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Magnetic polaron: Theory and experiment
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We present a general thermodynamic model of the bound magnetic polaron which takes

into account the free energies of the localized spins„of the free carriers, of the electrons lo-

calized in the bound magnetic polarons, and of the electrons trapped on impurities which

play the role of compensators. In addition to the configurational entropy, a magnetic entro-

py is associated with the bound magnetic polarons. It is shown that this magnetic entropy

characterizes the bound magnetic polaron, and most physical properties are closely related

to its order of magnitude. In particular, it is shown that this entropy is responsible for the

stability of the bound magnetic polaron at high temperature both in EuO and in semimag-

netic semiconductors such as Cd& „Mn„Te and Cd& „Mn„Se. Our model accounts well for
the physical properties of these materials. The extension of the model to other magnetic

semiconductors is also discussed.

I. INTRODUCTION

The concept of magnetic polarons was introduced
by de Gennes' and then has been studied by several
authors many years ago. The further developments
of this concept3 were motivated essentially to ex-
plain the outstanding metal-insulator transition in
Eu-rich EuO at T-50 K evidenced by Oliver et al.
below the Curie temperature T~-69 K. The basic
idea is that the outer electron of the oxygen vacancy
can be trapped by the vacancy which acts as a
donor, and polarizes the localized spina of Eu sur-
rounding the vacancy, through the d fexchange in--
teraction. This is the picture of the bound magnetic
polaron. Simultaneously, Torrance et al. and
I.eroux Hugon proposed that this transition is due
to an overlap of magnetic polarons depending on the
temperature and on the concentration of oxygen va-
cancies. The description in Ref. 5, however, is pure-

ly qualitative. I.eroux Hugon has calculated the
Mott instability of such a polaron and claimed that
his model could account for the metal-insulator
transition observed at 50 K for the particular con-
centration of oxygen vacancies n=4)&10' cm
However, this agreement is an artifact, essentially
due to a too large value of the effective mass of the
conduction electrons used in the numerical calcula-
tions. In fact, with a realistic choice of the parame-
ters entering this model, the results are in co~piete
disagreement with experiment, and do not depart
significantly from the usual Mott criterion for cal-
culating the critical carrier density for the formation
of bound hydrogenic impurity states independent of
temperature. The reasons of the failure of this
model will be discussed later in this paper. Nagaev

and Grigin have calculated the response of a free-
carrier electron gas polarized by exchange interac-
tions when it is submitted to an electric perturba-
tion. However, this calculation is made in a spin-
wave approximation and its range of validity is then
restricted to low temperatures. The first consistent
model of bound magnetic polarons is the beautiful
work of Kubler and Vigren and consists of the cal-
culation of a self-consistent magnetically controlled
electron localization in the random-phase approxi-
mation. This model accounts for the main features
of the experimental properties of EuO in the fer-
romagnetic configuration, in particular the strong
temperature dependence of the vacancy concentra-
tion at which a metal-insulator transition occurs.

However, all these models together with subse-
quent ones " are in strong disagreement with ex-
periment in the paramagnetic configuration. In par-
ticular, these models predict that EuO is metallic at
room temperature as soon as the concentration of
oxygen vacancies n exceeds few 10' cm 3, contrary
to experiments showing that EuO is insulating up to
n-10 cm .' We have shown in Ref. 13 that
such a discrepancy is essentially due to the fact that
these models neglect the magnetic entropy associat-
ed with the formation of a bound magnetic polaron,
and that this entropy lowers the free energy of the
magnetic polaron. This concept has also been used

by Dietl and Spalek' to explain physical properties
due to the presence of bound magnetic polarons in
Cd& Mn„Se. This material is a semimagnetic ma-
terial since the number of localized spins per unit
cell is x &&1, in contrast to magnetic semiconduct-
ors like EuO where x —1. In fact, the description of
the magnetic polaron in semimagnetic semiconduct-
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ors is much simpler than in magnetic semiconduct-
ors because the magnetic interactions are much
smaller due to the large distance between the local-
ized spins. It follows that in semimagnetic semicon-
ductors the frizx: energy can be linearized in terms of
the magnetic energy and entropy of the polaron,
with all the simplifications inherent to the perturba-
tion methods.

Our purpose in this paper is to develop our model
outlined in Ref. 13, based on a thermodynamic cal-
culation of the free energy of the system. Although
the model is quite general, we shall develop it with
the application to EuO in mind because it is the only
magnetic semiconductor where magnetic polarons
are evidenced without any ambiguity, and. because
the description af the magnetic polaron in such a
material presents the highest complexity. Then it
will be easy to show that the model of bound mag-
netic polaron in semimagnetic semiconductors, as
developed in Ref. 14, is in fact a particular case of
our previous model' including further approxima-
tions which will be discussed. The limit of our
model and its use to get a better understanding of
the metal-insulator transitions in other rare-earth
compounds are also analyzed.

E(k)+ =E— (k)+ , JS—cr, (2.3)

where a is the polarization of the localized spins:
ca=

~
(S) )

lS
(
. E (k} is the energy of the carriers

before the introduction of the exchange interaction.
The signs + and —refer ta polarizations J, and t of
the spin of the carriers, respectively. The second-
order terms provide the indirect exchange interac-
tion

1

Hex= 2 P Jeff(Rij}SiSj ~ (2.4)

where the effective exchange constant J,ir can be
written'5'6

Jefr(Rij) = QXp (q)e
0 q

where N p is the number of localized spins, and

Xp (q) =Xpi(q)+Xpi(q)

.(2.5)

(2.6)

is the free-electron-gas susceptibility. Xp, is the Lin-
dhart susceptibility function at zero ferquency, '7

expansion of this Hamiltonian gives the energy of
the free carriers,

II. THERMODYNAMIC MODEL

A. Free energy of the localized spin system

In the absence of free carriers, the localized spins
are coupled by a direct exchange interaction
described by the Heisenberg Hamiltonian

Hp ——, QI(Rq)S;S——j . (2.1)

In the presence of free carriers, the localized spins S;
are also coupled to the spin density s (r) of the car-
riers. We shall write this indirect exchange interac-
tion as

Hi ———g JS„.s(R„) .
n

The first order of approximation in a perturbation

(2.2)

The free energy of the statistical system is the
sum of various contributions from the free-electron
gas, from the localized spins S (S=—, for Euz+ in
EuO and S = —, for Mn + in Cdi „Mn„Se), from
the bound magnetic polarons, from the impurities,
and in rare-earth compounds we shall. see that the
contribution from the 4f levels must alsa be taken
into account. Our purpose in this paragraph is to
calculate separately all these various contributions.
To simplify the notations all the free energies will be
expressed per unit cell, i.e., per unit volume (a') /4
where a' is the lattice parameter of the fcc lattice.

nk+q, s nk, s

„E'(k)—E'(k+q) (2.7}

nk, is the occupation number of the free carriers in
the state af energy E (k) with the spin s (t and 1).
The main approximations inherent to the model can
be read in these expressions. First the free carriers
are treated as s electrons. ' This is a good approxi-
mation in Mn compounds where the conduction
band is s or p type. In europium chalcogenides,
however, the conduction band is essentially of a d
type. In that case, it has been predicted by Nolting'
that the down-spin spectrum should exhibit a multi-
band structure in which each up-spin band state
splits in two. Recently, however, Allan and Ed-
wards' have shown that in EuO and EuS no such
splitting occurs, and that the corrections arising
from the d character of the conduction band are in
fact much smaller than predicted by Nolting: They
have argued that there are no corrections for the
majority up-spin states and only small shifts and
broadening of the minority down-spin states due to
electron-magnon interactions. We shall neglect such
effects which are minor with respect to the large
spin splitting between f and ) states described by
Eq. (2.3). Second, the free-electron susceptibihty ap-
pears in Eq. (2.5) because we have neglected the
correlation between the free carriers, which modifies
the linear response of the electron gas. The suscepti-
bility reads, in first approximation,
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X(q) =Xo+(q)/[ I —uXO+(q)],

where the potential v is usually repulsive. In princi-
ple, X(q) should be substituted to Xo+(q) in Eq. (2.5).
This effect may be important in metals, but for
magnetic semiconductors, even heavily doped ones,

