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Deformation parameter and ultrasonic attenuation in the nearly-free-electron model
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We present a model calculation of the effect of'Fermi-surface distortions introduced by a
pair of Bragg planes on the deformation parameter and the ultrasonic attenuation.

I. INTRODUCTION

In the past few years there have not been very
many attempts to understand the behavior of the ul-

trasonic attenuation in metals. In calculating the
ultrasonic attenuation we have to first determine
the deformation potential. Unfortunately, this
quantity has not attracted much attention. Almost
all calculations of the ultrasonic attenuation use the
free-electron deformation potential given first by
Pippard. ' Even some more recent calculations of
the ultrasonic attenuation that employ detailed
knowledge of the Fermi surface use the free-
electron deformation potential or some simple
modification of it. In this paper we present a
model calculation of the effect of the Fermi-surface
distortions on the deformation potential and the ul-

trasonic attenuation. For our work we use the
nearly-free-electron model where the Fermi-surface
distortions are introduced by a pair of Bragg planes.

We report here model calculations of the defor-
mation potential and ultrasonic attenuation for a
sound wave propagating perpendicular to the Bragg
planes (c axis). We feel that for sound waves along
this direction there should be the maximum devia-
tion from the free-electron case because in this
direction the effective zones are perturbed signifi-

cantly. For sound waves perpendicular to this we

expect the least deviation from the free-electron
case. Thus our results, when compared with the
free-electron case, would give an idea about the an-

isotropy of the deformation potential and ultrasonic
attenuation.

The plan of the paper is as follows. In Sec. II we

give a calculation of the deformation potential
using the nearly-free-electron model for the Fermi
surface. In Sec. III we calculate the ultrasonic at-
tenuation using the free-electron deformation poten-
tial and a distorted Fermi surface. In Sec. IV we

give the results of the ultrasonic attenuation using
the nearly-free-electron deformation potential on

the one hand and a distorted Fermi surface on the
other. Our conclusions are summarized in Sec. V.

II. CALCULATION OF THE
DEFORMATION POTENTIAL

In calculating the ultrasonic attenuation it is the
deformation potential D which is the fundamental
parameter in the theory. The deformatioh potential
D is given by'

D =E„+k„cosP,

where k„ is the component of the electron wave vec-
tor along the propagation direction, P is the angle
between the propagation direction and the surface
normal, and K„ is the deformation parameter for
static longitudinal strain along the x axis such that
for a strain w„ the Fermi surface (FS) at k will

move normal to itself by E„w„. A detailed discus-
sion of the properties of D have been given by Pip-
pard. ' In our case, while calculating the deforma-
tion potential, K„ is taken as isotropic but actually
it depends on direction. The property of charge
conservation requires that'

I Dds= I (IC„+k„cosP)ds =0, (2)

where ds is the surface-area element. We do not
have to calculate the deformation parameter on the
Brillouin zone since K„+k cosg is identically zero
on a Brillouin zone.

For a metal with a spherical Fermi surface it is
trivial to evaluate the integral of Eq. (2), and one

1

obtains E„=——,k~. In the absence of any better

calculation of E„workers have used the free-
electron E„ to determine the ultrasonic attenuation
for metals with a complicated Fermi surface. In
this paper we make the first attempt to obtain L„
beyond the free-electron approximation, i.e., in the
nearly-free-electron approximation.

%'e calculate E„ for a Fermi surface which is
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spherical in most of the region but distorted by a
pair of parallel Bragg planes. With some modifica-
tions our model could be applied to the hexagonal

close-packed metals. We take It.„ to be independent
of k in the first approximation but to depend on

I

direction and, for reasons mentioned above, we take
the propagation direction to be perpendicular to the
Bragg planes. For the above-mentioned direction
we obtain in the I region

