
PHYSICAL REVIEW B VOLUME 27, NUMBER 4 15 FEBRUARY 1983

Electron mobility in low-temperature Hg t „Cd„Teunder high-intensity CO2 laser excitation

F. J. Bartoli, J. R. Meyer, C. A. Hoffman, and R. E. Allen
Naval Research Laboratory, Washington, D.C. 20375

(Received 16 August 1982)

A photo-Hall technique has been employed to determine the dependence of the low-

temperature electron mobility in narrow-gap Hgl „Cd„Te (x =0.2) on optically generated

carrier density. Excitation is provided by CO2 laser pulses of 200-nsec or 25-psec duration.
At low excitation levels the mobility is found to increase due to the neutralization of ionized

acceptors by the photoexcited holes. At higher excitation levels the mobility decreases due

to electron-hole scattering. Comparison is made to a theory which fully incor-

porates the Kane band model in treating the scattering of electrons by ionized impurities,
photoexcited holes, and compositional disorder. The adaptation of the partial-wave phase-

shift method to a nonparabolic band structure is discussed. The treatment of electron-hole

scattering incorporates a recently developed theory which accounts in detail for the dynamic
dielectric response of the lattice polarizability and free carrier screening. With the use of
the random-phase-approximation dielectric constant t.(q, ~) for arbitrary degeneracy, it is

found to be particularly important that the screening by photoexcited holes be treated
dynamically. Because the mobility increase at low excitation levels is highly sensitive to the
number of acceptors present in the sample, the photo-Hall technique is quite promising as a
means of accurately determining compensation densities in narrow-gap Hgl „Cd„Te.

I. INTRODUCTION

Low-temperature electron mobilities in narrow-

gap n-type Hg& „Cd„Te have been studied experi-
mentally by a number of previous workers. ' 9 It has
been determined that for equilibrium carrier densi-
ties, ionized-impurity scattering and compositional-
disorder scattering dominate the electron transport
below =40 K. However, a number of additional
processes become important if a high-density
electron-hole plasma is introduced into the crystal.
Here we report a detailed experimental and theoreti-
cal investigation of this problem.

The experiment employs a photo-Hall technique
to determine the electron mobility as a function of
carrier concentration. With the use of laser radia-
tion for the generation of excess carriers, the
electron-hole density can be increased by over an or-
der of magnitude. The experiment is carried out at
low temperatures (T = 10 K} where the transport
properties are limited by charged-center scattering
effects.

The theoretical analysis considers ionized-
impurity scattering, electron-hole scattering, and
conipositional-disorder scattering within the frame-

, itrork of the Kane band model. Charged-center
'scattering is treated by the partial-wave phase-shift
method, employing a form of the Friedel sum rule
which accounts for the nonparabolicity of the con-

duction band. At low excitation levels where
ionized-impurity scattering dominates, the scattering
by the impurities is made less effective by the addi-
tional screening of the excess carriers. It also de-
pends on the extent to which any compensating ac-
ceptors are neutralized by photoexcited holes. At
sufficiently high excitation levels the electron mobil-
ity should be limited primarily by electron-hole
scattering. This mechanism is in some ways similar
to electron-ion scattering in that both represent in-
teractions with a charged center which is screened
by the surrounding dielectric medium. However,
there are significant differences due to the mobile
nature of the hole scattering center. This problem is
considered in detail using a theory which incorpo-
rates the dynamics of both lattice polarization and
free carrier screening. '

An application of photo-Hall techniques to an ac-
curate determination of compensation densities in
narrow-gap Hg~ „Cd„Te is discussed.

II. THEORY

Mobilities for electrons in a nonphotoexcited
narrow-gap semiconductor have been calculated by a
number of previous investigators. " ' Here we out-
line a theory for the low-temperature mobility of
electrons in a photoexcited direct-gap semiconduct-
or. Although application is eventually made to
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Hgi „Cd,Te with x = 0.2, the discussion of this
section will emphasize the general aspects of the
theory. The formulation fully incorporates the
Kane band model, ' which is briefiy summarized in
Appendix A.

A. Mobility formulation and scattering mechanisms

Because the dominant scattering mechanisms are
nearly elastic, we may accurately employ the relaxa-
tion time approximation to solve the Boltzmann
equation. The mobility is then given by'

bottom of the conduction band to have a nearly par-
abolic dispersion. It is shown in Appendix B that
this is true quite generally for electrons in any of the
common direct-gap semiconductors. Results of the
more general theory verify that the phase-shift
cross sections derived assuming a parabolic band
structure can be accurately used in the present non-
parabolic calculation. We, therefore, employ recent
phase shift results which can be applied to range of
the scattering parameters. '

The ionized-impurity-scattering relaxation time
can be written
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(2.1)

where n is the electron density, fp is the Fermi dis-
tribution function, r is the energy-dependent relaxa-
tion time, and the nonparabolic expressions for
k2(E) and dkldE are given by Eqs. (A2) and (A5) of
Appendix A. %%en several scattering mechanisms
must be considered at the same time, the relaxation
time can be written

r(E) = g r, '(E) (2.2)

1. Ionized-impurity scattering

Electrons may be assumed to interact with ionized
impurities via the screened Coulomb potential

2ZIe —«IA,,U(r) = — e
Epr

(2.3)

where ZI is the impurity charge in units of e, ep is
the static dielectric constant, and A., is the static
screening length, which will be discussed below.

In the past, scattering cross sections for the
screened Coulomb potential have usually been ob-
tained in the Born approximation. However, more
accurate results can be derived using the partial-
wave phase-shift method. ' ' Although an
equivalent Hamiltonian formulation can be em-

ployed to generalize the partial-wave method to the
treatment of a nonparabolic band structure, one can
show that it is not, in fact, necessary to use such a
theory to find the phase shifts. This is because any
electron whose energy is sufficiently small to invali-
date the Born approximation is close enough to the

where rj (E) is the relaxation time for the jth process
acting alone. In photoexcited Hg~ „Cd„Te at tem-
peratures below about 30 K, the dominant scattering
mechanisms are ionized-impurity scattering, elec-
tron-hole scattering, and disorder scattering.

where Nl is the impurity density and Hp is the
phase-shift correction which can be obtained from
Ref. 21 (i.e., Hp ~ 1 when the Born approxima-
tion is valid}. The dimensionless screening factor
FI is given by Eq. (3.10) of Ref. 13. In the limit
of parabolic bands FI has the familiar
form FI ~ ln(b, + 1) —b, l(b, + 1), where b,
=—4k, A, The static screening length A,,~, which is
appropriate when the Born approximation is valid,
may be obtained from the expression

~sB
4me

E'p

dn dp

de„dEFp (2.5}

Here n and p are the electron and hole densities, EF„
and E~~ are their respective quasi-Fermi energies,
and the relation dn/dE~„ is given for nonparabolic
bands by Eq. (A9) of Appendix A. When the elec-
trons are degenerate in a narrow-gap semiconductor
and n = p, the hole contribution to the screening is
much larger than that of the electrons due to the
larger effective mass and smaller Fermi energy.