I

the correction uXO+(q) which is proportional to the
density of states at the Fermi energy remains small
and can be neglected. As a consequence, we shall
neglect the electron-electron interaction, and evalu-
ate Jeff(Rij) from Eq. (2.5). This quantity has been
calculated in Ref. 15 as follows:

)
2 VJ
IV 2 'XR-0 ij

'2
sin(mR;j/a) ~ cos(mR j/a)
(R; +ma)~ a R;j+ma

x f, [f[E+(k)]+f[E-(k)]I (2.8)

8'is the bandwidth of the free-carrier states, Eo is the number of localized spins in the volume V, f(E) is the
Fermi distribution, and the length a is related to the lattice parameter a' according to the relation

' 1/3

a— 7T a
(2.9)

3 2

In a molecular-field approximation the assembly of localized spins interacting via the direct and indirect ex-
change can be replaced by a system of noninteracting spins in an effective magnetic field,

OSH = Jp+H, „t,
gPa

(2.10)

where g is the Lande factor, ps is the Bohr magneton, and Jo is the Fourier transform of the total exchange
constant J k at k =0 defined by

J-„=g [I(Rij )+J,ff(Rij )]e
i

(2.11)

An additional external field H,„, has been included for completeness. Then the particular function of the
localized-spin assembly in the canonical distribution is

Z= (2.12)
m= —S

and the contribution ks T ln Z to t—he free energy is

z z sinh[(2S+ l)so JM(iT)/(2k&T)]

sinh[mJsr(o )/(2k+ J)] (2.13)

where k~ is the Boltzmann constant and x is the
number of localized spins per unit cell (x =1 in eu-
ropium chalcogenides and is smaller than 1 in sem-
imagnetic semiconductors). The quantity Jsr(0 ) de-
fined by

I

"external parameter" associated with H, we can
write

FM

J~(o )=I(0)+Jeff(0)+
gpaHext

CTS
(2.14)

depends on o. even when H,„,=O below the Curie
temperature, because J,rr(0) depends on o through
the arguments of the Fermi function in Eq. (2.8).
The polarization o.- cannot be determined by the
minimization of the free energy. The reason is that
the spin system cannot be considered as mechanical-
ly isolated because the magnetic field H is a general-
ized force applied to the system. ' Since o is the

which reads

o Jp+gpgSH, „,o.=Sag
AT

where Bs is the Brillouin function

&s [y J
= (2S + 1)coth — —coth

1 2Sy +y
2S 2S 2S

(2.15)

(2.16)
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(,gF —e )n /(kgb')
Qw- e

T ll

(2.17)

where n, is the number of electrons in the quantum
state v with the energy e,. Ez is the Fermi energy
(or the chemical potential of the free-carrier source}.
The free energy is given by

~e =REF kg T lnO"

and taking into account the fact that n, =0 or 1 due
to the Pauli principle, we get

F, =N, Er ksT f —dED(E)ln(1+e ),
(2.18)

where N, is the number of carriers per unit cell,

N, = f dED(E)(1+e )
0

(2.19)

D (E) is the density of states in the conduction band,
which according to Eq. (2.3), takes the form

D(E)=D (E+ , JSo)+D (E—,JSo) . ——

(2.20)

D (E) can be deduced from the dispersion relation
of the free carriers,

E (k)= (1—coska') .
2

(2.21)

In fact Eq. (2.8) is derived with the lattice parameter
a' replaced by the radius of the Wigner-Seitz cell a
in Eq. (2.21). This ambiguity comes from the fact
that this dispersion relation has been chosen isotro-
pic for mathematical convenience, but is then too
crude to describe the band structure of a crystal
which has only the cubic symmetry. However, since
the transport properties of the free carrier strongly
depend on their effective mass m, we shall calculate
the free energy of the free carriers with the relation
(2.21) which gives the proper curvature of E (k) at
the bottom of the conduction band as deduced from
optical data. We shall return to this point in the
next section. In practice, the free-carrier concentra-
tion in the materials of interest is always small so
that kza &&1, where kz is the wavelength at the
Fermi level. In such a case, we can restrict the k-

B. Free energy of the free-carrier gas

Since the metal-insulator transition is induced by
the exchange of electrons between the polarons and
the conduction band, the number of free carriers is
not fixed a priori, and their free energy is best calcu-
lated from the particular function 8 in the grand-
canonic distribution

series expansion of Eq. (2.21}to the second order, in
which case

E1/2
D (E)=

2W JY
(2.22)

Equations (2.18}—(2.22} determine F, as a function
of N„o, and T.

C. Free energy of the bound magnetic polaron

As in the derivation of Eqs. (2.4)—(2.7), we shall
make a static approximation which, here, consists in
neglecting the time fluctuations of the electric field

y to which the electron is subjected, and then setting
rp(r)=e/r . The effect of this field is to induce a
redistribution of the electronic density 5p around the
defect. We can write, in Fourier space,

5pk =L ii(k)q(k} . (2.23)

From this equation, we can derive the dielectric
function

e(k) = 1—
2

L ii(k, co)
4me

zpk
(2.24}

where ~0 is the dielectric constant. The peculiarity
of the bound magnetic polaron is that the electric
field g also induces a redistribution of the spin den-
sity 5S(r ) due to the exchange coupling between the
localized spin system and the electrons. According
to Eq. (2.2) the density of exchange energy in the
bound m.agnetic polaron is

E,„=—g J[S„5(R„)+5S„(r—R, )]s(r),

The two first terms are the kinetic energy and the
Coulomb energy, respectively. The third term is the
exchange energy, equal to E,„ integrated in the

(2.25)

where s ( r ) is the spin density of the bound electron.
Let us take the electron wave function 4 under the
form

(~R 3)—I /2e rlR—
where the Slater parameter R is a variational param-
eter. Then in terms of the Fourier transform of

equal to

(16/R4)(k2+4/R )—

the internal energy of one localized electron is

32'3— +—.
2mR mR xo 0 e(k)(k +4/R )

(2.26)
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~, =n&8' —T(W, +&2+X'3) . (2.28)

g is the mean value of the internal energy in the
canonical distribution deduced from Eq. (2.26). To
make contact with other works, which we shall dis-
cuss later, we can also write P~ under the
equivalent form

5F"+5FM ———TP'z,

where

5F"=n„e' TW, , —

5FM 5' 'E —T&3 . ——

(2.29)

(2.30)

5F" is the electronic part of the free energy associ-
ated with the bound magnetic polaron. 5FM is the
magnetic part. Therefore we can consider this term
as the modification of the free energy FM of the lo-
calized spins in Eq. (2.13) upon introduction of the
nonuniform magnetization gp&5S(r). 5' 'E is the

I

whole real space when Eq. (2.25) is treated in first
order of perturbation,

So.+5S'~
d k . (2.27)~'R4 0 (k'+4/R')'

It represents the Frohlich-Nabarro —term analog to
Eq. (2.3) for the free carrier. The —sign refers to
the spin-up polarization of the bound electron and
the + sign to the opposite case. 5S z is the Fourier
transform of 5S(r). In Eq. (2.27), we have neglected
the effect of the external magnetic field on b, and as-
sumed that 5S was polarized along the z direction.
These two approximations wiH be discussed later.

