such as third-nearest-neighbor interactions between
adjacent planes, are not indicated. Note that the dis-
tance between planes alternates. If only nearest-
neighbor overlaps are considered, each atomic plane
is a sublayer, because each only has interactions with
adjacent planes on each side (even though the in-
teractions are unequal). Similarly, when second-
nearest-neighbor overlaps are included, a sublayer is
still a single atomic plane because each plane has
overlaps with adjacent and next-to-adjacent planes
on each side. Including third-neighbor interactions
changes the situation. Now, each anion plane has an
interaction with the second cation plane to its right,
but not with the second cation plane to its left. The
reverse is true for each cation plane. It is, therefore,
necessary to define a sublayer as consisting of the
closely spaced anion-plane—cation-plane pair. Each
sublayer then only has interaction with adjacent sub-
layers on each side.!?

The next step is to write the total tight-binding
electronic wave function, ¥ as a sum over functions,
¥,,., on each sublayer:

W)= 3 ¥, (F—mdé,) . (1)
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Each ¥,, is a two-dimensional Bloch function with
wave vector K, in the plane of the sublayers, d being
the sublayer spacing in the z direction:

i%, §
T L= =
" ai(r—R,—R;)

J
¥, ()= 3 Ci(m) | Y e ;
j=1 n

()

The index n labels the unit cells located by the two-
dimensional vector R,. The index j labels the J
orbitals per unit cell, a;, centered at R,+R; and
contributing with an amplitude C;(m). The summa-
tion within the parentheses can be abbreviated by
V,,; so that

¥=3 3 Cj(m)¥,, . 3)
m j

The ¥,,), which will be called “sublayer orbitals,”
are the most convenient basis in which to derive the
transfer matrix. The W,,; are not restricted to be
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orthonormal.
Schrddinger’s equation, HY=EW, can be written
in matrix form

M
2 HymCl+m)=0, @)

m=-M
where H ;,, is the J XJ matrix with elements

(H i )ijj=Vy; |H—E |¥,,;) , &)
and C(m) is the column vector of C;(m)’s on the
mth sublayer (matrices and column vectors are indi-
cated by underlining). M is the number of sublayers
which interact with any given sublayer (on one side).
Equation (4) can be solved for C(I +M) by multi-
plying by (Hy; 4 )"

CU+M)=—(H )"

M1
X X HyymCl+m).
m=-—M

(6)

Including the trivial equations C(I +m)=C(Il +m)
produces the matrix equation

C(l—M +1) 0 1 0 0
C(l—M +2) 0 0 1 0
0 0 0 0
= 0 0 0 0
0 0 0 1
Cl+M) —Hi\mHy oy —HiiwmHp_mer oo —HihswHpmo
C(l—M)
Cll—M+1)
X (7)
Cl+M—1)

The net result is that the coefficients on the
(I +M)th sublayer (and thus the wave function
there) can be found if the coefficients on the previ-
ous 2M sublayers are known. Similarly, the wave
function on sublayers at greater z can be found in
terms of the wave function on the original 2M sub-
layers by repeated multiplications by transfer ma-
trices of the same form as in Eq. (7). The same is
true for the wave function on sublayers at lesser z.

III. COMPLEX WAVE-VECTOR
BULK STATES

The complex wave-vector bulk states are easily
obtained once the transfer matrix is known.!> They
result from the analysis of the previous section with
the additional fact that for a bulk crystal (no inter-
face) the electronic wave function is a Bloch state in
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the z direction also. Thus, if the unit cell in the z
direction contains L sublayers, the wave function re-

peats every L sublayers with a phase factor e
Labeling a given transfer matrix by T ,, where n is

Cl—-M+L)
Cl—M+1+L)

Cl+M+L-1)

Diagonalizing the matrix resulting from the product
of transfer matrices in Eq. (8) produces J X2M com-
plex k, wave vectors and associated propagating (k,
real) and evanescent (k, complex) bulk states. If L
is less than 2M, a particular bulk state is determined
by the first J X L components of the eigenvector in
Eq. (8). The remaining components describe sub-

layers L over from the first ones and are thus redun-
dant.