K„S=n( —6(6 +4V )' /8 —2X /3+ GX /2 —V Iln[G +(6 +4V }'/ ]I/2G

—[(6'—2XG}2+4V']'"[(G —2X)/8 —6/4]
G2

+V'lnI(6' —2XG}+[(6'—2XG)2+4V2]'/2) /26), E ( —V, (3)

in the II region

K„S=m IG /24+GV/2+ V ln(2V)/2G —V ln[G +(6 +4V )' ]/2G

G2 Gz—«6'+4V2)'/2/8] —««+ V
4 4

and in the III region

K,S=m(GY /2+GV+V ln(2V)/6 —V ln[(6 +4V )'/ +6 ]/26

(4)

where

—G(6 +4V }' /8 —2Y /3+[(G —2Y)/8 —6/4][(6 —2YG} +4V ]'/

G2—V InI(G —2YG)+[(G —2YG) +4V ]'/ I/2G), E) +V,

and

X 6/2 [E+g2/4 (Eg2+ V2) 1/2]1/2 (6) g/2+[E+g2/4 (Eg2+ V2)l/2]1/2 (7)
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FIG. 1. Deformation parameter I( „as a function of energy for different values of V. --- for V=0.0 Ry, -.- - «r
V=0. 1 Ry, and —for V=0.2 Ry.
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and where S is the surface area that has been calcu-
lated numerically, E is the energy (in Ry), 6 (=1.2
a.u. , typical of the group-IIa, -IIb, hexagonal close-
packed metals) is the reciprocal lattice correspond-
ing to the Bragg planes of interest, and V is a pseu-
dopotential parameter.

Our expressions for the deformation parameter
reduces to the free-electron case in the I and DI re-
gions while evaluating with V=O.O. In the II re-
gion there is no energy dependence for E, and this
is similar to the density of state 1' (E) in this region.
In Fig. 1 we plot

~
E„~ as a function of energy for

the free-electron case and for the nearly-free-
electron case with two different potentials. For the
fry-electron case the curve varies as (E)', but as
we include the potential we see a different behavior
of the deformation parameter. We note the follow-
ing: (i) All the three different energy regions have
different Fermi-surface topologies and this mani-.

fests itself very clearly for E„ in Fig. 1; (ii) In the I
and III regions of energy

~
E

~

increases with ener-

gy, but in region II it decreases with energy. This is
due to the fact that, as we see from the expression
for E, in this region, there is no energy dependence
in E„. For this region there is energy dependence
only due to the surface area S, and the surface area
increases with energy so

~
E

~

decreases with ener-

gy; (iii) In the I region of energy we call th' Ea 1s

and the free electron (FE) E„will not be much dif-
ferent from the Ei for the wave propagating per-
pendicular to the c axis (taken perpendicular t th

ragg planes). So we take EFE——E . Thus w
at „ is larger than the free-electron value, i.e.,
E E but in the II and III regions

d
Ei & E~~ . We also note that 1 —~E /E
epends on V and that in the II region the factor

II

1 —~E~~/Ez ~
depends on energy more strongly

than in the I and III regions.

III. CALCULATION OF THE
ULTRASONIC ATTENUATION

the
For a real inetal with an arbitrary Fermi surfi su ace
e electronic attenuation a of a longitudinal sound

wave can be written as'
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FIG. 2. a/v (in units of A/2Ti Mus ) calculated with
E '

3 k+ as a function of energy for three different

values of V. --- for V=O.O Ry - - - for V=005 R,
and —for V=OR1 Ry. (a) For E &G2/4 —V(I region).

) or 6 /4 —V &E &6 /4+V (II region). (c) For
E & 6 /4 + V (III region).

r r

a= +
4m. MU, 1+a cos II) J(a cos stP)/(1+a cos p)ds

In this equation M is the density of the metal, us is
the sound velocity, and a is the product ql, where q
is the wave number of the ultrasonic wave, and 1 is

I

the electron mean free path, which is assumed to be
impurity limited and isotropic. The integral is over
the Fermi surface. For a spherical Fermi surface
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FIG. 3. a/v (in units of A/2&MU, ) calculated with It„=— kF as a function of en—ergy for potential V=0.05 Ry and

for four different values of ql. - - - for ql =0.1, - --- for ql =0.5, —-—- for ql =5.0, and —for q1= 20.0.

the above integrals can be solved analytically, but
when the Fermi surface is distorted, the integrations
have to be done numerically. To see the effect of
Fermi-surface distortions on a, we have calculated
a with K„=——,k~ and the Fermi surface as given

by the nearly-free-electron model. It is customary
to plot a/v, where v is the frequency of the sound
wave, as a function of ql. This will change the pre-
factor of Eq. (8) to fi/2n Mv, . In Fig. 2 we have
plotted a/v as a function of ql for the three dif-
ferent energy regions. The calculated a/v is in
umts of fi/2mlu, . For each r.egion we have plot-
ted a/v for V=O.O, 0.05, and 0.1 Ry. We note
that the attenuation increases with increasing V.