In the phase-shift formalism, one usually takes
the screening length to have the form A,, ~ &eh,,e,
where A,e is fixed by the requirement that the gen-
eralized Friedel sum rule must be satisfied. For
parabolic bands the sum rule is

z, =-—'
i =e,h, l

X g (2l + 1) 5i(y;, b;)dE,
l

(2.6)

where the suinmation i is over the different species
of free carriers which can contribute. Here q; is the
charge of carrier type i in units of e, 5~ is the phase
shift for the I th partial wave, b; =—4k; A,„and

1y;:—2 kap;, where ap; = R'e/ni;q;Zle (ap; is the
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br
g(2l + 1) 5i(y;, b;) = So(b;y;).

I 43~
(2.7)

At high energies (specifically when y; » 1} the
I

effective Bohr radius if the scattering center is at-
tractive, i.e., q;ZI & 0}. One satisfies the sum rule

by adjusting A,s (and hence b;) until the two sides of
Eq. (2.6) are equal. In Ref. 21, the summation over
partial waves is evaluated as a function of y; and b;
Results are given in the form

Born approximation is valid and So reduces to uni-
ty. It can be shown that whenever So(y;, b;) ~ 1
for all i, Eq. (2.6) is satisfied only for A,~

= 1. That
is, A,, ~ A,,~ in this limit, which is why A,,~ is re-
ferred to above as the Born-approximation screening
length.

For the present case we must generalize the
Friedel sum rule to include the Kane band structure.
Assuming nonparabolic dispersion, the sum rule can
be rederived by the same steps discussed in Ref. 21
to yield the following result:

2 00

Z, = ——yqf
i =e,h, l
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k;(E) dE
dE, (2.8)

where the bracketed factor [(2E/k; ) (dk; /dE )]
reduces to unity in the parabolic limit. The integra-
tion in Eq. (2.8) is performed over both low E where
the Born-approximation invalidity must be account-
ed for (Se & 1) and high E where for nonparabolic
bands the bracketed factor is different from unity.
The use of the nonparabolic sum rule Eq. (2.8) en-
ables us to fully incorporate both the Kane band
structure and the more accurate scattering cross sec-
tions obtained by the partial-wave phase-shift
method.

2. Electron-hole scattering

Electron-hole scattering is much like electron-ion
scattering in that both occur via a Coulomb poten-
tial which is screened by a dielectric medium. The
main difference is that the ion is stationary, whereas
the hole is moving through the crystal with a finite
velocity. Although the bare potential is a Coulomb
interaction in both cases, the lattice polarization and
free carrier sero:ning can be much different due
to the frequency dependence of their dielectric
response. It has been suggested by a number of au-
thors' ' that in treating electron-hole scattering,
the high-frequency dielectric constant e„should be
employed rather than eo. It has also been stated"'
that the free holes are unable to take part in screen-
ing of the electron-hole interactions. We now show
that neither of these assertions is accurate when
applied to photoexcited plasmas of electrons and
holes in Hg& „Cd„Te.

First, consider the following phenomenological
argument, in which we assume that a hole scattering
center is moving through the crystal with a velocity
vt, . The appropriate value of the dielectric constant
to be employed in calculating the transition rate de-
pends on the extent to-which the lattice ions contri-
bute to the dielectric polarization. This depends on
~„the time scale for variations of the charge density

I

in the vicinity of a given lattice ion, as compared to
the lattice response time ~1 —co,„', where m,p is the
optical phonon frequency. The time r, may be
characterized by how long it takes for the hole
scattering center to move through some appropriate
interaction distance ro, which is estimated in Ap-
pendix D. We thus have r, = ro/vp„where vs is
the hole velocity. When ~, && vL the lattice can
respond and eo may be employed. When ~, && ~L,
the lattice response is too slow and e„ is appropri-
ate. For ~, = ~1 neither approximation is adequate
and the frequency dependence of e must be taken
into account.

A similar argument can be made concerning the
screening by free electrons and holes. The time ~;
required for carriers of type i to adjust their spatial
distribution in response to a change in potential is
roughly the time it takes for a particle of average
velocity U; to traverse the region of the interaction:
r; = re/v; Compa. ring r; to the time scale for the
disturbance, one finds r, /r; = u;/Us. Since the re-
lation v, » vt, almost always holds, the electrons
view the test hole as a nearly static scattering site
which they can screen as such. However, with
v~ = vp, the screening by other holes of all but the
slowest test holes is at best marginal. These
phenomenological conclusions will be verified in the
more rigorous treatment which follows.

Having discussed some of the main physical con-
siderations, we now outline the results of a recent
theory for dynamic dielectric response to electron-
hole interactions. ' The general approach is to con-
sider the response of a dielectric medium to a poten-
tial traveling through that medium with the velocity
of the electron-hale center of mass, v, m . One finds
after a transformation from crystal coordinates (the
rest frame of the medium) to center-of-mass coordi-
nates, that the bare Coulomb potential in momen-
tum space V(q) = 4me /q is modified by a
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'M. H. Weiler, R. L. Aggarwal, and B.Lax, Phys. Rev. 8 16, 3603 {1977).
R. Dornhaus and G. Nimtz, Tracts in Modern Physics 78 1 {1976).

'D. L. Carter, M. A. Kinch, and D. D. Buss, in The Physics of Semimerals and Narrow Gap
Semiconductors, edited by D. L. Carter and R. T. Bate {Pergamon, Oxford, 1971),p. 273.

frequency-dependent dielectric constant e( q, co}:

U(q, v, ) = v(q)
e( q, co)

(2.9)

e(q, co) = e„+ ei„(co) + e, (q, co) + es(q, co)

—:e~(q, co} + ieI(q, co), (2.10)

where e„ is the contribution of the rapidly respond-
ing core electrons, eht is due to lattice polarization,

where m = q ~ v, . In the present calculation we
restrict our attention to electron scattering by heavy
holes, for which ms » m, and v, ~ vs. The
total dielectric constant e(q, co} of the medium is
taken to have the form

and e, and e~ are the electron and heavy-hole
screening contributions, respectively (the light holes
have been ignored).

For the lattice contribution we may use the two-
mode expression

2
SJcoj.

+ lQ)I J
(2.11}

where St +St ——ep —e„. The mode strengths SJ, fre-
quencies cd, and damping coefficients I'J given by
Carter, Kinch, and Buss for Hgp sCdp 2Te are list-
ed in Table I.