Formally, we can distinguish several contributions
to the entropy P' associated with the formation of
the bound magnetic polaron. One contribution is a
configurational entropy P'i resulting from the pos-
sibility for the bound electron to reverse its spin.
The second one is the configurational entropy P'2
associated with the various repartitions of nd bound
magnetic polarons among the N~ possible sites.
Moreover, the excess of polarization 5S(r) not only
modifies the internal energy [through the exchange
term b, in Eq. (2.26)] but also modifies the magnetic
entropy by an amount W3 and both quantities 5 and
P'i are first-order terms with the same order of
magnitude. Then we can write the free energy in the
orm

modification of the exchange energy between the lo-
calized spin arising from the Hamiltonian (2.25)
treated in the second order of perturbation, and has
been introduced for completeness. However, this
second-order term will be neglected with respect to
TP'3 and 8' which are first-order terms in magnetic
semiconductors.

I.et us now calculate P~ more explicitly. 5F"
can be derived as a whole from the partial partition
function Zz. We have

(2.31)

and we can then deduce

In principle this calculation is not easy because in
the variational procedure which consists in minimiz-
ing the free energy as a function of R, it is clear that
R and M also depend on the polarization f and 4 of
the electron, so that a self-consistent treatment of
5F",R, and M is required. At the present time, let
us restrict ourselves to the case 6&&k&T. In that
case, only the ground state is populated and 8 is too
large to allow any fluctuation between the spin f
and t states, so that Ai ——0, and

5F"=n,e (2.32)

nd Ply
W2 —— ka ngln +—(Ng nd)ln 1 ——

Ng

(2.33)

The quantity P'3 is more difficult to calculate, and
some approximations are further required for that
purpose which depend on the material which we
consider. Therefore, we kix:p the formal expression
P'i for the purpose of generality and we shall calcu-
late this quantity in the next section. We are now in
position to give the expression of the free energy of
the bound magnetic ' polarons per unit cell:
E~ =W~/N„, where N„ is the number of unit cells,

The entropy %2 can be deduced from the Boltzman
formula P'2 ——ka inQ where 0 is the number of con-
figuations:

Q=Ng!/[nd!(Ng —nd )!] .

By the use of the Sterling formula, we get

Ng A' 32e dk
2mR~ nR ao 0 e(k)[k +(4/R )] 2

—kz T[yz&3 yzlnyz —(1—
yz )ln(—1 —

yz )]

(2.34)
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where yr
——nz/Nd is the probability that the magnet-

ic polaron is bound. This is the result of Ref. 13,
except for a term (kznqln2)/No which is missing in
Eq. (2.34) because we have assumed b»k'T. In
Ref. 13 we had made the assumption that the bound
electron had an equal probability of occupying the
spin-up or -down states. This clearly corresponds to
the approximation k~T ~&h to calculate 5F", and
in that case the fluctuations between the two spin
orientations give the contribution k'ln2 per bound
electron to the entropy P'i. This approximation,
however, is consistent neither with the results of our
calculation nor with the experiments which show
that 6»k'T even in the paramagnetic phase of
EuO. The condition ~»k'T is also fulfilled in the
case of semimagnetic semiconductors. For example
at temperatures of interest for experiments, the
bound electron (which in the occurrence is a hole) is
found totally spin polarized in Cd, ,Mn„Te.24 It
follows from this discussion that the introduction of
this entropy term in Ref. 13 was a mistake, which,
however, modifies the numerical results only quanti-
tatively.

D. Thermodynamic equilibrium

In europium chalcogenides, we must also consider
the electrons in the (4f) level located at an energy

Eg below the bottom of the conduction band. Their
contribution to the free energy can be approximated
by13

Ff—— yfEg k~T[—y ln4 —yflnyf—
(2.35)

N, = (1—y')+(1+yf)—
Q I

(2.36)

—(1—yf)ln(1 —y/)],
where yf is the probability that a (4f) state is occu-
pied. The first term is the internal energy and the
other terms are configurational entropies similar to
Wi and P'i for the bound polaron. Es is the energy
gap between the (4f) level and the conduction band.

To account for transport properties of EuO we
have also introduced a number Xq of compensating
impurities. ' Such impurities do not provide any
significant contribution to the free energy because
Nz/N„«1, and only contribute to the equation of
neutrality,

Equations (2.19) and (2.15) determine cr as a func-
tion of N, and T. So the only independent variables
of the problem are yr, yf, R, T. The thermodynamic
equilibrium at a given temperature T is then ob-
tained by the minimization of the total free energy
F, +F+F~+Ff with respect to y~, yf, and 8 with
the constraint of Eq. (2.36).

It is now necessary to carry out explicit calcula-
tions of two fundamental parameters, 5S(r) and
P 3 These parameters control all the properties of
the bound magnetic polaron because they contain all
their specificity with respect to usual bound states.
The approximations which can be used to evaluate
these two parameters differ essentially according to
the strength of the exchange interaction, which is
strong in magnetic semiconductors, and small in
semimagnetic semiconductors where the mean dis-
tance between localized spin is large. We shall then
investigate separately the two cases.

III. CASE OF STRONGLY BOUND
MAGNETIC POLARON: EuO

A. Results

In EuO the exchange interaction is large and, in
practice, fully polarizes the localized spins inside the
bound polaron. According to this picture, we can
approximate 5S'(r) by

5S'(r) =(S—0)8(R —r), (3.1)

1P'3 ———16m
BT 3g'

(3.2)

Let us now investigate the numerical results of Sec.
II with this particular choice of 5S' and P'3. For
the longitudinal dielectric function E(q) entering
Eqs. (2.26), we have chosen the expression derived
by Kubler and Vigren,

where 8 is the step function. In such a case, all the
N, localized spins inside the bound magnetic pola-
ron loose their contribution BFM/BT to—the mag-
netic entropy since such spins cannot fluctuate with
respect to the other ones. Such a polaron occupies a
volume —,m.R so that

N, =16mR /(3a' ),
and we have'

4me J J2
e(q)=1+ ", Xo+(q) — X (q)Xoi(q)Xoi(q) 1 — X (q)XO+(q)~~'v 0

(3.3)

go+ and go, i have been defined in Eqs. (2.6) and (2.7). Let us recall that No is the number of localized
spins and V is the volume of the crystal. X~ is the Kawasaki-Mori susceptibility at zero frequency,
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' —1

X (q)= g (g-„—g-„+g) g (J-„J—-)Pp+(Jp &—k+-)g-„+-
k k

(3A}

where n, (T& Tc)=(0.25/ao) (3 6)

exp
gpkIIexi+ (~/2)(~o ~ i, }

AT
(3.5)

The numerical applications have been performed
with the parameters used and justified in Ref. 15,
namely J=0.15 eV ' a'=5. 14 A, 8'= l. 1 eV '

I~ ——9)(10 eV, and I2 ——1)(10 eV, where I~
and Iz are the exchange constants I(R,&} between
nearest and next-nearest neighbors, respectively.
The background dielectric constant is ao ——23.9,
and Eg-1.1 eV.

The electronic phase diagram in the (nii, T) plane
is reported in Fig. 1, where nrem n~/V is——the concen-
tration of donor sites. For comparison we have also
reported in the same figure the previous result of
Ref. 8 (dashed line) and the results predicted by the
Mott criterium (dotted curve). Within a simple
Thomas-Fermi theory the Mott condition which
determines the critical density of the carriers n, in
the paramagnetic phase is

50.0

20.0

IO.O

5.0

E

O 20

C
l.o

0.5—
z

0.2— ~~~o~oeso~o~o~o~ ~~ es ~

O. l
0 20 40 60 80 I OO l 20 l40

TtK)
FIG. 1. Electronic phase diagram and critical carrier

density n, as a function of temperature in EuO. Solid
curves present the result of the present model. Dashed
curve is the result of Kubler and Vigren |,'Ref. 8).
Dotted-dashed lines are normal Mott transitions with
exchange-split bands below T~ ——69.4 K. I is the insulat-

ing phase, M is the metallic one, and I+M denotes the
mixed phase.