The trend for large ql remains the same as in the

free-electron case. At small ql there seem to be
marked deviations from free-electron behavior.
Moreover, for small ql, a/v decreases with increas-

ing ql. This could perhaps be due to the fact that
for small ql the whole Fermi surface contributes to
a, and since K„ is constant, the distorted Fermi sur-
face seems to be giving a significant contribution to
a /v. We feel that this trend in a/v is an artifact of
our model and seems to suggest the importance of
calculating K„correctly.

As described earlier in the Introduction, we can
assess the anisotropy in a/v by comparing our re-
sults with the free-electron case. We see that in all

three regions
~
a~~/aj

~
& 1 and, as we increase the

potential, the anisotropy in a/v is also increased.
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As mentioned in the preceding section, there
seems to be some doubt in the correctness of a/v
when using the free-electron deformation potential
and nearly-fr+-electron Fermi surfaces especially
for small ql. We have, therefore, calculated a/v us-

ing the deformation potential calculated in Sec. II
and the nearly-free-electron Fermi surface. Our re-
sults are plotted in Fig. 4 for all three energy re-
gions. We note that the strange behavior of small ql
has disappeared. This reiterates our view that in or-
der to calculate a /v correctly for a deformed Fermi
surface we need to calculate E„ for the deformed
Fermi surface. We note in Fig. 4 that (i) In the I re-

gion the value of attenuation increases with poten-
tial energy, i.e., [a~~ ~

& ~ai ~, so the anisotropy in-
creases with potential energy. This behavior is a re-
fiection of the E» beh avi or; (ii) In the III, region of
energy a/v decreases with potential energy. This is
because E„decreases with energy in this region as
shown in Fig. 1. Also,

~

a
~ ~

/ai
~

& 1 and the aniso-

tropy of a/v decreases with potential energy; (iii) In
the III region too, the anisotropy of a/v and K» de-
creases with potential energy, as can be seen in Fig.
1.

In Fig. 5 we have plotted a/v as a function of
energy for various ql and V=0.05 Ry. We note
that in the I and III regions of energy the trend of
a/v is similar to that of the free-electron case, but
in the II region a/v decreases slightly with energy.
This trend of a/v in the II region is due to E„,
which also decreases with energy in this region. We
also see that the strange behavior of a/v for small

q/ does not appear for this case.

FIG. 4. Same as in Fig. 2 but with E„calculated as

given in the text. V. CONCLUSIONS

In order to see the effect of Fermi-surface distortion
we have plotted a/v as a function of energy for
various ql taking V=0.05 Ry in Fig. 3. For large
ql the a/v value is the same as in the free-electron
case. For small ql, however, significant deviations
from the free-electron behavior are seen. In fact,
the effect of the Fermi-surface shape on a/v is
easily seen in this figure with sharp cusps at
E=G2/4+V. The rapid change in a/v for ql =0.1

in the III region, and the not so rapid change in
a/v in III region, seem to indicate the unreliability
of E„.

We have given a model calculation of a/v for a
distorted Fermi surface, using the deformation
parameter E» calculated for a distorted Fermi sur-
face. This contrasts with other workers who have
calculated a/v for a distorted Fermi surface but
with the free-electron deformation parameter. Our
results show that to obtain the correct behavior of
a/v for small ql, we have to calculate the deforma-
tion parameter K„exactly. The geometrical
features of the Fermi surface can be used to explain
the anisotropy in the electronic ultrasonic attenua-
tion. We have shown the following: (i) The aniso-

tropy of the deformation parameter E, and the ul-
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FIG. 5. Same as in Fig. 3 but with E„calculated as given in the text.

trasonic attenuation o,'increases with potential ener-

gy for E &6 /4+ V; (ii) In the region
6 /4 —V &E &6 /4+Vand E &6 /4+Vthean-
isotropy of the deformation parameter and the ul-

trasonic attenuation decreases with the potential en-

ergy.
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