IV. THE REDUCED HAMILTONIAN METHOD

A. Heterojunction

This section will describe the use of transfer ma-
trices and bulk-state expansions in forming the re-
duced Hamiltonian. For definiteness, the system to
be considered will consist of a heterojunction in
which three regions are clearly identifiable. Region
I (see Fig. 2) is the region far enough to the left of
the interface so that it is essentially bulklike and can
be described by the bulk Hamiltonian of semicon-
ductor A. Similarly, the Hamiltonian of semicon-
ductor B describes region III. Region II is the tran-
sition region in which the Hamiltonian is non-
bulklike.

The interfacial disruption which characterizes re-
gion II is any which can be modeled in terms of
tight-binding parameters. For example, an electro-
static potential variation can be represented by a
layer-dependent shift in the on-site energy parameter
between an orbital and itself.”> Compositional grad-
ing from semiconductor 4 to B can be represented
by a layer-dependent weighted average of the tight-
binding parameters which describe 4 and B.? There
are also simple rules which allow for the adjustment
of the parameters due to lattice relaxation and thus
it too can be modeled.'*!> It is assumed here that
the disruption is such that at least one bound state
exists. The method to be described is designed to
find the energies and wave functions of the bound
states.

=Tiim+r-1"""Tiom1Liem

the sublayer on which the transfer matrix gives the
new coefficients [n =/ +M in Eq. (7)], and suces-
sively multiplying the transfer matrices produces the
eigenvalue equation

CU—M) C—M)
CU-M+1)| . lci—m+1)

. —=e * : (8)
CU+M—1) CU+M—1)

The single heterojunction system with bound
states is a representative system to which the re-
duced Hamiltonian method can be applied. Other
systems, with bound or continuum states, are han-
dled by straightforward modifications. Examples
include surfaces with reconstruction,” quantum
wells (two heterojunctions back to back), and super-
lattices (repeated heterojunctions).'®

B. Description of the electronic state

The electronic state is described in one of two
ways, depending on the region. A local orbital point
of view for the wave function is used in region II
where the Hamiltonian is varying, and bulk-state ex-
pansions are used in regions I and III where bulk
Hamiltonians prevail. Representing the bulk states
in regions I and III by F! and FM™, where i labels the
J X 2M solutions to Eq. (8), the total wave function
V¥ can be written

v=3 fIFh, (9a)

in region I, and

W= 2 fim F[III , (9b)
i

in region III. Equation (1) gives the form of ¥ in
region II, with the understanding that the ¥,, can be
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FIG. 2. Heterojunction with semiconductors labeled A4
and B. The Hamiltonian is bulklike in regions I and III.
Region II is the region of interfacial disruption.
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related using the transfer matrices [Eq. (7)].
Before proceeding, it is convenient to define a

“layer” and to carefully specify to which region
|

C(+M)

CUl+M+1)
: =T 4sm—1" " " LTiyme1Livm

C(l+3M—1)

The two column vectors in Eq. (10) now have no
sublayers in common and the transfer may be en-
visioned as being between two adjacent blocks of
sublayers. These blocks will from here on simply be
called “layers” (equivalent to the principal layers of
Ref. 8), and the product of transfer matrices in Eq.
(10) will be the new transfer matrix which relates
adjacent layers. Thus, Eq. (10) can be written
C(l+1)=T;,,C(]) with these new definitions. A
layer orbital is the straightforward extension of the
sublayer orbital of Eq. (3).