8'a' (3.8)

With the values of W and a' mentioned above, we
find m /m0=0. 52, where ma is the mass of the free
electron in the vacuum, quite close to the value 0.55
chosen in Ref. 8 in agreeinent with optical data.
Equation (3.6) shows that n, ccm which evidences
a very strong dependence of the transport properties
on I, contrary to the case of magnetic properties.
That is why emphasis has been given to the necessi-
ty of choosing the appropriate dispersion relation
Eo(k) to reproduce this parameter. At T & Tc the
electron gas is fully polarized in the spin-up conduc-
tion band, ' which affects the critical Mott concen-
tration for the carriers,

(3 9)

The departure of n, from n, can be regarded as
the magnetic polaron effect and is responsible for
the particular properties of this material. As an il-
lustration, we have reported in Figs. 2 and 3 the
resistivity and magnetization data of some samples
together with our theoretical curves. Experimental
data have been taken from Refs. 36 and 37. Sam-
ples 5—8 are Eu-rich EuO. Since it proves impossi-
ble to get large concentrations of oxygen vacancies
in bulk EuO, the higher donor concentrations have
been provided by substituting Gd for Eu ions and
samples 12, 13, and 15 are Eu~ „Gd„O samples. In
particular, it has been shown that bound magnetic
polarons can form around oxygen vacancies or
around Gd + ions as well, because the localized spin
of Gd + is S=—, like that of Eu +; so that the po-
tential in both cases is essentially restricted to the
Coulomb potential e /aor of the extra charge.

where Tc is the Curie temperature of insulating
EuO. In our model constructed on the basis of the
molecular-field approximation,

(3.7)
B

With the values of Ii and I2 above mentioned, we

get Tc 69.4 K,——in agreement with experiment. ao
is the Bohr radius of the crystal

ao iiofP/(——me ),
where m is the effective mass at the bottom of the
conduction band deduced from Eq. (2.21),
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TABLE I. Main transport properties of various samples of n-type EuO. Data from Eu-
rich samples are from Refs. 37 (samples 5, 6, and 8) and 40 (samples 4a and 4b). Gd-doped
samples 12, 13, and 15 are from Ref. 36.

Sample
no.

5
6
12
8

4a
4b
13
15

p
4.2 K
(lcm)

1012

&10
50

1.1 X 10
6.3X10-"
8.3X 10-'
8 X10-4
S X10

p
300 K
(0cm)

9 x10'
10

5.1X 10'
1.7
6 X10-'
5.6X10 '
4 X10-'
4 x10-'

E~
(meV)

450
270
320

nonactivated
nonactivated
nonactivated
nonactivated
nonactivated

4.2 K
(cm )

1.1 X 10'
3.4X10"
3.2 X 10'
8 X10"
S X10"

n

300 K
(cm )

8 4X10"
S.SX 10"
6.2x 10"
1.5X 10
8 X 1020

Table I provides the main data which characterize
these samples. As in Ref. 13, the theoretical resis-
tivity curves have been calculated with the assump-
tion of a carrier mobility p=l cm /v„, in the
paramagnetic configuration and p =10 cm /v„, in
the ordered phase to reproduce typical experimental
values. We have chosen Nz /N„= 1.66X 10
which amounts to a concentration of acceptor im-
purities equal to 5 &(10' cm

)o"—

NA /Na

0.990

B. Analysis

l. In the limit T=O

At T =0, both 5S(r} and P's vanish so that the
problem is reduced to the simple case of a hydro-
genoid donor impurity in nonmagnetic semiconduct-
ors. Our model predicts a critical donor concentra-
tion n, ( T =0}which is in agreement with Eq. (3.9},
namely n, -6)(10' cm . In particular, when

nz y n„all the donors are ionized and the resistivity
saturates at low temperatures (see the curves with

Nq/Ng 0.3 and ——0.05}, in agreement with experi-
ment. When nD &n„ the binding energy E~ of the
donor level is finite and results from a compromise
between kinetic and Coulomb energies. E~ is de-
fined by the energy of the donor level below the bot-
tom of the spin-up conduction subband. In our
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FIG. 2. Resistivity as a function of temperature in
EuO. Solid curves are theoretical curves for various rates
of compensation Nq /N~. Acceptor concentration is
5 X10' cm in all cases. Data points from Ref. 37 are
reported for the samples 5 (Cl), 6 (0 ), 12 (V), and 8 (Q),
listed in Table I.
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FIG. 3. Magnetization at zero external field as a func-
tion of temperature in Gd-doped EuO. Dashed curves are
theoretical curves computed in our model for rates of
compensation N&/N~) 0. 1 (curve 2) and N~/Ng ——10
(curve 3). Acceptor concentration is 5 X 10' cm . Ex-
perimental points for samples 12 (C3), 13 (0 ), and 15 (V),
listed in Table I, are from Ref. 36.
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model this quantity is derived from Eqs. (2.26) and
(2.27), and taking into account that since 6 »ks T,
only the case of a fully polarized bound electron is
to be retained;

32'+2mR' nR "n. e(k)(k'+4/R')'

5Skd'k

tr R Jo (k +4/R )

(3.10)

When nD & n„Ed is equal to the hydrogenoid bind-
ing energy Ed ——17 meV, and the radius of the orbit
is equal to the Bohr radius R =ao so that R )ga'.
This binding energy gives rise to an activated regime
of the resistivity at temperatures such that
ktt T &Ed, and is responsible for the increase of the
theoretical resistivity upon cooling in the case
N~ /Nd =0.99 in Fig. 2. Such a feature has been ob-
served experimentally.

2. In the ferromagnetic phase

In the range 0& T & T~ our results do not strong-
ly differ from the model of Kubler and Vigren. The
main result is that n, strongly depends on tempera-
ture, and then departs from the Mott concentration
given by Eq. (3.9). The Mott transition is obtained
when N~ is varied, but since n, does not depend on
temperature (except around Tc), the Mott model
cannot account for the metal-insulator transition as
a function of temperature at fixed Nd, which is the
particularity of EuO. We can see in Figs. 1 and 2
that our model accounts for such a metal-insulator
transition at T-50 K for a given ND ——Ne/V in the
range 10' &ED &10 cm, in agreement with ex-
periment. I have already outlined the origin of this
transition in Ref. 16 where only the magnetic energy
was considered. In that case, starting with the as-
sumption that all the donors are ionized, an instabil-
ity was found at T-50 K for such donor concentra-
tions, correlated to a first-order magnetic phase
transition which is evidence of instability of the me-
tallic state. In this regard, this previous work is an
approach of the metal-insulator transition from the
insulating phase.

We can explain this transition as follows: At fin-
ite temperature T« Tc the entropy P'3 no longer
vanishes and the exchange energy associated with
5S' becomes important. At T-50 K, the exchange
energy due to 5&* becomes large compared to the
kinetic plus Coulomb terms in Eq. (3.10). This is
the reason why the predictions formulated in Ref.
16 on the consideration of exchange energy alone are
confirmed. Then the binding energy of the polaron
is essentially equal to the exchange energy, and ac-

cording to Eq. (3.1) we can write
1

Eg ——,JS(1—o) . (3.11)

At T& Tc the results of our model are signifi-
cantly different from the previous models which,
contrary to experiment, predicted a second
insulator-metal transition for donor concentrations
slightly higher than the Mott critical concentration.