For the free electrons and holes we use the
random-phase-approximation dielectric constant

e;(q, co) = 4ne' fp;(k } —fp;(k + q)

p E;(k + q) —E;(k) —%co ——,i%I';
(2.12}

where to a first approximation the damping coeffi-
cient is I'; = e/ ~my; and p; is the mobility of
carrier type i. Following the conversion of the sum-
mation over states in k space to a d k integral, one
finds that both the real and imaginary parts of e;
can be reduced to onefold integrals which must be
evaluated numerically unless extreme degeneracy
is assumed (see the expressions and discussion in
Ref. 10). In the limit co —+ 0, I; ~ 0 and
(fiq /2m;n; )dn;/dE~; && 1, Eq. (2.12) can be shown
to yield the usual static screening:
& (q co) + E'h(q, co) ~ epk e q and eI ~ 0. Since
ei t(co ~ 0) = ep —e„, one obtains in this limit
the usual statically screened Coulomb potential [see
Eq. (2.9)]: U ~ 4rre /ep(q + )(,,~ ), which is just
the Fourier transform of Eq. (2.3). In the opposite
limit where ih'co is much larger than typical values of

I

E;(k + q} —E;(k) in the denominator of Eq.
(2.12}, one obtains that for weak damping the real

part of the free carrier component is2s

e;~(q, co) —+ —cd, /co, where co&,
. is the plasma fre-

quency (co&,
——4srn;e /m;) Since e;z .is negative in

this frequency regime, the real part of the total
dielectric constant may vanish when the core elec-
tron, lattice, and free carrier contributions are
summed. While this does occur, it is shown in Ref.
10 that el is usually large in such cases so that reso-
nance behavior is not expected to have a significant
effect on the mobility.

We now derive the transition rate due to the
electron-hole scattering potential given by Eqs.
(2.9)—(2.12). The usual phase-shift method is
inapplicable in the present case because the r-space
potential obtained from a Fourier transform of
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approach cannot be used unless this approximation
is made. It is shown in Appendix C that the as-
sumption of elasticity is valid whenever ms && m,
and the electron Fermi level is not too great. For
Hg08Cd02Te it is appropriate at any photoexcited
carrier density below about 10' cm

U(q, v, ) in Eq. (2.9) is not spherically symmetric.
(It has circular symmetry only about the axis de-
fined by v, m). We therefore employ the Born ap-
proximation and then incorporate a phase-shift
correction as discussed below. The calculation is
considerably simpler if we assume the electron-hole
interactions to be elastic, since the relaxation time

I

~l
In the Born approximation, the transition rate for electrons of wave vector k, scattering to the state k, is

T '3

Ws(k, ~k, ) =2
2M f~'vsfo(vs) Ii —fo(vs))

&
@Ee + Es —E~ —Eil)

X l«q ~=q (2.13)

~h~~e q = k. —k.
I

vs
I

=
I vs + &q/Iiis

I
~

I vs I
(assuming elasticity) and

I
U(q, oi)

I q' e'„(q, ~) + ei'(q, ~)
(2.14)

dN 1

e&(q oi) + ei(q oi) mpaP/2e k&T E+&/k&T—
W,s(q) =

The integration in Eq. (2.13) is over the Fermi distribution of holes from which scattering can occur.
Of the three integrals in Eq. (2.13), the azimuthal angle integral dPs is trivial. A second integral can be per-

formed if we first change coordinates from vs to co = qvs I
u' I, where u' —= cosgs and gs is the angle between

v~ and q. One obtains

16ire ms, ' du' "
2 fo(Es = msoI /2q u' ) [1 —fo(Es)]

W,s(q) = 5(E, —E,') co des . (2.15)fi~q' ' —' Iu'I' eIi(q, oi) + eI(q, ei)
1 1

Since the du' integral is even, we may take I du' ~ 2f du'. After changing variables from u' to
z = msoI /2q u' ks T one can integrate to obtain2 2 &2

—1 0

5(E, —E,') f (2.16)
g4q 5 0

Since the last factor inside the integral of Eq. (2.16) is simply fo(vi', ) if vs ~ oi/q, we rewrite Eq. (2.16) in the
orm

32ne kBTms fo(vs )dvs
W,„(q)=,„S(E,—E,')

ri4q4 eg(q, N = qvit ) + eI(q, oI)

The electron-hole-scattering relaxation time can now be evaluated from

1&g (E, ) =
s f d k,' W~s(k, —+ k, ) (1 —cosg)O(cosg),

(2m. )

(2.17)

(2.18)

where 8 is the angle between k, and k, . The dimensionless wave-function admixture factor O(cosg) is usually
on the order of unity and is defined in the Appendix of Ref. 15. After substitution of W,s and evaluation of
two of the three integrals in Eq. (2.18), one obtains

2e keTms z dk, ~ O(cosg) singdg ~ fo(vs)dvir,g'(E, ) =
4 k, Ho(E, )

dE, ' o 1 —cos8 o eR(q oi qvh) + eI(q co)
(2.19)

where the relation q = 2k, (1 —cosg) has been used. We have inserted a phase-shift correction factor Ho
which can be calculated in the manner discussed above for ionized impurities. Although the values for H0
given in Ref. 21 were obtained assuming static screening, the error introduced should not be large since the
Born approximation is nearly valid under high photoexcitation conditions where electron-hole scattering is im-
portant.



27 EI.ECTRON MOSII.ITY IN I OW-TEMPERATURE Hg~ „Cd„Te.. . 2253

Equation (2.19) represents our final result for the
relaxation time due to electron-hole scattering. It is
instructive to evaluate this expression in the static
limit, i.e., for e(q, co) ~ Go(1 + Res q ). The
dielectric constant can then be removed from the
duh integral, which can be written

mj, kg T2

J, fodvh =—ks T Bfp
khdkh

BE

I fo(1 —fo)khdkh
0

(2.20}

where comparison with Eq. (A9) of Appendix A
gives that p' = ks Tdp/dE~~. Substitution into Eq.
(2.19) yields

2&p8 Eg 2 dk
r,h' (static) =

z k, Hp.
fico

(2.21)

The static electron-hole relaxation time Eq. (2.21}is
therefore completely analagous to the ionized-
impurity-scattering result Eq. (2.4) except that the
effective density of scattering centers is p' rather
than the actual hole density p. In the nondegenerate
limit, the factor (1 —fp) can be replaced by unity
and p' —+ p. However, when the holes are degen-
erate the effective density of scattering centers is
much less than the hole density because in most of
the possible interactions the final hole state is al-

ready occupied. The same qualitative considerations

apply to the more general dynamic result Eq. (2.19),
although there one does not obtain an easily recog-
nizable "effective density of scattering centers. "

Having developed both static and dynamic expres-
sions for the electron-hole relaxation time, we are
now in a position to predict quantitatively under
what conditions the dynamic effects are important.
From Eq. (2.19} we see that the dielectric constant
e(q, co) is evaluated at co = quh. It is shown in Ap-
pendix D that the dominant contributions of thc in-

tegral over 8 occurs for q = qo, where an expression
for qo is given by Eq. (D2). Also discussed in Ap-
pendix D is the length ro —qo

' which character-
izes a typical interaction distance. The frequencies
of interest are thus of order co, = uh Irp, where uh is
an appropriate hole velocity. This is in agreement
with the conclusion obtained phenomenologically at
the beginning of this section that the relevant time
SCale is 1e COe —rllluh.