There is a simple relationship between the
description of the wave function in terms of bulk
states and in terms of layer orbitals. It is obtained
by using both descriptions of the wave function on
the layer which bounds regions I and II and that be-
tween regions II and III. Figure 3 illustrates the
heterojunction by representing the layers by
circles—filled in region II and open in regions I and
III. Layers O and N + 1 are the boundary layers.
The wave function on layer N + 1, for example, can
be written using either Eq. (3) or Eq. (9). Equating
the two gives

SCGIN+DYy = fF"N+1, a1
J i

where the Wy, ; are now the layer orbitals on
layer N+ 1 and F/™N + 1) is the ith bulk-state
solution to Eq. (8) evaluated on layer N 4+ 1. The
F/™ can also be expressed in terms of the Wy, ;:

FN+1)=3S0%y 1 m (12)

m

where the columns of the matrix S™ are the eigen-
vectors of Eq. (8), and the origin of the bulk states
in region III is chosen to be on layer N + 1. Substi-
tuting this in Eq. (11) produces the matrix equation

C(N +1)=8styut, (13a)
Similarly,
C(0)=8'fT. (13b)

The transfer matrices relate C(0) and C(N + 1),
and thus f*and /1
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each layer belongs. Iterating Eq. (7) 2M times gives
the 2M coefficients C(I +M) to C(I +3M —1) in
terms of the original C(I —M) to C(I +M —1):

C(l—M)
C(l—M +1)
. (10)
C(l+M—-1)
|
CIN+)=Ty Ty TIT,T,C0)), (14)

and Eq. (13) imply
SUfM=Uy ST, (15)

where U y | represents the product of transfer ma-
trices in Eq. (14). Thus,

Z’III=(§III)—1QN+1§I[I . (16)

C. Determinantal solution

As will be shown in this subsection, Eq. (16) al-
ready provides a theoretically simple, but numerical-
ly impractical, method for finding the allowed ener-
gy levels. The condition to be used to determine the
energies of bound states is that the wave function in
regions I and III remains finite. This implies that
the f; in Eq. (9) are zero for the bulk states which
grow exponentially away from the interface. In re-
gions I, these states have Imk, > 0, and in region III,
Imk, <0. There are the same number of growing
and decaying bulk states in each region.’

Let the column vectors f! and f™ be organized
such that the coefficients of the bulk states with
Imk, > 0 are above those with Imk, <O:

) [

fl= £ fm

The matrix in Eq. (16) can be written as four square
blocks:

(17)

, fM=

M=S"-yy, S'= (18)

M, M,_
M_, M__|

FIG. 3. Heterojunction with layers numbered. Open
circles, regions I or III, filled circles, region II.
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which connect the growing and decazung com-
ponents of f!and ™. Since f and f™' must be
zero, Eq. (16) becomes

WM, _fL (19a)
and
o=M__f'. (19b)

Equation (19b) is satisfied only if det(M __)=0.
Since M depends on energy, the energies which
cause the determinant to be zero are the allowed lev-
els. Then, Egs. (19a) and (19b) can be used to find
the coefficients of the bulk states and thus the wave
function.

The major deficiency of this method is that it is
difficult and time consuming to carry out the indi-
cated energy scanning procedure for realistic tight-
binding models with several ( >4) orbitals per atom.
The determinants, which are sums and differences
of very large numbers, are ill-behaved numerically
using conventional techniques. An alternative is to
diagonalize M _ _ and search for eigenvalues equal
to zero. This is substantially more time consuming
than evaluating determinants, but it is feasible. A
better strategy is provided by the reduced Hamil-
tonian method. It avoids energy scans altogether.
Instead, an iterative procedure is introduced which
produces successively more accurate energy levels.

If only continuum states are of interest, Eq. (16) is
sufficient and it is a convenient route to follow to
obtain the total wave function. The reduced Hamil-
tonian method, in fact, cannot be used, as shown
shortly. Continuum states are distinguished from
bound states in that they include bulk states in re-
gions I and III with purely real values of k,. The
amplitudes of incoming bulk states with real k,
(k; >0 in region I, k, <0 in region III) must be
specified and the amplitudes of the outgomg bulk
states found from Eq. (16). Let f +and f° T include
the amphtudes of the incoming states. Thus, m
and f remain to be found. Using Egs. (17) and
(18) in Eq. (16) produces

fl=a )™

and

!_'I_*I_I=M+_[I_+M ++‘_f_‘l+ . (20b)

-M_.fY (20a)

D. Reduced Hamiltonian

The goal here is to construct a Hamiltonian ma-
trix using the transfer matrices and the bulk states.
Its eigenvalue closest to the energy assumed in its
construction will then be the next approximation to
the bound-state electron energy. A new Hamiltoni-

an is constructed using this energy, and the process
is repeated until convergence is achieved.