To the contrary, in our model, the insulating
phase is stable in the wide range of temperatures in-
vestigated T~ & T & 300 K for donor concentrations

XD &10 cm . In the range 10 &XD &2X10
cm 3, a mixed phase is found (see Fig. 1). Those re-
sults come from the fact that at such temperatures
T&3 cannot be neglected. The effect of the entropy
P 3 is to localize the electron strongly on the donor
site in a molecular orbital the radius of which has
the same order of magnitude as the lattice parameter
R-a' for n &10 cm . In effect, the shrinking of
the orbital insures that a minimum of entropy

~
W3

~

is lost in the formation of the bound magnet-
ic polaron (BMP). Of course this shrinking of the
orbital raises the kinetic energy of the bound elec-
tron, but the kinetic energy plus the Coulomb energy
remain negligible with respect to the exchange ener-

gy like in the range T & Tc, and Eq. (3.11) becomes
(in eV)

1Eg- —,JS-0.3 . (3.12)

It follows that Ee is much larger than 17 meV in the
range 50 E & T & T~. This simply means that the
magnetic interactions contribute to localize the elec-
trons around the donor sites, rising up to 10 cm
the donor concentration beyond which the metallic
phase becomes stable in this range of temperatures.
This increase of Ed and the localization of the mag-
netic polaron is associated with a shrinking of the
orbital with a radius in the range a'&R &ao for
n &10 cm

For samples which exhibit such a metal-insulator
transition the magnetization curve does not signifi-
cantly depart from the Brillouin curve, with a Curie
temperature T~-69.4 K as in pure stoichiometric
EuO, because the indirect exchange J,tt(R;1. ) van-
ishes at T & 50 K (see curve 1 in Fig. 3). The heavi-
ly doped samples (Nn-5 X 10 cm ) are metallic
and the indirect exchange raises T~ up to T~-150
K. However, the magnetization curve strongly
departs from the Brillouin law because J,tt depends
on o and then on temperature' (curve 3 in Fig. 3).
The results agreee with experiment and with our
previous calculations. " The magnetic behavior of
sample 8 is more complex and we shall return to this
intermediate case later.

3. In the paramagnetic phase
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It follows that in the case No &10 o cm, the
resistivity above T~ is activated and can be written

( T)
—E~/(ksT)

where the activation energy E, varies continuously
from Eq=0.3 eV when Nd »Nz up to Es/2 ~0.6
eV when Nd-N~, depending on the degree of com-
pensation of donor and acceptor states. This is in
agreement with experiment. ' The values of E, are
also reported in Table I for the samples used in the
present paper.

In the range 10 &ND&2g10 cm the solu-
tion of our model is a mixed phase. The particular
property of this phase is that it has a metallic char-
acter in the sense that the resistivity is not activated
and is practically temperature independent: Ez -0,
although all the donors are not ionized. To explain
this feature we notice that, in the paramagnetic con-
figuration

~

TP'i
~

& Eq under the effect of thermal
fluctuations, a part of the donor assembly is ionized.
This is the source of the electron gas which is degen-
erate in this range of free-carrier concentrations
—10' cm so that Eq ——0. Nevertheless, further
electrons which jump in the conduction band get a
kinetic energy -E~ because of the Pauli principle
and Fermi-Dirac statistics, and EF increases signifi-
cantly with the free-carrier concentration according
to Eq. (2.19). Then, if

~

TP'i
~
(Ed+E~, a com-

plete ionization of the bound magnetic polarons is
too expensive in kinetic energy. As an example, for
a donor concentration n -2.5X 10 cm, we find a
free-carrier concentration n -2.2X 10' cm . This
prediction of our model is in very good agreement
with experiment since Hall-effect measurements
have evidenced a free-carrier concentration about 5
times smaller at T& Tc than at T&T, for such
donor concentrations. (See samples 4a, 4b, and g

in Table I). This can be understood by the fact that
at T«50 K the samples are in the metallic phase
(Nn & 10' cm ) so that all the donors are iomzed
and provide their extra electron to the conduction

1
band. But at T & Tc only a fraction of ——, of such
magnetic polarons are ionized and contribute to the
Hall effect.

As can be seen from Fig. 1 and Table I, sample g
is quite close to the critical concentration no above
which, according to our model, the insulating phase
is not stable at any temperature. As a matter of
fact, the magnetic properties of this sample are
those predicted for a donor concentration
N~ ——1.2X10 cm, corresponding to Nz &no.
Then the material should be insulating in the tem-
perature range 58&T&68 K, giving a Brillouin
curve close to that of insulating EuO in agreement
with experiment, but then a transition to the mixed
phase restores our indirect exchange Jeff(R;J), so

that the bulk magnetization vanishes only at T-96
K. It follows that the tail in the magnetization
curve observed between 70 and 96 K may be an in-
trinsic property. The thixiretical curves of the resis-
tivity and magnetization in absence of external field
are reported in Figs. 2 and 3 in the case
N~ ——1.2)(10 cm together with the experimental
data. The large increase of resistivity in the range
60&T&70 K is not observed experimentally. A
broad peak of resistivity is indeed observed, but its
amplitude is small so that such a peak can be imput-
ed to a critical scattering of the free carriers by spin
fluctuations. ' It follows that the resistivity curve
for this sample is fitted by the theoretical curve with
N~ ——1.5X10 cm (above no), where the mixed
phase remains stable in this range of temperatures.
We can then infer that the transport and magnetic
experiments have probed two different parts of the
same ingot with donor concentrations Nz quite close
to each other, but on both sides of no.

C. DISCUSSION

The model of the magnetic polarons has not been
the only one considered in the recent past to explain
the metal-insulator transition in EuO. In particular,
various authors have tried to explain this behavior
by considering a hypothetical density of localized
states below the bottom of the conduction band. z

The width b, of this density tail in the energy scale is
then chosen a priori equal to 0.3 eV to account for
the activiation energy of the resistivity in the
paramagnetic configuration. When Nn increases, so
does E~ and the material is insulating at T =0 up to
the critical donor concentration characterized by
Ez h. Then the——supplementary donors contribute
to the conduction since Ez becomes larger than the
mobility gap h. At this stage, we can point out
some disagreements with experiment, which were
not mentioned before: Although a Mott-type transi-
tion is observed at low temperature, with a discon
tinuous variation of the free-carrier concentration as
a function of No for a critical concentration
ND ——N, , such a model predicts a continuous varia-
tion of the free-carrier concentration n, with n equal
to ND —N, when N~ & N, . In the same way, this
model also predicts a continuous variation of the ac-
tivation energy Ez of the resistivity at T& T„al-
though a discontinuous variation is expected since
no experimental values of E„have been reported in
the range 0 &Ez &0.27 eV for n-type EuO. We can
then conclude that such a model does not account
for any physical properties of EuO. In fact, such
models belong to a series of independent works
which attributed the outstanding properties of EuO
to disorder effects, although we have proved
that they are intrinsic properties of this materi-
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al, ' ' ' so that we shall not consider them any
more. To the contrary, it is clear that our model ac-
counts for all the experimental features above men-
tioned, and we shall then focus the discussion on the
concept of the bound magnetic polaron.

5S'-„=L2i(k)p(k}~ X (k)y(k) . (3.13)

L2i (k) is proportional to X (k) because 5S' depends
directly on the short-range correlation between the
localized spins, i.e., the correlations between spins
separated by a distance r &R, where R is the radius
of the orbit, which is also the spatial extension of
5S'. First models calculated 5Sk from Eq. (3.13). '

However, Leroux Hugon has chosen for X the
Ornstein-Zernicke function,

2Jp (Tc T)—a=—k2+
Cg CJ TC

(3.14)

where the coefficient cz is defined by the expression

Jk =Jp —cgq
2 (3.15)

valid at long wavelength: qa' &pl. This Ornstein-
Zernicke expression is known for its inability to
describe the short-range correlations since this for-
mula is derived for classical spins in a mean-field
approximation. As a consequence this choice of X~
leads to a drastic underestimation of 5S' in Eq.
(3.13}. This is the basic reason why the results of
Ref. 6 do not differ significantly from those of the
Mott transition for hydrogenoid impurities given by
Eqs. (3.6) and (3.7). In particular, Kubler and Vi-
gren have shown that when a realistic value of m is
injected in the equations this model does not account
for the metal-insulator transition in EuO at T-50
K. To the contrary, the choice of the Kawasaki-
Mori susceptibility for g~ provided results in much
better agreement with experiment. We impute this
success to the fact that such a susceptibility is suit-
able to describe correlations distant by r -R.