We now define e'(cg) to be the sum of the core
electron and lattice ion contributions to the dielec-

tric constant. We also define an "effective" val-

ue: &elr = &O{'r h[ &lacy
= &lat() ] I'reh [&lag &lat(

19—
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13—

12 I

1014 1015
I I

1018 10'l7

n {cm 3)
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FIG. 1. Effective dielectric constant excluding free car-
rier screening, plotted as a function of carrier density for
7f = P.

= 0)]I'r. This is approximately that constant
value of e' which would give the same relaxation
time as that obtained from the general dynamic for-
mulation represented by Eq. (2.19). In Fig. 1, e,'ff is
plotted as a function of carrier density for
Hgp sCdp iTe at 10 K with n = p. The shape of the
curve is easily understood if we rough1y estimate

ff 6 + el„(co, ), where el l(co) is given by Eq.
(2.11). At low carrier densities, vh may be taken as
the nondegenerate thermal velocity, which is quite
low. Since co, is proportional to vh, we find that the
frequencies of interest are much lower than the fre-
quencies coj of the phonon modes. From Eq. (2.11),
this implies that the frequency dependence of el„
can be ignored and we obtain jeff E'0. However,
for n & 10' cm the holes begin to become de-
generate and the typical velocities increase with car-
rier density. As co, becomes larger, e,'~~ increases
above ep before dropping toward e„. This is also ex-
pected from the form of Eq. (2.11), although the res-
onance behavior near co, = coj has been broadened
because Eq. (2.17) contains an integral over co rather
than the discrete value co = co, . These results illus-
trate that in treating electron-hole scattering,
dynamic polarization effects should be taken into
account, and that it is often incorrect to approxi-
mate e,'g~ by e„as is suggested in Refs. 13 and 16.

Dynamic free carrier screening effects are impor-
tant when lrico in the denominator of Eq. (2.12} is
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comparable to or larger than E;(k + q) —E;(k)
= Rk;q/m;. If we substitute co = qv~ and
haik;/m; ~ v;, we find that the static limit is ap-
propriate only when u~ && v;. %hile the inequality
easily holds for electrons, it is necessarily violated
for holes. It is clear that while free holes do contri-
bute to the screening of electron-hole interactions,
their contribution is never as great as it is in the
screening of static potentials. This result can be
quantified if we define an "effective" hole screening
contribution in the following way. The static ex-
pression for the free carrier contribution to the
dielectric constant is e; = eoA,~;q, where A,~;= (4mezleo)dn;/de; from Eq. (2.5). If we calcu-
late r,i, from Eq. (2.19) using this static form for
electrons but the dynamic expression Eq. (2.12) for
holes, an "effective" hole contribution to the screen-
ing can be defined as the A,,~q(eff) which gives the
same relaxation time if the holes are also assumed to
screen statically. Figure 2 shows a plot of
A,,zq(eff)/A, ,~i, vs carrier density for various values
of hole mobility assuming the same conditions con-
sidered in Fig. 1. Note that in the low damping case
(high hole mobilities), the hole screening is approxi-
mately 50% effective over the entire range of carrier
densities. However, the figure also shows that
A,,z (eff) can be considerably smaller for lower hole
mobilities in the range of values observed experimen-
tally. ' This is due to the damping factor I'; in
Eq. (2.12), which it can be shown becomes impor-
tant when I; & qovI. Since qo is larger at high car-
rier densities due to the larger electron Fermi ener-

gy, the damping is less effective there.

3. Disorder scattering

Electrons in any mixed crystal A& „B„Cdo not
perceive a perfect lattice due to short-range compo-
sitional disorder. Consequently, disorder scattering
has an effect on the electron mobility. In a calcula-

1.0

tion which incorporates the Kane band model, Kos-
sut has calculated the relaxation time for this pro-
cess

N&iix(1 —x)V EDo 2 dk,
rDo(E) = k,

m.fi dE ' (2.22)

where x is the composition, Nzz is the number of C
atoms per unit volume, V is a matrix element, and
EDo is a dimensionless quantity on the order of uni-

ty which contains other matrix elements. [See Eq.
(26) of Ref. 35.] For Hgi „Cd„Tewe have used the
values suggested in Ref. 35 for the matrix elements.

Under photoexcitation, zoo increases with n,, due
to the factor k, dk, /dE which increases with elec-
tron Fermi energy. By comparison, r(' for ionized
impurities decreases with n, and ~,~ for electron-
hole scattering increases by no more than
k, dk, /dE. Disorder scattering therefore has a
much greater effect on the mobility at high excita-
tion levels.

B.Compensation and effects of photoexcitation

The formalism presented above for ionized-
impurity and electron-hole scattering may be applied
to either compensated or uncompensated narrow-

gap semiconductors. However, in order to calculate
the relaxation times for these mechanisms, explicit
expressions for the electron, hole, and ionized-
impurity densities are still required. Assuming a
monovalent donor merged with the conduction
band, the free electron and hole densities in uncom-
pensated material can be written: n = ED + n,
and p = p, = n„where n, andp, are thephotoex-
cited electron and hole densities and XD is the donor
density. Since electrons are scattered primarily by
impurities and holes at low temperatures, the elec-
tron density is approximately equal to the density of
scattering centers. However, in compensated ma-
terial this is no longer the case. If one assumes a
single type of divalent acceptor, the electron densi-
ty is given by

H~o.s Cdo.z Te
0-8 — 10 K n = ND —2' + ne~ (2.23)

cv
I

0.6

0.4
Cl

0.2

where /~ is the acceptor density. For compensated
material one also no longer has p, = n, in general,
since holes can be captured by the acceptors, thereby
reducing their ionization state. The free hole densi-
ty may therefore be written

0
1014

I

10&s
I

1017 1018
p = n, —Ng —21',( —1) (0) (2.24)

n(cm ~)

FIG. 2. Ratio of the effective dynamic hole screening
to full static screening, plotted as a function of carrier
density for n = p.

where Eq ' represents the density of acceptors
with charge —Z and Nq ——Nq

' + Nq
+ Xz '. Since the acceptors are all doubly negative
in the absence of photoexcitation, NA(-i) and NA(0)
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represent the density of ions which have captured
one and two holes, respectively.