The basis functions of the Hamiltonian matrix
will now be described. On the /th layer the ith basis
function, ¢;, can be written

$i(h=3 Cinwy (21)
j

where ¥j; is the jth layer orbital on the /th layer.
Let us choose the ¢; so that on layer 1 (see Fig. 3)
the C; (1) have the simple form Cj(1)=38;;. The

(I) and thus ¢;, on other layers w1thm region II
can then be found by using the transfer matrices:

g"(l)=l",l’1_,"'l'2g"(l). (22)

On layers within regions I and III, ¢; is expressed as
linear combinations of the bulk solutions Fl and
ij. The linear combination is not, however, given
by Eq. (13) (after multiplying by (S™)~! or (S1)~1)
as might be expected. The reason is that this would
introduce bulk states which do not decay exponen-
tially away from the interface. Thus, some Hamil-
tonian matrix elements would be infinite. Since un-
bound, continuum states necessarily contain bulk
states which do not decay, the infinite matrix ele-
ments prohibit the use of the reduced Hamiltonian
method for them, as mentioned in the preceding sec-
tion.

To remedy this for bound states, the ¢; in regions
I and III are defined to be the linear combinations of
bulk states which result from Eq. (13), but with the
exponentially growing bulk states explicitly omitted.
Then, in regions I or III,

¢:(D= 3 F5"FPM) (23)
J
with
0
: e
. J 1
— 0 _
.le= ) _}112 0
fi- ;
0

where the Fy L are the bulk states in regions I or III,
and f i and f i+ are column vectors defined simi-
larly to those in Eq. (17).

With the ¢; known on all layers, it is a simple
matter to calculate the Hamiltonian matrix. Since
the ¢; are not orthonormal, it is also necessary to
calculate the overlap between them. The overlap
matrix is given by
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0ij=(¢i |¢j)

S 3 3 [CLmICii+k)
—oo mnk=-1,0,1

I=

X (Wi | Y1 kn) (24a)

and the Hamiltonian matrix by
hij=(¢; | H | ¢;)
= 33 3 [CLOIci+r

l=—cmnk=-1,0,1

X (Wi | H | Wy 10) . (24b)

The Appendix contains details concerning the
evaluation of these sums.

The Schmidt orthogonalization procedure is then
used to find orthonormal combinations ¢; of the ori-

ginal ¢;,
¢i= Guity » (25)

and the transformed Hamiltonian matrix
h=G'hG . (26)

Diagonalizing A produces the energy eigenvalues,
one of which is chosen for the recalculation of the
transfer matrices and bulk states. A new £ is found,
and the whole process is repeated until an energy
eigenvalue coincides with the input energy from the
previous iteration.

An example of the rapid convergence of this
method is provided by the calculation reported in
Ref. 5. There, the bound-state energy of an electron
in a GaAs-AlAs heterojunction was found. The
electron was confined by the large GaAs-AlAs
conduction-band discontinuity on one side and a su-
perimposed, linearly increasing electrostatic poten-
tial (14 meV/A) over ten GaAs layers on the other.
A bound-state energy of 0.374 eV above the bottom
of the triangular potential well was found. Starting
with an initial guess slightly above the well bottom
(0.001 eV), the relevant eigenvalues of & produced in

successive iterations were 0.255, 0.101, 0.366, 0.381,

0.377, 0.374, and 0.374. Thus, seven iterations were
needed in this case. Physical intuition and experi-
ence reduce the number of iterations substantially in
most cases.

Unfortunately, it cannot be guaranteed that all
bound-state energies in a given system will be detect-
ed starting from arbitrary initial-energy guesses. If
the initial guess is sufficiently far off from a specific
bound-state energy, the iteration procedure may con-
verge to another bound state or to the continuum.