1. In the ferromagnetic configuration

In the previous paragraph, we have pointed out
the fact that at T & Tc the entropy P'& is not yet too
important and the magnetic exchange energy associ-
ated with the formation of the bound magnetic pola-
ron makes the fundamental difference with the clas-
sical hydrogenic bound state. This energy comes
from the redistribution 5S' of the localized spins
[see Eq. (2.27)]. If follows that the various models
of the magnetic polarons in magnetic semiconduct-
ors at T & T~ can be essentially characterized by the
different procedures used to calculate 5S'.

By analogy with Eq. (2.23) in the Fourier space
we can write

At high temperatures, however, 5S' is large, so
that any calculation of this quantity in a linear-
response formalism is questionable. That is why in
Ref. 13 and also in this paper we have chosen anoth-
er approach which consists in choosing 5S' accord-
ing to Eq. (3.1) rather than to calculate it self-
consistently from Eq. (3.13).

More recently Kuivalainen et al. have calculated
5S' in a nonuniform mean-field approximation,
since they have included 5S(r) to (S')=oS in the
expression of the effective magnetic field H in Eq.
(2.10} which becomes r dependent: H ~H( r ).
Then the free energy F„ is calculated from Eq.
(2.12),

m= —S

and Eqs. (2.15) and (2.16) are calculated with y re-
placed by y(r). Then 5S'(r) is deduced from the
minimization of the total free energy. (In Ref. 46,
F„, was restricted to F, +F~.) The results are not
markedly different from these of our model at
T & Tc, but differences are not negligible at higher
temperatures as can be seen in Fig. 4 where we have
reported the spatial variations of 5S' which we have
calculated in both models. This figure illustrates
that the mean-field approach of Ref. 46 smears out
the variations of 5S*(r), which leads to quantitative
disagreement with experiment concerning especially
the activation energy of the resistivity at high tem-
perature. In particular, the spin polarization does
not saturate even at the donor site. This feature is
again an illustration that the mean-field approach
underestimates 5S; and consequently, the binding
energy of the bound magnetic polaron, although in
the present case, the polaron is not unstable as in
Ref. 6.

M

M~ a5-

I

I

r/a'

FIG. 4. Localized spin polarization inside a bound
magnetic polaron as a function of the distance from the
donor site r according to our model (solid curve) and the
model of Ref. 46 (dashed curve) for EuO at T =200 K
with a donor concentration 3)& 10' cm
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5+M =5 E ~~3=+M(r } (3.17)

This important equation shows that in Ref. 46, P'3
was implicitly taken into account, although it was
not explicated in their paper.

It turns out from the above discussion that the
model in Ref. 46 differs from our model in Ref. 13

2. Paramagnetic configuration

Above the Curie temperature, the entropy P'3 was
found to be of primary importance in localizing the
magnetic polaron. That is why the models prior to
Ref. 13 failed to find a stable insulating phase for
donor concentrations up to 10 cm . To overcome
this difficulty, Kubler and Vigren added a perturba-
tive nonuniform magnetic field h (q} to enhance the
magnetic field associated with the formation of the
bound magnetic polaron. Such a magnetic field can
be generated by the localized charge and spin densi-
ties due to the electron 4 itself. In our model, the
energy associated with such an effective molecular
field should be given by the term 5' 'E in Eq. (2.30).
Yanase and Kasuya ' ' have shown that in some
cases this field can cause a self-trapped magnetic po-
laron to form near Tc. However, we have shown
that there is no experimental evidence of such a po-
laron in EuO, and we can assume with a good ap-
proximation 5'""E=O. The other effect invoked to
introduce h (q) is related to the inner electron bound
on the oxygen vacancy. However, the arbitrary in-
troduction of h (q) is not sufficient to increase signi-
ficantly the critical donor concentration above
which the insulator configuration becomes unstable
above 100 K, while it increases this concentration up
to a much too high value. below T~. Moreover, it
has been proved that the experimental properties do
not depend on the nature of the donors (oxygen va-
cancy or Gd3+ ion), but only on their concentra-
tion. This implies that the effective field h(q)
mentioned in Ref. 8 taking its origin from a special
feature specific to one kind of donors should be
negligible. We shall then consider that the only ef-
fect of this feature, namely the existence of the inner
electron in the oxygen vacancy, it to screen the dou-
ble charge of the vacancy to reduce the perturbing
potential to the repulsive Coulomb potential of a
single charge e lttor chosen in our model.

In Ref. 13, we could account for the existence of
bound magnetic polarons at temperatures well above
Tc because P'3 was already calculated from Eq.
(3.2}. The more recent work of Kuivalainen et al.46

also accounts for such an effect, and this is illustrat-
ed in Fig. 4. We can explain this result as follows:
The difference between Eqs. (3.6} and (2.13} is just
the quantity 5FM which we have defined in Eq.
(2.19), and we can write

or in the present paper essentially in the nature of
the approximations used to calculate 5S and P3'.
The calculation of these quantities in the mean-field
approximation (MFA} in Ref. 46, however, leads to
some discrepancies with experiment. For example,
when calculating the magnetization curve from Eq.
(3.16), a large magnetization at zero field is found
well above T~, in complete disagreement with ex-
periment (see Fig. 3). The reason for this spurious
result is that o as deduced from Eq. (3.16) includes
the contribution of the bound magnetic polarons.
However, this contribution is calculated in the MFA
which is not valid in the present case because the
mean distance between the polarons is large corn-
pared with the range of the magnetic interactions.
The MFA amounts to the approximation that the
range of the interactions is infinite, and implies that
the directions of the mean spin polarization of each
bound magnetic polaron are aligned parallel with
each other, providing a substantial resultigg com-
ponent to the magnetization at T ~ T~ because the
spins inside each polaron are strongly polarized. In
our model, this procedure would consist in calculat-
ing the contribution of the polarons to o from Eq.
(2.27) where z is the axis of quantification for the
spins (either imposed by an external field or by the
effective field M' of Ref. 46}. In fact, it is clear
that in Eq. (2.27), z should be considered as a local
axis, which determines the direction of the mean po-
larization inside our particular polaron, but this
direction is random from one magnetic polaron to
another one, because they are separated by a too
large distance and can be considered as independent.
That is why we have chosen the opposite approxi-
mation which consists in neglecting the contribution
of the bound magnetic polarons to the magnetiza-
tion, and simply calculated a from Eq. (2.15). At
T& Tc, this is justified for the above-mentioned
reasons. At low temperature it is justified because
the number of spins inside the polarons is small
compared with the full number of magnetic spins in
a magnetic semiconductor; of course, this is not true
in a semimagnetic semiconductor and we shall re-
turn to this point later.

We have also pointed out that the calculation of
5S and &3 in the MFA leads to some disagreement
with experiments concerning the transport proper-
ties, such as a too small value of E„for example.