We now examine qualitatively the effects of pho-

toexcitation on the electron mobility in compensated
material. At low excitation levels the photoexcited
holes are captured by acceptors, thereby decreasing
the charge states from —2 to —1. At the same

time, the larger electron density contributes to
greater screening of the Coulomb interactions be-

tween the electrons and ions. Since a change in ac-

ceptor charge from —2 to —1 reduces the scattering
cross section by approximately a factor of 4 [see Eq.
(2.4)], one expects a pronounced increase in the elec-

tron mobility at modest excitation levels for any ma-

terial which is at least moderately compensated. As
the photoexcitation level is increased, the Z = —2

acceptors are converted to Z = —1 and some of
these are then neutralized. The mobility continues

to increase in this region, since it can be shown that
the cross sections for scattering by neutral acceptors
are at least two orders of magnitude smaller than

those for ionized acceptors. If the photoexcitation
level is increased further, free holes will eventually

begin to accumulate and act as scattering centers.
Because of screening by the free holes, the electron

mobility does not necessarily decrease immediately

as soon as n, & 2N&. However, at sufficiently high

carrier densities a decrease due to electron-hole

scattering is generally predicted.
In calculating the electron mobility from the re-

laxation time expressions Eq. (2.4) and (2.19), Ho
must be determined and the Friedel sum rule must

be satisfied separately for donors, singly changed ac-

cepters, and doubly charged acceptors, as well as for
the hole scattering centers in electron-hole scatter-

ing. The problem is much more difficult if multiple

scattering by more than one charged center at a time

must be included. This effect has been considered,

but is not expected to be important under most con-

ditions achieved in the present experiment.
When the acceptor population has a multiplicity

of charge states, there will be an additional contribu-

tion to the screening due to the fact that an acceptor
near a positive test charge (for example) will on the

average have a higher negative charge than one far
away. This is similar to the additional screening by
bound electrons which was discussed by Brooks
for a system containing both ionized and neutral

donors. For a system of acceptors with two charge
states Nq" and Nq

' one should add to k,z in Eq.
(2.5):

—2 4~q Ng Ng2 (1) (2)

A,,s (bound holes) = i, ~ ~z~
(225)

P0k~T Nq" + Ng
'

Under steady-state excitation conditions, the

number of acceptors in each of the charge states will
depend on the relations between the electron and
hole capture cross sections characteristic of each
state. We define o; as the cross section for cap-( —Z)

ture of a carrier of type i by acceptors in the charge
state ( —Z). Photoexcited holes are captured quite
readily by the Z = —2 acceptors because of the
strong Coulomb attraction. On the other hand, elec-
tron capture by Z = —1 accegtors is highly im-
probable (i.e., Gi = o„' "/oz ' « 1) because of
the Coulomb repulsion. This relation implies that in
the steady state, very few holes will remain free as
long as doubly charged acce~tors are present. One
also expects that Gi —= 0'„ /cr~

"
& 1 since the

capture of electrons by neutral acceptors takes place
only through a dipole interaction, while the holes in-
teract with the singly charged acceptors through a
Coulomb attraction. The neutralization of Z = —1

acceptors can be described by the steady-state rate
equation for neutral acceptors. By detailed balance

one has nNq 0„= N~ e& . For high densi-(0) (0) ( —1 ) ( —1)

ties where n = p, Nz '/Nz "= G i
'

& 1, i.e., over
half of the Z = —1 acceptors are neutralized. For
lower excitation levels where n g& p,
Nq '/Nz " ——(p/n)G i

' which can be appreciably
smaller than the high density limit. Although the
relevant cross sections have not been determined for
divalent acceptors in Hg~ „Cd„Te, both theoretical
estimates ' and data on divalent acceptors in other
materials indicate that these general considerations
should hold.

III. EXPERIMENTAL APPARATUS
AND RESULTS

Photo-Hall and photoconductivity measurements
have been performed at 10 K on several n-type
Hg~ „Cd Te samples with a nominal composition
of x = 0.2. The electron mobility has been deter-
mined as a function of carrier density, using CO&
laser excitation in order to achieve a wide range of
electron and hole densities. The experimental con-
figuration employed is illustrated in Fig. 3. The
sample was mounted in a variable temperature re-
frigerator and was situated between the pole pieces
of an electromagnet which provided a uniform mag-
netic field. The laser beam was directed through an
aperture in one pole piece of the magnet and focused
onto the sample. To insure uniform sample irradia-
tion, the focused spot size was large compared to the
sample. Carriers were generated in the sample by
interband single-photon absorption of the laser radi-
ation which was pulsed in order to avoid sample
heating. The photo-Hall and photoconductivity
measurements were made using a high-speed Tek-
tronix R7912 transient digitizer which was inter-
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FIG, 3. Experimental configuration.

faced to a PDP 11/03 minicomputer for immediate
data storage and processing.

Measurements are reported for three

Hgl „Cd„Te samples. Samples 1A and 18 are
from the same slice of x = 0.196 Cominco material,
which was processed by Santa Barbara Research
Center in a Van der Pauw configuration with di-
mensions 0.5 g 0.5 &( 0.1 mm . Sample 2 is a Hall
bar 12.6 g 1.6 X 0.09 mm with lateral contacts 2.9
inm on either side of center along the long dimen-

sion of the bar. This sample is from x = 0.215 ma-
terial grown and processed by Honeywell, Inc. The
values of x given for these samples are believed to be
accurate to within +0.005. All samples are mount-
ed on sapphire substrates which are bonded to a
copper disk in direct contact with the cold finger of
an Air Products closed-cycle helium refrigerator.
The sample is surrounded by a metal cold shield
maintained at 60 K. Optical access is provided by
an aperture in the cold shield providing a 60' full-

angle field of view and by a BaFz window in the
external vacuum shroud. A temperature-sensing
diode together with a PAR Corporation temperature
controller are used for temperature regulation.

Samples lA and 18 were iBuminated by an exter-
nally shuttered 50-W cw CO2 laser, providing 25-

p, sec flat-top pulses with rise and fall times less than
1 psec at a repetition rate of 1 Hz. Since the pulse
duration is long compared to carrier relaxation and
recombination tim. es, one obtains steady-state values
of p and n which can be compared with theoretical
calculations based on steady-state optical excitation.
The 25-@sec pulse was obtained by focusing the laser
beam through a small hole in an 8-in. diam alumi-
num disk rotating at 100 Hz and recollimating the
laser beam after it passed through the shutter. The
laser power supply was electrically triggered and
synchronized with the shutter to produce at the
sample one pulse every second. %ith this low duty
cycle, increases in n by over an order of magnitude
were obtained for samples 1A and 1B without ap-
preciable sample heating. For sample 2, however,

the larger sample size made it difficult to generate
sufficient carrier densities and still maintain uni-
form irradiation using the 50-W cw laser. To sup-
plement the cw laser source data on sample 2, mea-
surernents were also performed employing excitation
by 200-nsec pulses from a transversely excited atmo-
sphere CO& laser with a 1-Hz repetition rate. The
mobility and carrier density were measured as a
function of time during and after the laser pulse. To
eliminate transient effects, only data taken at least
200 nsec after the laser pulse was used. This portion
of the photoexcited electron decay is assumed to
yield steady-state values for p as a function of n.
Mobilities obtained using both laser sources are in
agreement.