To ensure that all bound states are found, it is neces-
sary to survey a range of initial energies. Again, ex-
perience as well as simple models of the system of
interest provide guides in finding the bound-state en-
ergies.

V. REFINEMENT FOR MANY-LAYER
TRANSFERS

The procedure outlined in the preceding sections
is limited in the number of disrupted layers that can
be included. The limitation is caused by the finite
precision of the digital computer. The problem
occurs in Eq. (22) in the repeated multiplication of
transfer matrices. Each transfer matrix in Eq. (22)
has eigenvalues, A;, that are on the order of the ex-
ponential eigenvalues in Eq. (8). The eigenvalues of
the product of n transfer matrices will therefore be
on the order of A}. Since some of the |A;| are less
than 1 and some greater than 1 (for Imk, greater
than and less than O, respectively) the repeated mul-
tiplication in Eq. (22) will eventually cause informa-
tion concerning the smaller eigenvalues, and their
respective eigenvectors, to be lost. For example, the
maximum number of layers that could be
transferred over in Ref. 5 was fifteen (using double
precision with an IBM 370 computer). The poten-
tial gradient variation was thus restricted to this
number of layers.

There is a simple refinement that can extend the
method to a larger number of layers. It consists of
changing the basis set from the ¢; basis of Eq. (21)
to a basis set designed to counteract the appearance
of very large and very small eigenvalues in the prod-
uct of transfer matrices in Eq. (22).

The new basis set is constructed as follows. Let
N’ be the number of layers which can be transferred
over without a loss of precision. The product of the
N’ transfer matrices is diagonalized and its eigen-
vectors found. The eigenvectors are used to define
new basis states ¢}:

¢ = 2 B;¢; , 27

where Bj; is the ith component of the jth eigenvec-
tor. The normalization of the jth eigenvector is
chosen to be 1/ v; | 2 where ¥; is the jth eigenvalue.
This ensures that after transferring the basis states
over N' layers, the amplitudes on layer N’ will be on
the order of one. The Hamiltonian in the new basis
is then QTh___B and the new overlap matrix is B T@.
In practice, this has been found to be an effective
technique for extending the number of layers which
can be transferred over. Even larger numbers of
layers can be accommodated by repeating the above
procedure each time precision is about to be lost.
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VI. CONCLUSIONS

A new method for solving the tight-binding
model of interfaces has been developed. It is easily
implemented and computationally efficient. Time-
consuming diagonalizations of large matrices, as in
slab or supercell calculations, or integrals over Bril-
louin zones, as in conventional Green’s-function
methods, are avoided. The computation time in-
volved in the calculation grows only linearly with
the number of disrupted layers. Bound-state ener-
gies of typical systems can be computed quickly in
the time-sharing mode of moderate-sized computers.
In addition, the ability to present the total wave
function in the bulklike regions (regions I and III) as
linear combinations of bulk states facilitates the
understanding of the relationship between bulk and
interface electronic structures.

The variety of problems to which the tight-
binding model can be applied is greatly extended. A
large range of interface systems with two-
dimensional translational symmetry can be investi-
gated. The main restriction is that the system must
be bounded on each side by either the vacuum or by
a bulk material with no disruption (e.g., an electro-
static potential gradient, as in Ref. 5, must eventual-
ly become constant far enough away from the inter-
face) or periodic. A few examples of systems of
current interest which are ideally suited for treat-
ment by the reduced Hamiltonian method include
superlattices, quantum wells, two-dimensional elec-
tronic systems at heterojunctions, and the deter-
mination of bound states and of tunneling properties
in multicomponent heterojunctions. In addition, the
effects of reconstruction, electrostatic potentials,
compositional grading, or other features which can
be modeled within the tight-binding formalism can
be included.
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APPENDIX

This section presents a summary of the manipula-
tions needed to evaluate the sums over layers in Eq.
(24). It is assumed that the matrix elements between
layer orbitals in Egs. (24a) and (24b), with and
without the Hamiltonian, are similar in that there
are the same type and number of nonzero interac-
tions. Thus the procedure is the same for both
sums. The sums can be split into three parts, in re-
gions I, II, and III. The contributions from the two

boundaries between regions also need special analy-
ses.