1

In fact, almost all the exchange energy —,JS(1—cr)

is gained in the formation of the bound magnetic
polaron. For low donor concentrations our model is
then quite close to that developed in Refs. 4 and 50,
where the donor level is supposed to be decoupled
from the conduction band at an energy independent
of temperature from the (4f) level at T &50 K.
Then at T&50 K the bottom of the conduction
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band crosses the donor level due to the exchange in-
teraction in Eq. (2.3) and the donor states becoine
delocalized. We agree with this picture of the
metal-insulator transition in EuO for donor concen-
trations in the range 10' &Nd &10 cm, when
Eqs. (3.11) and (3.12) are valid. However, such a
description is incomplete since it does not provide
any explanation for the experimental results at other
donor concentrations. Moreover, even in the range
10' —10 cm, such a model is not valid at T-50
K. For example, it predicts a continuous decrease of
the binding energy which vanishes at T-50 K. To
the contrary, according to our model, Ed varies
discontinuously at this temperature, which means
that the metal-insulator transition is first order. The
variations of Ee in our model are reported in Fig. 5
for two different donor concentrations.

Lij(k) '=0 (3.19)

3. Dynamic stability of the uniform metallic state

In the previous model, we have assumed a priori
that the uniform metallic state was stable when the
donor sites are ionized. The purpose of this para-
graph is to discuss the validity of such an assump-
tion. It has been shown that when Eq. (3.14) is used,
all terms involving J in Eq. (2.26) can be reduced to
give a factor '

(JS) a.o y
(3.18)

n.e cz No

The metallic uniform state will be unstable if the
equation

has a solution for real positive values of k. The
linear-response coefficients L,z have been defined in
Eqs. (2.23) and (3.13). Equation (3.19) is equivalent
to

k'+k'(k, '+A, ' —jk,')+k,'A, '=0 . (3.20)

A,2= Jo T —Tc 2 6m'n
k, =

cg Tc Ko F
(3.21)

n is the free-carrier concentration. Positive values
of k2 are solutions of Eq. (3.20) if and only if

j& 1+ (3.22)

in which case the solutions are

k+ =ko'+(ko4—k~iZ')'",

where

(3.23)

jk, —A, —k,
ko ——

2
(3.24)

When condition (3.22) is fulfilled, the uniform me-
tallic state is unstable with respect to static spin-
and charge-density waves of vector k+ and k . In
the same way, we have calculated numerically the
dynamic stability of the uniform metallic state from
the response coefficients L;J(k,co) determined in the
random-phase approximation in Ref. 8. The disper-
sion equation for the fluctuations is given by

This last equation is the direct consequence of Eq.
(10) in Ref. 6, or of the expression of g in Eq. (32) of
Ref. 8. A,

' is the correlation length of the spins
and k, is the Thomas-Fermi inverse screening
length,

0.3—
Lti(k, co) ' =0 . (3.25)
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FIG. 5. Theoretical variations of the binding energy Eq
of the bound magnetic polaron in EuO as a function of
temperature, for donor concentrations 10' cm (solid
curve) and 7X l0' cm (dashed curve). In the later case,
a metal-insulator transition takes place at 50 K with a
discontinuous jump of E~.

This equation which gives the dispersion relation of
the spin- and charge-density waves is found to have
solutions to(k) in the whole range k gk&k+ if
and only if Eq. (3.22) is fulfilled. This condition,
however, is more stringent than the approximate
formula in Eq. (11) of Ref. 6. I.et us now evaluate
numerically the coefficient j. Kubler and Vigrens
have taken cq ——2I~a', which is the value expected if
J& is restricted to Ig in Eq. (2.11). In that case
j-90, and according to Eq. (3.22) the uniform me-
tallic state is not stable. Then an arbitrary value

j-0.9 has been chosen although the authors recog-
nized there was no convincing argument to reject the
value ofj given by Eq. (3.18) in favor of one that is
smaller. We believe that this difficulty is due to the
fact that in Ref. 8, the contribution of Jd~ in Eq.
(3.11) has been forgotten in the calculation of cq de-
fined in Eq. (3.15). The variations of the Fourier
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transform of J,rr(R;J ) have been studied in detail in
Ref. 15; they modify j by a typical factor 10' and
leads to j-1. The reason of this drastic effect of
Jeff(R,J ) is that this indirect exchange interaction is
long range, contrary to the superexchange mecha-
nism I(R,J ), so that the Fourier transform is sharply
peaked at q =0, and increases cz by a factor (1/a')
where the length I characterizes the spatial extension
of Jeff(R;1). It follows that condition (3.22) is not
fulfilled so that the uniform metallic state in heavily
doped EuO is always stable and our model is valid.

In EuS, however, some authors have reported that
the uniform metallic state should be unstable with
respect to charge- and spin-density waves, ' which
means that in EuS the condition (3.22) can be satis-
fied for some definite free-carrier concentration n
entering k, in Eq. (3.21). The calculations of the
dynamic stability in Refs. 51 and 52 are rather dif-
ferent from the present ones since they are based on
an hydrodynamic approach of the localized spin sys-
tem, but the results are essentially the same. In par-
ticular, it is also found that the spin- and charge-
density waves which are stable have wave vectors k
in a definite range k ~k&k+ around a mean
value ko with values of k+, k, and ko, which
differ according to the model, but which have al-
ways the same order of magnitude (ko-10 cm).
Initially these theoretical works ' on EuS aimed to
explain particular experimental properties, and it is
not established that there is any metal-insulator
transition in EuS. The lack of such a transition
would be in agreement with a nonumform ground
state. However, to our knowledge, there does not
exist any systematic study of the physical properties
of EuS as a function of the sulfur-vacancy concen-
tration. It follows that on an experimental point of
view, the debate is still open but that the extension
of our present model to this compound is not justi-
fied.

5F"=nd Ã kg T ln —2 cosh
8

(4.1)

However, we could not find any justification for
this assumption and such an expression of F"
[which leads to Eq. (2} in Ref. 51] can only be con-
sidered as an approximation. Fortunately, as we al-
ready pointed out, the trapped change is fully spin
polarized at temperature of interest. 24 In such a
case, the spin density of this charge is simply

~
W r }

~

and Eq. (2.2) reads

Hi ———f ~%'(r)
~

—(S(r) &d r .
2

(4 2)

Here we have taken the continuum approach for
the localized spins, which is justified because

Equation (3.2) corresponds to the molecu-
lar field

Under some aspects, the description of a magnetic
polaron in such materials is much simpler. First the
impurity concentration is always very low, so that
the insulating phase is always stable. It follows that
in our model F„, can be reduced to I"~+Ez since
the free-carrier concentration is too small to give
any significant contributions to F„,and there are no
4f electrons in these compounds. Once again, the
problem is then to calculate 5S' and P'i. Contrary
to the case of EuO, the distance between magnetic
ions is now large compared with the lattice constant
a'. As a consequence, the magnetic polarons are
much more spread out, and the molecular-field ap-
proach is a better approximation. That is why the
existing models calculate 5S' and A, in the
MFA. ' In Ref. 51, Dietl and Spalek also con-
sidered the case of high temperature where the
bound carrier is not fully spin polarized, and calcu-
lated 5F" in Eq. (2.30) assuming implicitly that R
and M' did not depend on the spin polarization of
the electron. In this case Eqs. (2.26) and (2.32}give

IV. EXTENSION OF THE MODEL

A. Polarons in semimagnetic semiconductors

J

fear)/

2gIJ a
(4.3)

Magnetic polarons may also take place in sem-
imagnetic semiconductors. The concept of the mag-
netic polaron as developed in Sec. II can be readily
applied to Cd~ „Mn~ „Sebecause this material is n

type and the free carriers (electrons in the conduc-
tion band) are in s states and carry a spin —,. In
Cd~ „Mn„Te, trivial changes in the above model
must be made to take into account that the material
is p type, so that the free carriers which localize to
form bound magnetic polarons are now holes in p
states which carry on angular momentum —,. In
both cases, the Mn + ions carry a spin S=—,.