Both CO2 lasers, operating on the P(20) line with
A, = 10.6 pm, contained intracavity apertures to re-
strict laser oscillation to the TEMIOO transverse
mode. The optics were adjusted to maintain a trans-
verse Gaussian intensity profile and to yield a spot
size large compared to the sample. Variations in in-
tensity, and hence in carrier density, were achieved
through the use of variable attenuators consisting of
CaF2 disks of various thicknesses and Ge with re-
flective coatings. The laser spot intensity profile
was measured by substituting a scanning pinhole
and detector assembly in place of the sample.

Photo-Hall and photoconductivity voltage traces
were obtained and averaged over all possible com-
binations of bias current polarity, magnetic field po-
larity and sample contact pairings. In this way any
spurious voltages, e.g., associated with sample asym-
metry, cancel out leaving the true photo-Hall and
photoconductivity signals. An increased signal-to-
noise ratio was obtained by averaging signals over
many laser pulses for each polarity of bias current
and magnetic field, and for each electrical contact
configuration. Monitoring of the laser pulse shape
and energy throughout the experiments verified that
pulse-to-pulse repeatability was usually better than
5%. Data from pulses falling outside of the 5%
limit were automatically eliminated by a pulse selec-
tion routine in the control software.

Experimental data for the three samples at 10 K
are presented in Figs. 4 and 5, which show the mea-
sured mobility as a function of carrier density. At
low excitation levels the mobility increases due to
acceptor neutralization. This effect is much more
pronounced in sample 2, which is more compensat-
ed. At higher excitation levels the mobility de-
creases, primarily because of electron-hole scatter-
ing. Data for excitation levels high enough to cause
sample heating are not included in the figures.
While slight carrier heating may occur due to free
carrier absorption, it is estimated that the effect on
the electron mobility is less than 10%. The data in
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Evaluating Eq. (3.1) for r = 1 p,sec, p~ = 1000
cm /V sec, and p,„»p~, one obtains LD on the
order of 20 pm with some variation with electron
and hole density. In the corrected data shown below
in Figs. 6 to 10,I.D ——20 pm is assumed.
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FIG. 4. Raw experimental data for samples 1A and 2.

Figs. 4 and 5 must be corrected for carrier density
variation with sample depth, since the laser radia-
tion is absorbed within the first several micrometers
of the surface, and the carrier diffusion length is less
than the sample thickness. Following the approach
of Petritz the sample is treated as two homogene-
ous layers parallel to the current fiow. The thick-
ness of the front layer is determined by the ambipo-
lar diffusion. The front layer is assumed to have a
uniform photoexcited carrier density while the back
layer retains the dark value n. This correction pri-
marily affects n, while mobility values are only
slightly modified. The ambipolar diffusion length
can be obtained from the relations LD ——(D,r)'
and

Before making a detailed comparison between
theory and the reduced experimental data, we dis-
cuss the effect of varying certain parameters which
appear in the theory, but which are not presently
well known. These are G~ =—o„''/o& ' and the
hole mobility pp.

For the somewhat compensated sample 2, Fig. 6
shows the effect of var| ing Gi between 0.01 and 1.0.
Since Nq "-G~Nq ' at high excitation levels
where n = p, a larger G~ tends to lower the mobili-
ty because the ionized acceptors scatter more effec-
tively than neutral acceptors. The electron mobility
is insensitive to G~ at very low excitation levels,
since there almost all of the photoexcited holes go
into converting doubly charged acceptors to singly
charged acceptors. It is also insensitive to 6 at very
high excitation levels because electron-hole scatter-
ing dominates the scattering in that regime. Howev-
er, at intermediate excitation levels, the choice of Gi
can affect the calculated mobility by as much as
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FIG. 5. Raw experimental data for sample 1B.
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FIG. 6. Reduced experimental data for sample 2 and
dependence of theoretical mobility on G I =— o „' '/o~
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20%. Since the value of Gi has not been experimen-
tally determined for HgCdTe, we use for conveni-
ence the value Gi —1.0 in the following calcula-
tions. The mobilities calculated for the less compen-
sated samples 1A and 1B are naturally less sensitive
to the choice of Gi.

At high excitation levels, the electron mobility de-
pends on the effectiveness of the dynamic hole
screening, and is therefore sensitive to the hole mo-
bility p&. (This was discussed in connection with
Fig. 2 above. ) Hole-mobility measurements on non-
photoexcited p-type HgCdTe at temperatures below
77 K are somewhat fragmentary. For doping levels
larger than 10' cm, mobilities between several
hundred and 1000 cm /V sec have been report-
ed. ' At 10 K, a value as large as p~ = 3000 has
been observed under conditions where most of the
acceptors have been neutralized by freezeout of the
holes. Under photoexcitation conditions, one ex-
pects the mobility to be somewhat higher for a given
density of impurities due to screening by excess elec-
trons and holes. An accurate calculation of the hole
mobility is difficult, however, because of uncertain-
ties regarding the effects of disorder scattering. If
one employs the usual Brooks calculation 4 [the par-
abolic analog of the formulation discussed in Sec.
IIA3], one obtains a disorder-limited mobility of
less than 200 cm /V sec at any temperature above
10 K. Since this is clearly inconsistent with the ex-
perimental data, the Brooks theory appears to work
quite poorly in the case of p-type HgCdTe. In the
absence of a reliable theory, it is difficult to estimate
even the order of magnitude of the disorder-
scattering mobility. On the other hand, if disorder
scattering is ignored, obtains a calculated low-
temperature hole mobility in excess of
10 cm /Vsec for the impurity concentrations of
present interest. Since disorder scattering for holes
is expected to be relatively insensitive to the levels of
doping and photoexcitatioi while the scattering due
to ionized impurities depends strongly on these
parameters, it is difficult to estimate even roughly
how pp should vary with XD, Xz, n, and p. Figure
7 shows the variation of the calculated electron mo-
bility of sample 1A with pz for the values

pz ——600, 1500, and 3750 cm /V sec. Also shown
is the reduced experimental data. It can be seen that
the shape and magnitude of the experimental inobil-
ity is well reproduced if we assume p~ = 1500
cm /V sec. In the figures which follow we employ
that value for samples 1A and 1B and 1000
cm /Vsec for sample 2. A somewhat lower value
seems appropriate for sample 2 since a greater densi-

ty of impurities is present.
For the values of G& and p~ stated above, Figs.