First, the sum over region II is done. Let W,
represent the matrix of Hamiltonian matrix ele-
ments between layer orbitals within the mth layer,
and V,, the matrix between orbitals on the mth layer
and the (m + 1)th layer. Then, the contribution
from region II to & ;; can be written

N
=3 C'm)W ,Ciim)
. m=1
N_l 3 s
+ 3 [CMm)Y ,,Cilm +1)
m=1

+Ctm+1plcim].  (@An

In practice, this sum is done incrementally, with
Ci(m +1) found from the preceding C¥(m) by mul-
tiplying by T ,, 4 1.

Note that the sum omits the interaction between
layers N and N + 1. This is because ¢;(N + 1) is ex-
pressed as a sum of bulk states without the exponen-
tially growing ones [Eq. (23)]. Thus C{(N + 1) is
not obtained from C/N) by multiplying by T y 1.
By introducing the projection operator, P!, which
projects out the growing bulk states, C(N + 1) can
be written

CHN +1)=SWpI(SI)~IT . \CIN). (A2)

Here, T y . acting on C(N) produces C/(N + 1) as
if the growing bulk states were included, (S1)~!
transforms this into the bulk-state basis [see Eq.
(13)], P™ projects out the growing states, and S
transforms back into the layer orbital basis. P has
the simple form

Pl— , (A3)

00

where each element is actually a block matrix which
acts on the growing or decaying bulk-state coeffi-
cients organized such that the decaying states are on
top [as in Eq. (17)]. The contribution to 4 from this
interaction can be written AV and has the same
form as a term in the second sum in Eq. (A1) with
m =N and with CN + 1) given by Eq. (A2).

The interaction between layers O and 1 have the
same complication. C0) must contain no exponen-
tially growing states to the left. It can be written

ci0)=8'"Pi(sH-'T'ci1), (A4)
with

Ll (=]
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This is similar to Eq. (A2), except that T'j'
transfers from C¥(1) to C¥0) instead of T y,,
transferring from CN) to C/(N + 1). Its contribu-
tion to A can be written A ! and it also has the same
form as a term in the second sum in Eq. (A1), but
with m=0.

All that remains is to calculate the contributions
from regions I and III. This is easily done in the
bulk-state basis, and then transformed back into the
¢; basis. Since the Hamiltonian is constant within
region I (or III), the Hamiltonian matrix elements
between two bulk states, F,-I and F}, can be written

—ik;a

%
1’0 +R+e" °")

—ilk;—kF)a

hi=(SHle
X(Sj)N1—e )L (AS5)

Here, (S}) is the ith column of the matrix S, R is
similar to W ,, except that it represents interactions
between layer orbitals within a unit cell instead of
within a layer, Q represents interactions between a
unit cell and the one to its left, and k; and k; are the
perpendicular complex wave vectors of the ith and
Jjth bulk states. The sum over unit cells separated by
the distance a forms a geometric series of exponen-
tial terms whose sum is the last factor in Eq. (AS5).
This equation can be further simplified by using

Schrédinger’s equation for the bulk material to elim-
inate Q in terms of R and exponentials, if desired.
Transforming to the ¢; basis gives

R'=[PYSH-'T 'R PUSH'T Y, (A6)

with similar reasoning that lead to Eq. (A4).

Region III is dealt with similarly. The formula
for A", the Hamiltonian between bulk states in re-
gion III, is similar so that in Eq. (A5) with k; and k;
reglaced by —k; and —k;, and with Q replaced by
Q" (left interactions replaced by right ones). Then,
the transformations to the ¢; basis can be accom-
plished by

hm=[1_’m(§m)“lQ}V+1]*b_"l_’m(é'm)"‘L]}vH ,
(A7)

where U iy . connects layers 1 and N + 1:
Unyi=IypIy--I,. (A8)

Finally, the total Hamiltonian in the ¢; basis is writ-
ten

and similarly for the overlap matrix [Eq. (24a)].
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