SJ
~
%(r) )

2k' T (4.4)

and the magnetic energy of the polaron is then

E =—J f d'r
~

@(~)
~

'~M 2 s

(4.5}

and we can then derive FM(r) defined in Eq. (3.16).
Two limits can be considered.

(a) H(r) »H, „„where H,„, is the external field
(if any). Equation (2.15) reads
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2$'
kT' (4.7)

where

W'=3(J/2)'g
~
q(R, ) ('

in the notation of Ref. 52, where the continuum ap-
proximation is not used and the factor —, in Eq. (4.3)
is absorbed by a different definition of J. A more
refined treatment leads to5I

ze"
kIIT (kT} + W

(4.8)

This expression reduces to Eq. (4.7}when kT « W',
but gives b, -6W /AT when kaT »8", i.e., an
enhancement by a factor of 3 due to the fact that at
high temperature the crude MFA underestimates
P 3 and b, as was done for EuO, as discussed in Sec.
III.

(b) H,„,»H I', in this case, we can write

gljsSHext SJ [ %(r) [

ksT 2ksT

(4.9)

The Taylor expansion of this formula up to the first
order in H~ gives

J 4'()= ( )
2(gPII )' (4.10)

where X(T,H,„,) is the magnetic susceptibility of the
localized spina without the contribution of the
bound magnetic polarons. Now the magnetic energy
associated with the formation of the bound magnetic
polaron is

E (TH)=(J/2) ' J i Wr)i d r,
(gjus)'

(4.11)

ol, after 1IltegIatloI1,

1 JX
4 (gpII) mR

(4.12)

which is 8 times larger than the value of er found in

In particular the spin-flop energy for the bound elec-
tron defined in Eq. (3.27) is b, =2EM, and if the
Brillouin function Bs(y) is developed up to the first
order in y, we get

(2S+1) —1 Jz d3 ~%'(r)
~

24 ks T
5 35 3

With S=—,, the numerical factor is —„-—, and we

can write

Ref. 51. Moreover, the authors in Ref. 51 have ex-
tended Eq. (4.10) to the case H,„,«Ki which is not
justified, and leads to spurious results we shall now
analyze.

The case H,„,»H &
is quite analogous to the situ-

ation T-0 in EuO: The bulk spin polarization o is
larger so that P'3 is negligible. When extending the
above equations to the case H,„,-O, the authors in
Ref. 51 have then underestimated P'I. This can be
evidenced by noticing that 5FM defined in Eq.
(3.18), is simply proportional to EM when calculated
from Eqs. (4.9}and (4.10). This is the result of Dietl
et al. if we notice that, according to Eq. (4.10), the
parameter rl in Ref. 51 is

J 1

2(genus ) IrR

It follows that W3 is not properly taken into ac-
count in Eq. (2.30). The results are then easy to
understand. The temperature associated with the
magnetic interactions is the Curie temperature Tz in
EuO (ez/ks in semimagnetic semiconductors). In
EuO we have explained that the models which
neglect P'3 predict that the bound magnetic pola-
rons do not exist at T & Tc. For the same reasons,
the same models predict that the bound magnetic
polarons do not exist (b =0) at temperatures

k&T & ez in semimagnetic semiconductors. '

The authors in Ref. 51 have then calculated
separately P'3. In effect, their quantity p(h) can be
considered as a number of configurations with a
given 5, to which is associated an entropy
P'3 ——klnp(5). With this regard, the procedure
used in Ref. 51 which consists in choosing the value
of 5 which corresponds to the maximum of p(h) is
then equivalent to calculate WI from the second law
of thermodynamics for thermally isolated systems.

It follows that this model also differs from previ-
ous ones only by the choice of approximations to
calculate P'I. However, there is a misunderstanding
in Ref. 51 since the authors imputed some irrelevant
results to the MFA. In fact, the spin splitting of the
bound magnetic polaron persists at high temperature
even in the MFA, and the irrelevant results 5=0 is
due to erroneous evaluations of 5S' and P'I which
have nothing to do with the MFA.

Also these authors5' claim that the calculation of
the bound magnetic polaron in Ref. 46 led to a criti-
cal temperature Tz through the divergence of the
static susceptibility. in fact this susceptibility can be
decomposed into X+Xz, where J~ is the magnetic
polaron part and X is the unperturbed susceptibility,
as in Eq. (4.10). Of course, we agree with Ref. 51
that the magnetic polaron susceptibility X~ cannot
be determined in the MFA, as explained in Sec. III,
but the spurious peak of Xz at Tr ez/ks when Xr——
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is calculated in the MFA for a semimagnetic semi-
conductor ' should not be confused with the peak of
X at Tc in a ferromagnet. It is clear that in Ref. 46
the divergence, in agreement with experiments,
occurs at the Curie temperature Tc, and is a diver-

gence of X. This property is thus independent of the
magnetic polaron itself (except that Tc depends on
the free-carrier concentration) in EuO or EuS. As
mentioned in Sec. III, the spurious result in Ref. 46
is not the peak of susceptibility as presumed in Ref.
51, but the fact that cr&0 far above Tc. Note that
in semimagnetic semiconductors even X cannot be
derived in the MFA because irreversible effects take
place: A peak of the reversible part of X can still be
observed, but it is connected with the susceptibility
of mictomagnets and spin-glasses. ' However,
neither in Ref. 51 nor in Ref. 52 was X studied, and
only the temperature dependence of X& was investi-

gated in these papers. In semimagnetic semicon-
ductors, the resistivity has not been measured in de-

tail, mainly because these materials are insulating,
and we cannot, as in EuO, compare the results of
the model with any activation energy Ez. %e can,
however, compare the calculation of the spin-flip
transition energy %coo with optical data. We can
deduce from Refs. 51 and 52 that the model of the
magnetic polaron very well accounts for the tem-
perature and field dependence of fuuo both in

Cd& „Mn„Te and Cd& „Mn„Se, a result which we
had clearly inferred for EuO.

B.Entropy effects in other materials

Recently, Dietl and Spalek' reproduced our con-
clusion' ' that the electron in the magnetic polaron
further lowers its energy as it aligns its spin with the
local magnetization created by thermodynamic flu-
cuations. This, however, is nothing but the con-
clusion of our previous works on the magnetic pola-
rons. ' ' But even then, we certainly do not claim
such an originality: The entropy (or thermodynamic

fiuctuations) play a similar role in other various
metal-insulator transitions. For example, in a quite
different context, Kaplan et al. studied the Hub-
bard Hamiltonian for a half-filled band and showed
that also in this case entropy terms draw a metal-
semiconductor transition as T increases. On another
subject, Falicov et al. pointed out the importance
of magnetic entropy effects in metal-insulator tran-
sitions occurring in (Vi „Cr„)z03. These authors
deduced their results from a calculation including
magnetic interaction to the model of Falicov et al.~s

known to account for various aspects of mixed-
valence phenomena. According to our present
model, we can still go further in the comparison
with mixed-valence systems. In particular, we have
shown that for a definite range of donor centers our
model predicts a mixed phase, where the proportion
of ionized donors is not close to an integer (0 or 1)
but has an intermediate value (typically —, ). This
leads to the conclusions that also in mixed-valence
systems the magnetic entropy may have important
effects; on this topic, we can already notice that
some disagreements between experiment and predic-
tions of the model developed in Ref. 58 concerning
some properties of SmS have been imputed to the
fact that the magnetic entropy associated with the
localized spins were not taken into account, al-
though its contribution is fundamental to stabilize
the insulating state at high temperature. Under
this aspect our model of the magnetic polaron has a
certain generality and gives a contribution to a
better understanding of the metal-insulator transi-
tions in magnetic semiconductors.
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