8—10 show calculated electron mobilities for all
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FIG. 7. Reduced experimental data for sample 1A and
dependence of theoretical electron mobility on hole mobil-
ity.
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FIG. 8. Theoretical and reduced experimental mobili-
ties vs electron density for sample 1A.

three samples as a function of excitation level, along
with the reduced experimental data. In each figure
the three theoretical curves correspond to (1) static
screening of electron-hole interactions, (2) dynamic
screening of electron-hole interactions, and (3)
neglect of hole screening in the electron-hole interac-
tions. The first substantially overestimates the elec-
tron mobility for all three samples, while the third
underestimates it at most carrier densities. On the
other hand, the more general theory for dynamic
screening tends to give better agreement at high ex-
citation levels where electron-hole scattering dom-
inates the mobility. At low excitation levels the
compensation is used as a fitting parameter. We



ELECTRON MOBILITY IN LOW-TEMPERATURE HgI Cd Te. . . 2259

I I I I i I I
I

STATIC SCREENING
2 x1pe—

I I I I IIII

T ~ 10 K
SAMPLE 2
(x = 0.21S}

I I I I I I III

,peQI
N

S x10

NO HOLE SCREENING

CREENING
10eQ

Cl
N

n
E

s x 'Is

l50
X

STATIC SCREENING

DYNAMIC SCREENING

T = 10 K
SAMPI.E 1 8
IX = 0.198}

2 x10

I i I I IIII I I I I i III I

1015 1016

CARRIER OENSITY (cm }

10'
10"

t 1 util
10)e

CARRIER OENSITY (cm }

1017

FIG. 9. Theoretical and reduced experimental mobili-
ties vs electron density for sample 1B.

find Nz —4.7 X 10' cm and Eq —4.3
&( 10'3 cm for sample 1A, ND --4.9 X 10'"
cm 3 and N~ —5.6 &( 10' cm for sample 1&,
and ND —1.6 X 10' cm and Nq —5.4 X 10'
cm for sample 2.

It is evident from Figs. 8—10 that dynamic
response effects are quite important, due primarily
to the reduced effectiveness of the hole screening
(see Fig. 2). Figure 1 shows that the effective dielec-
tric constant e,'rr = e„+ ei„does not vary signifi-
cantly from eo at n & 10' cm because the fre-
quencies of interest [see Eq. (2.19)J are much lower
than the phonon mode frequencies in Eq. (2.11).
Our conclusion that e,'ff = eo differs with previous
suggestions that e,'ff

%hile the ionized impurity and electron-hole re-
laxation times increase with electron energy, that for
disorder-scattering decreases. Disorder scattering
therefore has a greater effect on the mobility of high
excitation levels where the electron Fermi energy is
high. For example, using Kossut's formulation the
inclusion of disorder scattering decreases the mobili-
ty of sample 2 by only 2% in the absence of pho-
toexcitation, but by more than 25%%uo at n
=2X16' cm

The lack of theoretical and experimental agree-
ment concerning the shape and location of the mo-
bility peak is probably due to the approximate
"two-layer" data reduction technique employed. In
a future work, the carrier density versus depth pro-
file will be analyzed in detail to develop a more ac-
curate method of data reduction. Alternatively, one
could employ two-photon absorption or less strongly
absorbed one-photon excitation to produce highly
uniform carrier densities.

Fig. 10. Theoretical and reduced experimental mobili-
ties vs electron density for sample 2.

It should be noted that uncertainties on the order
of +0.005 in the composition x, and hence in uncer-
tainties in the band gap and effective mass, can in-
fluence the calculated mobilities. Since the high
density mobility is dependent only on x and not on
the doping level of a particular sainple, it should
eventually be possible to use the high density data to
"calibrate" the composition. The resulting x could
then be used in analyzing the data at lower excita-
tion levels where the mobility is sensitive to the im-
purity concentrations. The principle uncertainty in
the present theoretical treatment for high excitation
levels is in assigning the appropriate hole mobility
for the damping factor in the hole screening term.

V. CONCLUSIONS

Photo-Hall and photoconductivity measurements
have been performed on n-type Hgi „Cd„Te
(x = 0.2) at 10 K. Electron mobilities have been
determined for a wide range of excess electron and
hole densities, where CO2 laser radiation is used as
the source of optical excitation. At low excitation
levels, the mobility increases primarily due to the
neutralization of ionized acceptors by photoexcited
holes. Vhth increasing excitation, the mobility
passes through a peak and then decreases due to the
effigy:ts of electron-hole scattering.

Experimental results were compared with a theory
for electron mobilities in optically excited narrow-
gap semiconductors. The partial-wave phase-shift
method was employed in the calculation of ionized-
impurity and electron-hole scattering cross sections.
Compositional disorder scattering was also con-
sidered. In treating electron-hole scattering, it was
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found to be quite important that the free carrier
screening be treated dynamically.

An important finding of the present investigation
is that the mobility increase at low excitation levels
is highly sensitive to the degree of compensation
present in the material. Since the lack of thermal
freezeout prevents a determination of N„ from the
temperature-dependent Hall data, the present tech-
nique is quite promising as a means of accurately
determining acceptor densities in narrow-gap n-type
semiconductors.
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Here 5 =—b, /Es and

(A3b)
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APPENDIX A: KANE BAND MODEL

In the Kane four-band model, the exact dispersion
relations k;(E) for the conduction band and three
valence bands are solutions to the equations'

E' = 0, (Ala)

Here E' = E —R k /2mo, E is referenced to the
top of the valence bands, Es is the band gap, b, is
the spin-orbit splitting, and Ep

——2moP2/A2, where
P is the k ~ p interaction matrix element. Equation
(Ala) has the trivial solution A' ks/2mc ——E, which
represents the dispersion for the heavy-hole band.
Equation (Alb) is cubic, however, and the analytic
solutions are complicated. For both the electron and
light-hole bands it is more reasonable to expand in
powers of E/Es:

Ak;
2m

g=E 1+a +P.l g + 0 ~ ~

(A2)

where m; is the effective mass at k = 0 and the en-
ergies have been redefined as specified below. This
expression can also be used for the heavy-hole band
if we set ai, ——Ps = 0.

After redefining E —+ E —Eg, one obtains for
electrons

R k~E~E'(E' —Es) (E' + b, ) — (E' + —, b, ) = 0.
2mo

(Alb)

(A4)

In the present calculation we will ignore the terms
of Eq. (A2) in (E/Es) and higher. This is always
allowable for energies comparable to or less than the
gap because with small y„P, & 0.06 for any 5. In
Hgo &Cdc qTe at 10 K, 5 = 16 which gives
P, = 0.02 and a, = 0.97. While most previous
authors have used the reasonable approximation
a, = 1, a few have employed the more general
form given by Eq. (A3a). However, Eq. (A3b) for
P, has apparently not appeared before.

For the hght-hole band we redefine E —+ —E.
One then obtains

ai ——(1 + yi)' (1 + —, 5 '), (ASa)

W = (1+ yi)'[ , 5-'+-—.5-'

+ 2y, (1 + —, 5-')'], (ASb)

where

ill g

Plp

(5 + —,)y,

5+ 1 —y (25+ —, )
(A6)

As long as 5 » 1, the electron and light-hole
masses for k = 0 are nearly equal. However, if
5 « 1 the light holes are heavier by a factor of
about —,, and the expansion in powers of (E/Eg) in
Eq. (A2) does not converge except at extremely
sinall energies. This is not surprising since for
5 « 1 the light hole and splitoff bands are strongly
coupled.

From the truncated form of Eq. (A2), one easily
obtains the useful quantity

dk; (1 + 2a;E/Es)
dE 2iriE (1 + a.E/E ) ~ (A7)

e

(1 —y, )'( —, + 25+ 5')

(-, + 5)(1+ 5)
(A3a)

The density of a particular carrier type i can be
obtained as a function of its quasi-Fermi energy Ez;
from the relation

n; = f fo(Ep; )k; (E)dkg. (A8)
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In order that the screening length can be calculated
one also needs the quantity

Fi Fi
(A9)

APPENDIX B:BREAKDOWN OF BORN
APPROXIMATION AND NONPARABOLICITY

EFFECTS

It is shown in Ref. 21 that the Born approxima-
tion is valid as long as

1

k~ap~
k, fi ep

2me
I
Zi I

e' (B1)

For very low-energy electrons this relation does
not hold and it is necessary to use the phase-shift
method to find the ionized-impurity scattering cross
sections.

Nonparabolicity effects are important at electron
energies comparable to or greater than Eg The en-

ergy gap is related to the effective mass by Eq. (A4)
which can be simplified to yield the approximate
expression Es —( —, )Epm, /mo. If we consider the
conduction band nonparabolicity to be significant
when E/Es & 0.1 [see Eq. (A2)] and the Born ap-
proximation to break down when y & 1, we see that
both effects are important when

m~ 2m' ZI 8
0.067 Ep

— & E & (B2)
mp — —

fg pp

This relation is only possible if

Since Ep is on the order of 20 eV for all of the com-
mon III-V and II-VI semiconductors while ep is
within a factor of two of 16, inequality (B3) is at
most marginally satisfied even for ZI & 1. Thus,
any electron whose energy is sufficiently small to in-
validate the Born approximation is close enough to
the bottom of the conduction band to have a nearly
parabolic dispersion. We conclude that accurate re-
sults can always be obtained by calculating phase-
shift corrections to the Born approximation within
the parabolic formalism. We have verified this by
comparing with results obtained from a nonparabol-
ic phase shift calculation.

APPENDIX C: INELASTICITY
OF THE ELECTRON-HOLE COLLISIONS

1 1
q

m~

q

m~

2k, cos8,

2k' cosOp
(Cl)

In this Appendix we estimate the inelasticity of
the electron-hole interactions. We assume

ms » m, and ignore the nonparabolicity of the
conduction band.

Consider an electron and hole with initial wave
vectors k, and ks which are scattered to the final
states k, —q and ks + q. From conservation of
energy and momentum one obtains the relation

eo & 6.4 Zi(Ep/20 ev)-'". (B3)
where 8~and 8s are the angles of q with respect to
k, and kq. Using this relation we can write

AE, ]k, —q[' —k,'
2 I 2

2q cos8,

I

kI, m,—4 cosHI, cos8,
k, mI,

kp m,

k, mI,
cos8g (C2)

where the second term in brackets can be ignored
since ksm, /k, ms « 1. The same argument can be
used in Eq. (Cl) to give cos8, = q/2k, . In the
transport calculations, one integrates over q to find
the momentum-transfer scattering cross section.
For elastic scattering from a screened Coulomb po-
tential in the Born approximation, the dominant re-

gion of this integral occurs in the neighborhood of
some value qo —[2/(1+ , b,' )j' k, (see—Appen-

dix D). Using this relation, the typical inelasticity
can be approximated by

OAF. , [
2S/2 m, EI,

' 1/2

~(1 + '
g 1/2)l/2 mh E

where we have used the average value

~

cos8s
~

2/m. (Since q is insensitive to 8s, its
value may be considered random. ) Equation (C3)
shows that ~b,E,

~

may always be assumed small
relative to E,. Nevertheless, a neglect of inelasticity
may cause error in mobility calculations when the
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3m
X

2m' kg T

1/2

(C4)

which is not satisfied at high electron densities.
For Hgp sCdp 2Te at 10 K this occurs when

ng10' cm

APPENDIX D: ESTIMATE OF INTERACTION
DISTANCE ro

From the integration over scattering angles in the
static Born approximation [Eq. (2.21)], one can esti-

mate the angles 8 = Op which give the dominant
contribution to the integral for any given value of
b, Assum. ing parabolic bands, i.e., 0(cos8) ~ 1,
8Q can be defined by the equation

electrons are degenerate. in the more general trans-
port theory which accounts for inelastic collisions
(see, e.g., Ref. 46), one obtains an integration over fi-
nal electron energies E,' where the integrand con-
tains a factor [1 —.fp(E,')] instead of the usual
[1 —fp(E, )] term for elastic collisions. By relax-
ing the requirement that AE, = 0, the inelastic
theory may permit many more transitions and can
lead to a lower electron mobility. As an example, if
hE, is many times k~r, then initial electron states
many k~T below the Fermi level can couple to
unoccupied final states above the Fermi level.
Therefore, the relaxation time approximation which
assumes the collisions to be elastic is not expected to
be accurate for degenerate electrons unless

~
hE,

~
/kit T & 1. For degenerate electrons and

nondegenerate holes this criterion can be written

25/2

(1 + i
b i/2)i/2

(1 —cos8) sin8d 8
(1 —cos8 + 2/b, )

(1 —cos8)sin8d 8
ep (1 —cos8 + 2/b, )

(Dl)

Defining qp ——2k, (1 —cos8p), one obtains
qp = 2'/ k, at small b, and qp —2k, (e/b, )' in
the limit of large b, . The two results can be com-
bined to give

2

b 1/2

' 1/2

(D2)

where for simplicity we have omitted the exponen-
tial function e. The dominant contribution to the
scattering thus occurs for wave vectors on the order
of qp. The inverse of qp defines an average interac-
tion distance rp over which the most important in-
teractions occur. This follows since in Fourier
transforming the potential U(r) to obtain U(qp), the
dominant contribution occurs in the region—1
I'p ~ gp

Conceptually, it may seem natural to estimate the
interaction distance as being comparable to the
screening radius. However, the rp we obtain is not
necessarily on the order of A,, for the following
reasons. When b, = 4k, A,, ~& 1, the above argu-
ments show that rp && A, This is reasonable be-
cause rp cannot be smaller than the uncertainty of
the electron's position, approximately 1/k, . (In
fact, the screened Coulomb potential is not expected
to work well in this region because the electrons can-
not screen effectively on a distance scale much
shorter than their wavelength. ) When b, » 1, the
scattering for r &A,, is much more effective than
that for I"=A, Hence small ixnpact parameters are
emphasized and rp & A, . While a more accurate es-
timate of rp can be obtained using phase-shift tech-
niques, 29 such refinements are not required here.
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